Demethylation of Coordinated Hexamethylbenzene. Carbon-Carbon Bond Activation during Ruthenium-Mediated [3 + 2] Allyl Alkyne Cycloaddition Reactions

C. M. Older and J. M. Stryker*

Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada

Received October 1, 1998

Summary: The demethylation of coordinated hexamethylbenzene is integrated into [3 + 2] allyl/alkyne cycloaddition reactions mediated by $(\eta^6$ -hexamethylbenzene)- $Ru(\eta^3$ -allyl)OTf. The reaction proceeds in high yield at or below room temperature and yields methane and (n⁶-pentamethylbenzene)ruthenium(1,2-dialkylcyclopentadienyl)⁺OTf⁻ complexes exclusively. Cycloaddition with carbon-carbon bond activation is general for a range of disubstituted alkynes.

Transition metals mediate the activation of carboncarbon bonds in a range of contexts.¹ Both oxidative and nonoxidative (viz., β -alkyl elimination) processes are common, driven by various kinetic and thermodynamic effects: the relief of ring strain,² coordination-induced proximity,^{3,4} ligand aromatization,⁵ or in many cases, a combination of factors.⁶

In this communication, we report a general demethylation reaction that converts coordinated hexamethyl-

(2) (a) Recent reviews: Hirao, T. *Top. Curr. Chem.* **1996**, *178*, 99. Jennings, P. W.; Johnson, L. L. *Chem. Rev.* **1994**, *94*, 2241. Recent lead references: (b) Yeh, W.-Y.; Hsu, S. C. N.; Peng, S.-M.; Lee, G.-H. Organometallics **1998**, *17*, 2477. (c) Perthuisot, C.; Edelbach, B. L.; Zubris, D. L.; Jones, W. D. Organometallics **1997**, *16*, 2016. Edelbach, B. L.; Lachicotte, R. J.; Jones, W. D. J. Am. Chem. Soc. **1998**, *120*, 2843

(3) β -Alkyl elimination. Selected recent references: (a) McNeill, K.; Andersen, R. A.; Bergman, R. G. J. Am. Chem. Soc. 1997, 119, 11244, and references therein. (b) Nicholls, J. C.; Spencer, J. L. Organometallics 1994, 13, 1781. Cracknell, R. B.; Nicholls, J. C.; Spencer, J. L. *Organometallics* **1996**, *15*, 446. (c) Takemori, T.; Suzuki, H.; Tanaka, M. Organometallics 1996, 15, 4346. Suzuki, H.; Takaya, Y.; Takemori, T. J. Am. Chem. Soc. 1994, 116, 10779, and references therein.

(4) Oxidative C-C cleavage: (a) Suggs, J. W.; Jun, C.-H. J. Am. Chem. Soc. 1986, 108, 4679, and references therein. Jun, C.-H. Organometallics 1996, 15, 895. (b) van der Boom, M. E.; Ben-David, Y.; Milstein, D. J. Chem. Soc., Chem. Commun. 1998, 917. Gandelman, M.; Vigalok, A.; Ben-David, Y.; Milstein, D. Organometallics 1997, 16, 3981. Rybtchinski, B.; Vigalok, A.; Ben-David, Y.; Milstein, D. J. Am. Chem. Soc. 1996, 118, 12406, and references therein.

(5) (a) Eilbracht, P. Chem Ber. 1976, 109, 1429, 3136. Eilbracht, P.; Dahler, P. Chem. Ber. 1980, 113, 542, 1033, 1420, 2211. (b) Benfield, F. W. S.; Green, M. L. H. J. Chem. Soc., Dalton Trans. 1974, 1324. (c) Crabtree, R. H.; Dion, R. P.; Gibboni, D. J.; McGrath, D. V.; Holt, E. H. J. Am. Chem. Soc. 1986, 108, 7222. (d) Hemond, R. C.; Hughes, R. P.; Locker, M. B. Organometallics 1986, 5, 2392. (e) Jones, W. D.; Maguire, Organometallics **1987**, *6*, 1301. (f) J. A. Rondon, D.; Chaudret B.; He, X.-D.; Labroue, D. J. Am. Chem. Soc. **1991**, *113*, 5671. Chaudret, B.; Halcrow, M. A.; Urbanos, F. Organometallics **1993**, *12*, 955. Urbanos, F.; Halcrow, M. A.; Grbanos, T. O'ganometalez-Baeza, J.; Dahan, F.; Labroue, D.; Chaudret B. J. Am. Chem. Soc. **1993**, 115, 3484. (g) Masuda, K.; Ohkita, H.; Kurumatani, S.; Itoh, K. Organometallics 1993, 12, 2221. (h) Dimauro, P. T.; Wolczanski, P. T. Polyhedron 1995, 1. 149.

Figure 1.

benzene into pentamethylbenzene in high yield under exceptionally mild conditions.7 The demethylation process is integrated into an overall [3 + 2] cycloaddition reaction, which converts cationic (η^6 -hexamethylbenzene)ruthenium η^3 -allyl complexes and disubstituted alkynes into methane and (η^6 -pentamethylbenzene)ruthenium η^5 -cyclopentadienyl complexes. This "unforced" carbon-carbon bond activation appears to be driven by relief of the cumulative steric strain experienced by the six mutually buttressed methyl substituents in hexamethylbenzene and by a surprisingly low kinetic barrier to the carbon-carbon bond scission.

Metal-mediated "oxidative" allyl/alkyne [3 + 2] cycloaddition reactions have been previously reported for half-sandwich η^5 -cyclopentadienyl,⁸ η^5 -pentamethylcyclopentadienyl, 9,10 and η^{6} -arene⁸ complexes of the late transition metals (Figure 1). The reaction represents an unexploited convergent synthesis of differentially substituted cyclopentadienyl ligands within the coordination sphere of a metal and is potentially attractive for the development of catalyst libraries and derivatizing alkyne-rich materials and polymers. The reaction proceeds via initial migratory coupling of allyl and alkyne ligands (a)^{11a} and is *presumably* followed by migratory cyclization (**b**) and β -hydride elimination (**c**). Cyclopentadiene hydride complex I then transforms into the cyclopentadienyl complex by dehydrogenation or, as we demonstrate for the hexamethylbenzene ruthenium system, by an unexpected alternative pathway involving hexamethylbenzene dealkylation.

⁽¹⁾ Crabtree, R. H. Chem. Rev. **1985**, 85, 245. Herrmann, W. A.; Cornils, B. Angew. Chem., Int. Ed. Engl. **1997**, 36, 1048.

^{(6) (}a) Murakami, M.; Amii, H.; Kunji, S.; Ito, Y. *J. Am. Chem. Soc.* **1996**, *118*, 8285, and references within. (b) Kondo, T.; Kodoi, K.; Nishinaga, E.; Okada, T.; Morisaki, Y.; Watanabe, Y.; Mitsudo, T. *J.* Am. Chem. Soc. 1998, 120, 5587.

⁽⁷⁾ The dealkylation of hexaalkylbenzenes is also observed in AlCl₃mediated exchange reactions of (cyclopentadienyl)metal complexes under very harsh conditions: Fischer, E. O.; Elschenbroich, C. *Chem.* Ber. **1970**, 103, 162. Roman, E.; Astruc, D. *Inorg. Chim. Acta* **1979**,

⁽a) Lutsenko, Z. L.; Aleksandrov, G. G.; Petrovskii, P. V.;
Shubina, E. S.; Andrianov, V. G.; Struchkov, Yu. T.; Rubezhov, A. Z. J. Organomet. Chem. 1985, 281, 349. (b) Lutsenko, Z. L.; Petrovskii,
P. V.; Bezrukova, A. A.; Rubezhov, A. Z. Bull. Acad. Sci. USSR. Div. Chem. Sci. 1988, 37, 735; Izv. Akad. Nauk SSSR, Ser. Khim. 1988, 855

⁽⁹⁾ Nehl, H. Chem. Ber. 1993, 126, 1519.

⁽¹⁰⁾ Schwiebert, K. E.; Stryker, J. M. Organometallics 1993, 12, 600.
(11) (a) Schwiebert, K. E.; Stryker, J. M. J. Am. Chem. Soc. 1995, 117, 8275. (b) Etkin, N.; Dzwiniel, T. L.; Schwiebert, K. E.; Stryker, J. M. J. Am. Chem. Soc. 1998, 120, 9702.

To support our investigation of allyl/alkyne [3 + 2 + 2] cycloaddition reactions,¹¹ the η^6 -hexamethylbenzene ruthenium allyl complex **1** was prepared by modification of a literature procedure.¹² Thus, the reaction of Bennett's dimer¹³ and tetraallyltin (1–2 equiv) in acetonitrile affords (η^6 -C₆Me₆)Ru(allyl)Cl^{14,15} (**1**) in near quantitative yield (eq 1).¹⁶ Treatment with silver triflate provides inner-sphere triflate complex **2**, isolated from the reaction mixture as an analytically pure, thermally stable, mildly air-sensitive orange powder.¹⁵

Conditions: i. (C₃H₅)₄Sn, CH₃CN, RT, 12h; ii. AgOTf, acetone, RT, 2h.

Either chloride complex **1** or triflate complex **2** can be used for subsequent allyl/alkyne cycloaddition reactions, the former in conjunction with in situ ionization using silver salts or highly polar solvents (e.g., CF₃CH₂-OH). The reactions of triflate complex **2**, however, generally proceed more cleanly and provide [3 + 2]cycloadducts in higher isolated yields. Treatment of the triflate complex at room temperature with 1 equiv¹⁷ of a range of disubstituted alkynes provides the disubstituted cyclopentadienyl complexes **3a**-**d** in yields of 72– 96% after purification by recrystallization (eq 2).^{15,18} The

new cyclopentadienyl ligands were identified by characteristic signatures in both the ¹H and ¹³C NMR spectra: very small vicinal coupling constants (${}^{3}J_{\rm HH} =$ 2-3 Hz) for the methine hydrogen atoms and, where determined, large one-bond carbon-hydrogen coupling constants (${}^{1}J_{\rm CH} = 170-180$ Hz) for the methine carbon atoms. NMR spectroscopic analysis, however, also reveals that in each case the symmetry of the hexameth-

Conditions: i. 2,8-decadiyne (1.6 equiv), acetone (high dilution), RT, 12h; ii. 2,8-decadiyne, CH_2Cl_2 , 0 °C \rightarrow RT, 2.5h; iii. Complex 3 (1 equiv), acetone, RT.

ylbenzene ligand is broken and a downfield singlet (¹H NMR: δ 5.9–6.1, 1H) is observed, consistent with the presence of a η^6 -pentamethylbenzene ligand.

To confirm the dealkylation and determine the ultimate fate of the methyl group, the reaction with 2-butyne was carried out in a sealed NMR tube and monitored by ¹H NMR spectroscopy. The formation of methane was detected (0.15 ppm in acetone- d_6) and confirmed by comparison with an authentic sample.¹⁵ In addition, photolysis of dimethylcyclopentadienyl complex **3a** (450W Hanovia lamp, Pyrex filter) in the presence of 3 equiv of trimethylphosphine leads to the liberation of pentamethylbenzene, identified by comparison to an authentic sample, and formation of the tentatively identified tris(phosphine) complex, $[(\eta^5-$ Me₂C₅H₃)Ru(PMe₃)₃]⁺OTf⁻ (**4**).^{15,19}

Exclusive dealkylation is also observed in the reactions of 2,8-decadiyne with triflate complex **3**, which can be converted with high selectivity into either mono-(cyclopentadienyl) complex **3e** or tethered bis(cyclopentadienyl) complex **3f**, depending on reaction stoichiometry and conditions (Scheme 1).¹⁵ The latter complex is formed as the expected inseparable 1:1 diastereomeric mixture.

The mechanism of the dealkylation process remains under investigation, but it is reasonable to posit the intermediacy of a diene hydride complex analogous to **I** in Figure 1 (Scheme 2). After that, we suggest that (reversible) migration of the hydride to the arene ligand²⁰ (Scheme 2) is more kinetically facile than dehydrogenation, providing hexamethylcyclohexadienyl intermediate **II** bearing an *exo*-methyl substituent. This species may, in principle, suffer direct radical scission (path **a**), as postulated by Chaudret to explain related ruthenium-mediated *exo*-methyl dealkylations.^{5f} The significantly milder reaction conditions required for the present demethylation (below room temperature vs >100 °C), however, render such a radical mechanism

⁽¹²⁾ Allylation of $[(\eta^6-C_6H_6)RuCl_2)]_2$ using tetraallyltin in acetonitrile: Baird, M. C. Zelonka, R. A. *J. Organomet. Chem.* **1972**, *44*, 383. The reported use of a large excess of the tin reagent unnecessarily complicates isolation and purification of the allylated product.

⁽¹³⁾ Bennett, M. A.; Huang, T.-N.; Matheson, T. W.; Smith, A. K. Inorg. Synth. **1982**, 21, 74.

⁽¹⁴⁾ Bennett, M. A. Huang, T.-N.; Turney, T. W. J. Chem. Soc., Chem. Commun. **1979**, 312.

 $[\]left(15\right)$ Complete experimental, spectroscopic, and analytical data are provided as Supporting Information.

⁽¹⁶⁾ The use of the more convenient allyltriphenyltin reagent is also effective, but the yield is somewhat lower (70-80%) and separation of the byproduct Ph₃SnCl requires chromatography.

⁽¹⁷⁾ For most disubstituted alkynes, the presence of excess alkyne has no significant effect on the course of the reaction. In the presence of excess 2-butyne, however, a more complicated reaction manifold is accessed. The reactions of terminal acetylenes and dimethylacetylene dicarboxylate also proceed via alternative reactivity patterns. These reactions will be discussed separately: Older, C. M.; Stryker, J. M. Manuscript in preparation.

⁽¹⁸⁾ Demethylation occurs cleanly using either acetone or dichloromethane as reaction solvent.

⁽¹⁹⁾ Tris(phosphine) complex **4** was not isolated from the photolysis mixture, but is spectroscopically very similar¹⁵ to the known complex, $[(\eta^5-C_5H_5)Ru(PMe_3)_3]^+PF_6^-$: Bruce, M. I.; Wong, F. S.; Skelton, B. W.; White, A. H. *J. Chem. Soc., Dalton Trans.* **1981**, 1398.

⁽²⁰⁾ Alkyl or hydride migration to a coordinated arene ring is rare, but documented: (a) Beard, L. K.; Silvon, M. P.; Skell, P. S. *J. Organomet. Chem.* **1981**, *209*, 245. (b) Brookhart, M.; Pinhas, A. R.; Lukacs, A. *Organometallics* **1982**, *1*, 1730. (c) Rush, P. K.; Noh, S. K.; Brookhart, M. *Organometallics* **1986**, *5*, 1745. (d) Kowalski, A. S.; Ashby, M. T. *J. Am. Chem. Soc.* **1995**, *117*, 12639.

less attractive.²¹ A more interesting and, perhaps, reasonable alternative involves 1,2-migration²² of the *exo*-methyl group to form geminal dimethyl complex **III** (path **b**), which now projects an *endo*-methyl group into the coordination sphere of the unsaturated metal. The carbon–carbon bond activation then belongs to a relatively common class of β -carbon elimination reactions,^{3,5} although such transformations also often require significantly harsher reaction conditions.²³ Itoh et al., however, have demonstrated that a similarly mild demethylation pathway exists in (C₅Me₅)Ru-mediated [4 + 2] diene/alkyne cycloaddition reactions, where it

is suggested that the *endo*-methyl minor isomer of a ruthenium η^{5} -1-methylcyclohexadienyl intermediate undergoes carbon–carbon bond activation under conditions where the concomitantly formed *exo*-isomer does not.^{5g} While it is not yet possible to rigorously exclude bimolecular dealkylation mechanisms, we note that the reaction of triflate complex **2** with diphenylacetylene proceeds slowly but exclusively to demethylated product **3b** even at high dilution (<0.0003 M in ruthenium). No intermediates were detected in a reaction monitored at room temperature by ¹H NMR spectroscopy.

The steric origin of the driving force for this general demethylation process is supported by allyl/alkyne cycloaddition in the corresponding η^{6} -pentamethylbenzene)-zene series: the reaction of (η^{6} -pentamethylbenzene)-Ru(η^{3} -allyl)OTf^{15,24} and diphenylacetylene provides mainly η^{6} -pentamethylbenzene product **3b** (>80%), accompanied by trace amounts of several unidentified, but presumably demethylated byproducts.¹⁵ Further mechanistic investigations are in progress.

Acknowledgment. Financial support from the Natural Sciences and Engineering Research Council of Canada and the University of Alberta is gratefully acknowledged. C.M.O. acknowledges the support of an NSERC Post-graduate Scholarship. We also thank Professor N. Branda for helpful discussions.

Supporting Information Available: Experimental procedures and complete spectroscopic and analytical data for all new compounds (8 pages). Ordering information is given on any current masthead page.

OM980823L

⁽²¹⁾ The Chaudret mechanism was developed to rationalize ruthenium-mediated angular methyl dealkylations observed in stereochemically defined unsaturated steroidal substrates, reactions for which various alternative mechanisms can be discounted.^{5f}

⁽²²⁾ A sigmatropic shift on the *exo*-face of a coordinated ligand was proposed by Crabtree^{5c} to account for rearranged products observed from the reactions of 1,1-dialkylcyclopentanes with an unsaturated iridium complex.

⁽²³⁾ The closely related complex [(dppe)Ru(1,1-dimethylcyclohexadienyl)(CH₂Cl₂)]⁺PF₆⁻, bearing a labile ligand and both *endo*- and *exo*methyl substituents, nonetheless requires 12 h at 90 °C to induce methyl migration to the metal center.^{5h}

⁽²⁴⁾ This complex was prepared by the same methodology used to synthesize triflate complex $\mathbf{2}$.¹⁵