Synthesis and Study of Ruthenium Silylene Complexes of the Type $[(\eta^5 \text{-} C_5 \text{Me}_5)(\text{Me}_3\text{P})_2\text{Ru}=\text{SiX}_2]^+$ **(X = Thiolate, Me, and Ph)**

Steven K. Grumbine, Gregory P. Mitchell, Daniel A. Straus,† and T. Don Tilley*

Department of Chemistry, University of California at Berkeley, Berkeley, California 94720-1460

Arnold L. Rheingold*

Department of Chemistry, University of Delaware, Newark, Delaware 19716

Received June 18, 1998

Various ruthenium silyl complexes of the type $Cp^*(Me_3P)_2RuSiR_3$ ($Cp^* = \eta^5-C_5Me_5$; SiR₃

 $=$ SiCl₃ (1), Si(NMe₂)₃ (2), Si(SEt)₃ (3), Si(S-2-Naph)₃ (4), Si[S(CH₂)₃S]Ph (5), Si(SCy)₂Cl (6), and Si(SMes)₂Cl (7, Mes = 2,4,6-trimethylphenyl)) were prepared by the reaction of Cp^{*}-(Me3P)2RuCH2SiMe3 with the appropriate silane HSiR3. Compound **3** was converted to the triflate Cp*(Me3P)2RuSi(SEt)2OTf (**8**) by the reaction of **3** with Me3SiOTf. Similar reactions produced Cp*(Me3P)2RuSi(NMe2)2OTf (**13**), Cp*(Me3P)2RuSi(NMe2)(OTf)2 (**14**), Cp*(Me3P)2- RuSi(SMes)2OTf (**18**), and Cp*(Me3P)2RuSi(SMes)(Cl)OTf (**19**). By NMR spectroscopy, compound **8** in dichloromethane solution appears to possess a labile triflate group. Reactions of the triflates **8** and Cp*(Me3P)2RuSi(S-*p-*Tol)2OTf (**10**) with NaBPh4 provided the silylene complexes $[Cp*(Me_3P)_2RuSi(SR)_2][BPh_4]$ (20, R = Et; 21, R = p-Tol). Similarly, the reaction of **6** with NaBPh₄ gave $[Cp^*(Me_3P)_2RuSi(SCy)_2][BPh_4]$ (22), and the reaction of 4 with $B(C_6F_5)_3$ produced [Cp*(Me3P)2RuSi(S-2-Naph)2][MeB(C6F5)3] (**23**). Silylene complexes **²⁰**-**²³** display characteristic ²⁹Si NMR shifts in the region of δ 250-270. The non-heteroatom-stabilized silylene complexes $[Cp^*(Me_3P)_2RuSiR_2][B(C_6F_5)_4]$ (24, R = Me; 25, R = Ph), obtained via reactions of $(Et_2O)LiB(C_6F_5)_4$ with $Cp^*(Me_3P)_2RuSiR_2OTf$ (11, R = Me; 12, R = Ph) exhibit ²⁹Si NMR shifts around δ 300. The crystal structure of **24** revealed a Ru–Si distance of 2.238(2) Å, and the Cp*(centroid)-Ru-Si-Me dihedral angle is 34°. Compound **²⁴** reacts quantitatively with 1 equiv of PMe₃ or PPh₃ in dichloromethane- d_2 to form the base-stabilized silylene complexes $[CP^*(Me_3P)_2RuSiMe_2(PR_3)][B(C_6F_5)_4]$ (28, R = Me; 29, R = Ph), identified by 1H and 31P NMR spectroscopy. These complexes are thermally labile and decompose with elimination of the dimethylsilylene fragment to give $[Cp^*(Me_3P)_2RuPR_3][B(C_6F_5)_4]$ (R $=$ Me, Ph). The ylide CH₂PPh₃ reacts with **24** to form $[Cp*(Me_3P)_2RuSiMe_2CH_2PPh_3]$ [B(C6F5)4] (**32a**), and the characterization of [Cp*(Me3P)2RuSiMe2CH2PPh3][OTf] (**32b**) by X-ray crystallography suggests that the complex is best viewed as a ruthenium silyl derivative with the positive charge localized on the "ylide" phosphorus atom. Reactions of **20** and **24** with hydrogen proceed slowly and result in relatively complex product mixtures that contain various ruthenium hydride species. The reaction involving 20 also produced HSi(SEt)₃, perhaps via redistribution of initially formed H2Si(SEt)2. For the reaction of **24** with hydrogen, no H_2 SiMe₂ was detected in the product mixture. The reaction of **20** with H_3 -SiSiPh3 gave [Cp*(Me3P)2Ru(H)(SiH2SiPh3)][BPh4] (**35**) and HSi(SEt)3, and the corresponding reaction of H3SiMes in dichloromethane gave [Cp*(Me3P)2RuHCl][BPh4] (**34**), BPh3, and H2- SiMes(SEt), among other products. By NMR spectroscopy, the intermediate $[Cp^*(Me_3P)_2$ -Ru(H)(SiH2Mes)][BPh4] (**36**) was observed for the latter process. Compound **36**, generated independently by reaction of $[CP^*(Me_3P)_2Ru(NCMe)][BPh_4]$ with H₃SiMes, was shown to react with $HSi(SEt)$ ₃ to give $H_2SiMes(SEt)$.

Introduction

Transition metal-silylene complexes have been the focus of intense research interest in recent years.¹ This attention is largely derived from the possibility that metal-silicon double bonds might participate in a wide range of organosilicon transformations.¹⁻²⁴ Several processes such as the dehydropolymerization of silanes, $1c,11$ the transfer of silylenes to unsaturated compounds,7b,c,8b,10,19 and the redistribution of substituents

[†] Current address: Chemistry Department, San Jose State University, San Jose, CA 95192-0101.

at silicon^{1g,7a} have been proposed to involve silylene intermediates. Considerable effort has therefore been devoted to the verification of these proposals, and consequently dramatic advances in transition metalsilylene chemistry have been made in recent years. In

(2) (a) Pannell, K. H.; Cervantes, J.; Hernandez, C.; Cassias, J.; Vincenti, S. *Organometallics* **1986**, *5*, 1056. (b) Pannell, K. H.; Rozell, J. M, Jr.; Hernandez, C. *J. Am. Chem. Soc.* **1989**, *111*, 4482. (c) Pannell, K. H.; Wang, L.-J.; Rozell, J. M. *Organometallics* **1989**, *8*, 550. (d) Pannell, K. H.; Sharma, H. *Organometallics* **1991**, *10*, 954. (e) Jones, K. L.; Pannell, K. H. *J. Am. Chem. Soc.* **1993**, *115*, 11336. (f) Hernandez, C.; Sharma, H. K.; Pannell, K. H. *J. Organomet. Chem.* **1993**, *462*, 259. (g) Pannell, K. H.; Brun, M.-C.; Sharma, H.; Jones, K.; Sharma, S. *Organometallics* **1994**, *13*, 1075. (h) Pannell, K. H.; Sharma, H. K.; Kapoor, R. N.; Cervantes Lee, F. *J. Am. Chem. Soc.* **1997**, *119*, 9315. (i) Zhang, Z. Y.; Sanchez, R.; Pannell, K. H.

Organometallics **1995**, *14*, 2605. (3) (a) Tobita, H.; Ueno, K.; Ogino, H. *Bull. Chem. Soc. Jpn.* **1988**, *61*, 2797. (b) Ueno, K.; Tobita, H.; Shimoi, M.; Ogino, H. *J. Am. Chem. Soc.* **1988**, *110*, 4092. (c) Ueno, K.; Tobita, H.; Ogino, H. *Chem. Lett.*
1990, 369. (d) Ueno, K.; Kakano, K.; Ogino, H. *Chem. Lett.* **1996**, 459.
(e) Okazaki, M.; Tobita, H.; Ogino, H. *J. Chem. Soc., Dalton Trans.* **1997**, 3531. (f) Tobita, H.; Ueno, K.; Shimoi, M.; Ogino, H. *J. Am. Chem. Soc.* **1990**, *112*, 3415. (g) Takeuchi, T.; Tobita, H.; Ogino, H. *Organo-metallics* **1991**, *10*, 835. (h) Koe, J.; Tobita, H.; Ogino, H. *Organometallics* **1992**, *11*, 2479. (i) Ueno, K.; Tobita, H.; Ogino, H. *J. Organomet. Chem.* **1992**, *430,* 93. (j) Ueno, K.; Tobita, H.; Seki, S.; Ogino, H. *Chem.
Lett.* **1993**, 1723. (k) Kobayashi, H.; Ueno, K.; Ogino, H. *Organome-tallics* **1995**, *14,* 5490. (l) Ueno, K.; Masuko, A.; Ogino, H. *Organo tallics* **1997**, *16*, 5023.

(4) Haynes, A.; George, M. W.; Haward, M. T.; Poliakoff, M.; Turner, J. J.; Boag, N. M.; Green, M. *J. Am. Chem. Soc.* **1991**, *113*, 2011.
(5) (a) Zybill, C.; Müller, G. *Angew. Chem., Int. Ed. Engl.* **1987**, *26*, 669. *Int. Ed. Engl.* **1989**, *28,* 203. (e) Leis, C.; Zybill, C.; Lachmann, J.;
Müller, G. *Polyhedron* **1991**, *10,* 1163. (f) Handwerker, H.; Paul, M.; Riede, J.; Zybill, C. *J. Organomet. Chem.* **1993**, *459*, 151. (g) Handwerker, H.; Paul, M.; Blumel, J.; Zybill, C. *Angew. Chem., Int. Ed. Engl.*
1993, *32*, 1313. (h) Handwerker, H.; Leis, C.; Gamper, S.; Zybill, C.
Inorg. Chim. Acta **1992**, *200*, 763.
(6) Pestana, D. C.; Koloski, T. S

13, 4173.

(7) (a) Kobayashi, T.; Hayahi, T.; Yamashita, H.; Tanaka, M. *Chem. Lett.* **1988**, 1411. (b) Yamashita, H.; Tanaka, M.; Goto, M. *Organometallics* **1992**, *11*, 3227. (c) Tanaka, Y.; Yamashita, H.; Tanaka, M. *Organometallics* **1995**, *14,* 530. (d) Sakakura, T.; Kumberger, O.; Tan, R. P.; Arthur, M.-P.; Tanaka, M. *J. Chem. Soc., Chem. Commun.* **1995**, 193.

(8) (a) Yamamoto, K.; Okinoshima, H.; Kumada, M. *J. Organomet. Chem.* **1970**, *23*, C7. (b) Yamamoto, K.; Okinoshima, H.; Kumada, M. *J. Organomet. Chem.* **1971**, *27*, C31. (c) Okinoshima, H.; Yamamoto,

K.; Kumada, M. *J. Am. Chem. Soc.* **1972**, *94*, 9263. (9) Tamao, K.; Sun, G.-R.; Kawachi, A. *J. Am. Chem. Soc.* **1995**, *117*,

8043. (10) Seyferth, D.; Shannon, M. L.; Vick, S. C.; Lim, T. F. O.

Organometallics **1985**, *4*, 57.

(11) Brown-Wensley, K. A. *Organometallics* **1987**, *6*, 1590. (12) Sakurai, H.; Kamiyama, Y.; Nakadaira, Y. *J. Am. Chem. Soc.* **1977**, *99,* 3879.

(13) Chang, L. S.; Johnson, M. P.; Fink, M. J. *Organometallics* **1989**, *8*, 1369.

(14) (a) Corriu, R.; Lanneau, G. F.; Priou, C. *Angew. Chem., Int. Ed. Engl.* **1991**, *9*, 1130. (b) Corriu, R. J.; Lanneau, G. F.; Chauhan, P. S. *Organometallics* **1993**, *12*, 2001. (c) Corriu, R. J. P.; Chauhan, B. P. S.; Lanneau, G. F. *Organometallics* **1995**, *14*, 1646.

(15) Auner, N.; Wagner, C.; Herdtweck, E.; Heckel, M.; Hiller, W. *Bull. Soc. Chim. Fr.* **1995**, *132*, 599.

(16) (a) Braunstein, P.; Stern, C.; Strohmann, C.; Tong, N. *Chem. Commun.* **1996**, 2237. (b) Braunstein, P.; Huch, V.; Stern, C.; Veith, M. *Chem. Commun.* **1996**, 2041.

(17) Nlate, S.; Herdtweck, E.; Fischer, R. A. *Angew. Chem., Int. Ed. Engl.* **1996**, *35,* 1861.

(18) Clarke, M. P.; Davidson, I. M. T. *J. Organomet. Chem.* **1991**, *408*, 149.

(19) Palmer, W. S.; Woerpel, K. A. *Organometallics* **1997**, *16*, 4824.

1987, the synthesis and characterization of donorstabilized silylene complexes were reported, $5\mathrm{a},20\mathrm{a}$ and in 1990 base-free silylene complexes of the type [Cp*- $(Me_3P)_2Ru=Si(SR)_2]BPh_4 (Cp^* = \eta^5-C_5Me_5)$ were communicated.22a Since then, several more complexes with bonds between a transition metal and $sp²$ silicon have been isolated,^{22,23} and initial reactivity studies on such compounds have been carried out.24

In general, silylene complexes are much more difficult to prepare than the analogous carbene compounds, which are often obtained from unsaturated starting materials (e.g., CO or N_2CR_2) that do not have stable silicon analogues or by use of an electrophilic reagent to abstract a substituent (e.g., hydride, methoxide, or halide) from an alkyl complex.²⁵ Early attempts to apply the latter method to transition metal-silicon compounds were unsuccessful, because the extreme Lewis acidity of the resulting silylene ligand can give rise to secondary reactions (such as halide ion transfer) which form new bonds to silicon.²⁶ Nonetheless we have developed methods for the synthesis of cationic silylene complexes, based on abstraction of a group bound to silicon. This approach has focused on electron-rich metal fragments (e.g., $Cp^*(Me_3P)_2Ru$) expected to stabilize an electron-deficient silicon center. In addition, this method requires use of "noncoordinating" anions such as $B Ph_4^-$ and $B(C_6F_5)_4^-$, which exhibit low reactivities toward the resulting three-coordinate silicon centers. Here we report investigations into the synthesis, characterization, and reactivity of cationic ruthenium silylene complexes of the type $[Cp*(Me_3P)_2Ru=$ SiX_2 ⁺.

(20) (a) Straus, D. A.; Tilley, T. D.; Rheingold, A. L.; Geib, S. J. *J. Am. Chem. Soc.* **1987**, *109*, 5872. (b) Straus, D.; Zhang, C.; Quimbita, G. E.; Grumbine, S. D.; Heyn, R. H.; Tilley, T. D.; Rheingold, A. L.; Geib, S. J. *J. Am. Chem. So*c. **1990**, *112*, 2673. (c) Grumbine, S. K.; Straus, D. A.; Tilley, T. D.; Rheingold, A. L. *Polyhedron* **1995**, *14*, 127.

(21) (a) Heyn, R. H.; Tilley, T. D. *J. Am. Chem. Soc.* **1992**, 114, 1917.
(b) Mitchell, G. P.; Tilley, T. D.; Yap, G. P. A.; Rheingold, A. L.
Organometallics **1995**, 14, 5472. (c) Mitchell, G. P.; Tilley, T. D.
Organo Organometallics **1998**, *17*, 2912. (e) Mitchell, G. P.; Tilley, T. D. *J. Am. Chem. Soc.* **1998**, *120*, 7635.

(22) (a) Straus, D. A.; Grumbine, S. D.; Tilley, T. D. *J. Am. Chem. Soc*. **1990**, *112*, 7801. (b) Grumbine, S. D.; Tilley, T. D.; Rheingold, A. L. *J. Am. Chem. Soc.* **1993**, *115*, 358. (c) Grumbine, S. D.; Tilley, T. D.; Rheingold, A. L.; Arnold, F. P. *J. Am. Chem. Soc*. **1993**, *115,* 7884. (d) Grumbine, S. K.; Tilley, T. D.; Arnold, F. P.; Rheingold, A. L. *J. Am. Chem. Soc.* **1994**, *116*, 5495. (e) Mitchell, G. P.; Tilley, T. D. *Angew. Chem., Int. Ed.* **1998**, *37*, 2524. (f) Feldman, J.; Mitchell, G. P.; Nolte,

J.-P.; Tilley, T. D. *J. Am. Chem. Soc.* **1998**, *120*, 11184. (23) Denk, M.; Hayashi, R. K.; West, R. *J. Chem. Soc., Chem. Commun.* **1994**, 33.

(24) (a) Mitchell, G. P.; Tilley, T. D. *J. Am. Chem. Soc.* **1997**, *119*, 11236. (b) Grumbine, S. K.; Tilley, T. D. *J. Am. Chem. Soc.* **1994**, *116*, 6951.

(25) (a) Fischer, E. O. *Adv. Organomet. Chem.* **1976**, *14,* 1. (b) Cardin, D. J.; Cetinkaya, B.; Lappert, M. F. *Chem. Rev.* **1972**, *72*, 545. (c) Casey, C. P. In *Reactive Intermediates*; Jones, M., Jr., Moss, R. A., Eds.; Wiley: New York, 1981; Vol. II, p 135. (d) Kegley, S. E.; Brookhart, M.; Husk, G. R. *Organometallics* **1982**, *1*, 760. (e) Tam., W.; Lin, G.-Y.; Wong, W.-K.; Kiel, W. A.; Wong, V. K.; Gladysz, J. A. *J. Am. Chem. Soc.* **1982**, *104*, 141. (f) Yu, Y. S.; Angelici, R. J. *Organometallics* **1983**, *2*, 1018. (g) Barefield, E. K.; McCarten, P.; Hillhouse, M. C. *Organometallics* **1985**, *4*, 1682. (h) Jolly, P. W.; Pettit, R. *J. Am. Chem. Soc.* **1966**, *88*, 5044. (i) Hoskins, S. V.; Rickard, C. E. F.; Roper, W. R. *J. Chem. Soc., Chem. Commun.* **1984**, 1000. (j) Calabrese, J. C.; Roe, D. C.; Thorn, D. L.; Tulip, T. H. *Organometallics* **1984**, *3*, 1223.

(26) (a) Aylett, B. J. *J. Organomet. Chem. Lib.* **1980**, *9,* 327. (b) Marks, T. J.; Seyam, A. M. *Inorg. Chem.* **1974**, *13*, 1624. (c) Thum, G.; Malisch, W. *J. Organomet. Chem.* **1984**, *264,* C5. (d) Malisch, W. *Chem. Ber.* **1974**, *107*, 7, 3835. (e) Schmid, G.; Balk, H.-J. *J. Organomet. Chem.* **1974**, *80,* 257.

^{(1) (}a) Tilley, T. D. In *The Silicon-Heteroatom Bond;* Patai, S., Rappoport, Z., Eds.; Wiley: New York, 1991; Chapters 9 and 10, pp 245 and 309. (b) Tilley, T. D. In *The Chemistry of Organic Silicon Compounds*; Patai, S., Rappoport, Z., Eds.; Wiley: New York, 1989; Chapter 24, p 1415. (c) Tilley, T. D. *Comments Inorg. Chem.* **1990**, *10,* 37. (d) Lickiss, P. D. *Chem. Soc. Rev.* **1992**, 271. (e) Pannell, K. H.; Sharma, H. K. *Chem. Rev.* **1995**, *95*, 1351. (f) Zybill, C. *Top. Curr. Chem.* **1991**, *160,* 1. (g) Curtis, M. D.; Epstein, P. S. *Adv. Organomet. Chem.* **1981**, *19*, 213.

Synthesis of Precursor Ruthenium Silyl Complexes. We have previously described a general method for preparing ruthenium silyl complexes of the type Cp*- $(Me_3P)_2RuSiR_3$, ^{20b} which involves reaction of the ruthenium alkyl complex $\mathsf{Cp}^*({\mathsf{Me}_3\mathsf{P}})_2{\mathsf{RuCH}_2\mathsf{SiM}}{\mathsf{e}_3}^{27}$ with the appropriate silane in hot toluene. As shown in eq 1, this procedure was useful for the preparation of silyl complexes $1-7$ (2-Naph = 2-naphthyl; Cy = cyclohexyl; $Mes = mesityl$). These light yellow silyl complexes are only somewhat air-sensitive, except for **2** and **5**, which decompose within 2 h when exposed to air. Attempts to form silyl complexes by reaction of $Cp^*(Me_3P)_2RuCH_2-$ SiMe3 with the sterically demanding silanes HSi- $(SMes)_{3}$, HSi $(S Cy)_{3}$, HSi $[S(2, 4, 6 - {^{12}Pr_{3}}C_{6}H_{2})]_{3}$, and HSi- $(NPh₂)₂Cl$ in toluene were unsuccessful and instead gave the C-H activation products Cp*(Me3P)2Ru(*m*-Tol) and $Cp^*(Me_3P)_2Ru(p\text{-}Tol).^{28}$

90-130 °C $Cp^*(Me_3P)_2RuCH_2SiMe_3 + HSiR_3$ $-SiMe₄$ $Cp^*(Me_3P)_2RuSiR_3$ (1) 1, $\text{SiR}_3 = \text{SiC}_3$

2, $\text{SiR}_3 = \text{Si}(\text{NMe}_2)_3$

3, $\text{SiR}_3 = \text{Si}(\text{SE}1)_3$ 5, $SiR_3 = Si[S(CH_2)_3S]Ph$ $6, SiR₃ = Si(SCy)₂Cl$ 7, $SiR_3 = Si(SMes)_2 Cl$ 4, $SiR_3 = Si(S-2-Naph)_3$

Our synthetic route to cationic silylene complexes employs labile triflato(silyl) derivatives of the type Cp*- $(Me_3P)_2RuSiR_2OTf$ (OTf = OSO₂CF₃), which are converted to the silylene complexes via exchange of triflate for a less-coordinating anion. These triflate derivatives are generally obtained by the abstraction of a group bound to silicon with trimethylsilyl triflate, as illustrated by the synthesis of **8** (eq 2). Complex **8** is similar to the previously reported ruthenium complexes $Cp^*(Me_3P)_2RuSiR_2OTF$ (9, R = Cl; **10**, R = S-p-Tol; **11**, \overline{R} = Me; **12**, R = Ph),^{20b,c} which possess covalently bound triflate groups as determined by X-ray crystallography and infrared spectroscopy²⁹ (ν (SO₃) vibrational modes corresponding to covalently bound triflates were observed at ca. 1360 cm^{-1}). These triflates are chemically labile and can be displaced by a donor such as acetonitrile to give base-stabilized silylene complexes of the type $[Cp^*(Me_3P)_2RuSiR_2(NCMe)][OTf].^{20b,c}$ In acetonitrile, triflate is displaced from **8** to produce $[Cp^*(Me_3P)_2$ -RuSi(SEt)₂(NCMe)][OTf], as indicated by an *ν*(SO₃) infrared band for ionic triflate (1268 cm^{-1}) .²⁹

$$
Cp*(Me3P)2RuSi(SEt)3 \frac{Me3SiOTT}{-Me3SiSEt}
$$

3

$$
Cp*(Me3P)2RuSi(SEt)2OTT \Leftrightarrow
$$

8

$$
[Cp*(Me3P)2RuSi(SEt)2]
$$

 $[Cp*(Me_3P)_2RuSi(SEt)_2][OTf]$ (2)

The triflate complex **8** appears to be in equilibrium with the cationic silylene complex $[Cp*(Me_3P)_2Ru=Si-$

 $(SEt)_2$ [OTf], as evidenced by NMR spectroscopy. In dichloromethane- d_2 the inequivalent methylene protons of the SEt groups exchange rapidly, appearing as a single ¹H NMR resonance (q, δ 2.88) down to -70 °C. However in the less polar solvent toluene- d_8 , the process that exchanges these protons is slowed considerably, resulting in an observed coalescence temperature of 21 °C (ΔG^{\dagger} = 14.9 \pm 0.3 kcal mol⁻¹). These results are most consistent with an exchange mechanism involving dissociation of triflate anion to form the silylene complex, followed by return of the triflate anion to the opposite face of the silylene ligand (possibly assisted by rapid rotation about the Ru-Si bond). A similar exchange process has been observed for Cp(NO)- (Ph₃P)ReGePh₂OTf.³⁰

Attempts to convert the tri(amino)silyl complex **2** to the triflate $Cp^*(Me_3P)_2RuSi(NMe_2)_2OTf (13)$ were complicated by the competing reaction of **13** with Me3SiOTf to produce $\text{Cp}^*(\text{Me}_3\text{P})_2\text{RuSi}(\text{NMe}_2)(\text{OTf})_2$ (14). A sample of pure **13** was obtained in 17% yield from the 1:1 reaction of **2** with Me3SiOTf, and **14** was isolated with use of excess Me₃SiOTf reagent. For comparison, the triflate $Cp^*(Me_3P)_2RuSi(S-p-Tol)_2OTf (10)$, which may be isolated cleanly from the reaction of $Cp^*(Me_3P)_2RuSi$ (S-*p*-Tol)3 with Me3SiOTf, is also readily converted to the bis(triflate) $\mathbb{C}p^*(\text{Me}_3\text{P})_2\text{RuSi}(\text{S-}p\text{-Tol})(\text{OTf})_2$ (15).^{20c} The latter complex has proven to be a valuable precursor to complexes possessing the Si(S-*p-*Tol) "silylyne" fragment^{22b,31} and may also be used to prepare silyl complexes with chelating dithiolate groups, as shown in eq 3. Unfortunately, attempts to convert complexes

16 and **17** to triflato(silyl) complexes via reactions with trimethylsilyl triflate or triflic acid met with limited success. Although the expected triflates were obtained, they were contaminated by 10-20% of decomposition products, and attempts at further purification resulted in the accumulation of more impurities (presumably decomposition products).

Reaction of Me3SiOTf with **7** produced two different complexes resulting from competitive abstraction of both chloride and thiolate (eq 4). In dichloromethane- d_2 , 18

and 19 were observed to form in a 2:1 ratio (by ¹H and 31P NMR spectroscopy). When carried out on a pre-

⁽²⁷⁾ Tilley, T. D.; Grubbs, R. H.; Bercaw, J. E. *Organometallics* **1984**, *3*, 274.

^{(28) (}a) Tilley, T. D.; Togni, A.; Paciello, R. A.; Bercaw, J. E.; Grubbs, R. H. Unpublished results. (b) Bryndza, H. E.; Domaille, P. J.; Paciello, R. A.; Bercaw, J. E. *Organometallics* **1989**, *8*, 379. (c) Lehmkuhl, H.; Bellenbaum, M.; Grundke, J.; Mauermann; H.; Krüger, C. *Chem. Ber.* **1988**, *121*, 1719.

⁽²⁹⁾ Lawrance, G. A. *Chem. Rev.* **1986**, *86*, 17.

⁽³⁰⁾ Lee, K. E.; Gladysz, J. A. *Polyhedron* **1988**, *7,* 2209.

⁽³¹⁾ Grumbine, S. D.; Chadha, R. K.; Tilley, T. D. *J*. *Am. Chem. Soc*. **1992**, *114*, 1518.

Table 1. 29Si NMR Shift Data for Silylene Complexes

parative scale, only **19** was isolated, in 49% yield. The inequivalent phosphorus atoms in **19** are observed in benzene- d_6 as doublets in the ³¹P NMR spectrum, at 0.52 and 2.06 ppm $(J_{PP} = 39 \text{ Hz})$; however when the same spectrum was taken in dichloromethane-*d2*, one broad peak was observed at 2.03 ppm. This phosphorusexchange process is probably due to the rapid and reversible dissociation of triflate in dichloromethane d_2 , as observed for $Cp^*(Me_3P)_2RuSi(SEt)_2OTF$ (8).

Synthesis and Characterization of Thiolate-Substituted Silylene Complexes. The ruthenium silyls described in the previous section were examined as precursors to cationic silylene complexes. The synthetic strategy involved anion exchange, with introduction of a less-coordinating anion. As shown in eq 5, the triflate derivatives **8** and **10** react with NaBPh4 in dichloromethane to produce the heteroatom-stabilized silylene complexes [Cp*(Me3P)2RuSi(SR)2][BPh4] (**20**, R $=$ SEt; **21**, $R = S$ - p -Tol), which were isolated as yellow. crystalline solids. Somewhat surprisingly, the chloride

group of **6** also participates in a salt-elimination reaction with NaBPh4, to give **22**.

Elemental analyses showed that these materials do not contain solvent which could be coordinated to the silylene silicon atom. Compounds **²⁰**-**²²** exhibit 29Si NMR resonances characteristic of silylene complexes, falling in the 250-270 ppm range (Table 1), significantly downfield of the resonances for ruthenium silyl complexes (-1) to 112 ppm).^{1a,b,20b} This is to be expected on the basis of ²⁹Si correlations to ¹³C NMR spectroscopy³² since the 13C shifts in terminal carbene complexes are generally in the range 240-370 ppm. For example, the ¹³C NMR shift for the carbene carbon in $[Cp(CO)₂Ru=$ $C(SMe)_{2}$ [PF₆] is 285.3 ppm.³³ At 23 °C, compound **21** exhibits a broad ²⁹Si NMR resonance at 250.6 ppm, which sharpens to a well-defined triplet at -80 °C (*^δ* 259.4, $J_{\text{SiP}} = 34$ Hz). For **22**, a broad peak at δ 264.4 was observed at -60 °C. The J_{SIP} coupling constants for these silylene complexes are similar to those observed for the precursor silyl complexes, but this is perhaps not surprising given the insensitivity of J_{CP} coupling constants for related alkyl and cationic carbene complexes to changes in hybridization at carbon.34

Since bridging silylene complexes are also known to exhibit downfield ²⁹Si NMR shifts,^{1a,b} it was important to establish the degrees of association for **20** and **21**. The fact that the silicon atoms in these complexes are coupled to only two phosphorus nuclei rules out alternative structures with bridging silylene ligands. In addition, a molecular weight determination for **21** (isopiestic method, dichloromethane) gave a value of 990 g mol^{-1} , which is consistent with a tight ion pair in solution (calcd: 982). The ionic nature of **20** and **21** is also supported by solution conductivity measurements (see Experimental Section).

Numerous attempts to grow X-ray quality crystals of **²⁰**-**²²** were unsuccessful. We therefore examined use of anions other than $B Ph_4^-$ as counteranions for the cationic silylene complexes. A suitable anion must be noncoordinating and inert toward the reactive, electrophilic silylene center.³⁵ Some of the salts that produced reasonably stable silylene complexes (from **10**, as determined by 1H and 31P NMR spectra) were NaB(*p-*Tol)4, $NaB(3,5-Me_2C_6H_3)_4$, LiB($C_6F_5)_4$, Na $C_2B_9H_{12}$, and NaCo- $(C_2B_9H_{12})_2$. Unfortunately, these variations of the anion did not produce X-ray quality crystals. Anions that produced mainly decomposition products included PF $_{\rm 6}^-$, ClO_4^- , $Ph_3BNCBPh_3^-$, and $B[3,5-(CF_3)_2C_6H_3]_4^-$.

A related synthetic approach involves use of a strong Lewis acid to abstract a group bound to silicon in a metal silyl complex. The feasibility of this method was demonstrated by the reaction in eq 6, which gives the

$$
Cp^*(Me_3P)_2RuSi(S-2-Naph)_3 + B(C_6F_5)_3 \longrightarrow
$$

4

new silylene complex **23**. The 29Si NMR chemical shift for **23** (260.5 ppm, t, $J_{\text{SiP}} = 33$ Hz; dichloromethane- d_2 solution) is characteristic for a silylene complex. This

⁽³²⁾ Olah, G. A.; Field, L. D. *Organometallics* **1982**, *1*, 1485. (33) Matachek, J. R.; Angelici, R. J. *Inorg. Chem.* **1986**, *25*, 2877.

^{(34) (}a) Brookhart, M.; Tucker, J. R.; Husk, G. R. *J. Am. Chem. Soc.* **1983**, *105,* 258. (b) Kiel, W. A.; Lin, G.-Y.; Bodner, G. S.; Gladysz, J.
A. *J. Am. Chem. Soc.* **1983**, *105,* 4958. (c) Patton, A. T.; Strouse, C. E.;
Knobler, C. B.; Gladysz, J. A. *J. Am. Chem. Soc.* **1983**, *105*, 5 Kiel, W. A.; Buhro, W. E.; Gladysz, J. A. *Organometallics* **1984**, *3*, 879.
(e) Bly, R. S.; Wu, R.; Bly, R. K. *Organometallics* **1990**, *9*, 936.
(35) Strauss, S. H. *Chem. Rev.* **1993**, *93*, 927.

reaction seems to be reversible, since only the starting silyl complex **4** was isolated upon attempted crystallization of **23** from dichloromethane/di(*n-*butyl) ether. In a similar manner, $Ph_3CBPh_4^{36}$ reacts with Cp^* - $(Me_3P)_2RuSi(S-pTol)_3$ in dichloromethane- d_2 to give the silylene complex 21 and $Ph_3C(S-pTol)$ (by ¹H, ³¹P, and 29Si NMR spectroscopy). Attempts to form silylene complexes via abstraction of chloride from $Cp^*(Me_3P)_2$ - $RuSi(SCy)_2Cl$ (6) with the Lewis acids YC_{p_3} AlCl₃, and $ZnCl₂$ were not successful. In addition, the reaction of **6** with SbCl5 in dichloromethane-*d*² slowly produced **1** through a series of chlorination reactions.

Attempts were made to prepare silylene complexes via reactions of NaBPh4 with the triflate complexes **9**, **11**, **12**, **13**, **15**, and **19**. These reactions did not produce isolable silylene complexes and typically resulted in production of multiple products (by ${}^{1}H$ and ${}^{31}P$ NMR spectroscopy; dichloromethane- d_2) over an 8-30 h period.

Synthesis and Characterization of Non-Heteroatom-Stabilized Silylene Complexes. The base-free silylene complexes described above feature *π*-donation from sulfur, which is expected to significantly stabilize the electron-deficient silicon center.^{22c} Initial attempts to obtain silylene complexes without heteroatom substituents involved reactions of $Cp^*(Me_3P)_2RuSiR_2OTf$ $(11, R = Me; 12, R = Ph)$ with NaBPh₄ in dichloromethane. These reactions produced complex mixtures, presumably resulting from decompositions of the initially generated silylene complexes. Reasoning that these decompositions might result from reactions between the silylene silicon center and the $\rm BPh_4^-$ anion, we employed the more chemically inert anion $\mathrm{B}(\mathrm{C}_6\mathrm{F}_5)_4{}^-$, which is available as a dichloromethane-soluble lithium salt.

The reagent $LiB(C_6F_5)_4$ · OEt_2^{37} reacts rapidly with and 12 in dichloromethane- d_2 at -30 °C to quan-**11** and **12** in dichloromethane- d_2 at -30 °C to quantitatively form the silylene complexes $[Cp*(Me_3P)_2$ - $Ru=SiMe_2|[B(C_6F_5)_4]$ (24) and $[Cp^*(Me_3P)_2Ru=SiPh_2]$ - $[B(C_6F_5)_4]$ (25), respectively (eq 7; by NMR spectroscopy).

The formations of **24** and **25** are signaled by characteristic downfield ²⁹Si NMR shifts, at δ 299 (t, $J_{\text{SiP}} = 32$ Hz) and 311 (br), respectively. These silylene complexes are unstable at room temperature in dichloromethane and decompose with half-lives of 7 and 3 h, respectively. Upon cooling a concentrated dichloromethane solution of **25** to -78 °C, orange-red crystals formed which desolvated upon isolation to the formula $[Cp^*(Me_3P)_2$ - $Ru=SiPh_2][B(C_6F_5)_4]\cdot 0.1CH_2Cl_2$ (by combustion analysis). As expected, both **24** and **25** react with acetonitrile to give the previously characterized adducts [Cp*- $(Me_3P)_2RuSiR_2(NCMe)]^+$ (R = Me,^{20c} Ph^{20a,b}) (which display 29Si NMR shifts of *δ* 110 and 96, respectively).

X-ray quality crystals of **24** were eventually obtained by addition of a ${}^{n}Bu_2O$ solution of $LiB(C_6F_5)_4 OEt_2$ to a

Figure 1. ORTEP view of the cation in $[Cp^*(Me_3P)_2Ru=$ $SiMe_2$ [B(C₆F₅)₄] (**24**).

Table 2. Selected Bond Distances (Å) and Angles (deg) for 24

(a) Bond Distances					
$Ru-P(1)$	2.290(3)	$Ru-C(1)$	2.277(10)		
$Ru-P(2)$	2.293(3)	$Ru-C(2)$	2.288(10)		
$Ru-Si$	2.238(3)	$Ru-C(3)$	2.263(10)		
$Si-C(17)$	1.721(16)	$Ru-C(4)$	2.271(10)		
$Si-C(18)$	1.826(12)	$Ru-C(5)$	2.275(10)		
(b) Bond Angles					
$P(1) - Ru - P(2)$	93.0(1)	$C(17) - Si - C(18)$	99.7(8)		
$P(1) - Ru-Si$	92.8(1)	$Ru-Si-C(17)$	133.5(7)		
$P(2)-Ru-Si$	89.1(1)	$Ru-Si-C(18)$	125.5(5)		
$Si-Ru-C(1)$	154.3(3)	$Si-Ru-C(2)$	135.5(3)		
$Si-Ru-C(3)$	101.3(3)	$Si-Ru-C(4)$	93.6(3)		
$Si-Ru-C(5)$	119.4(3)	$P(1) - Ru - C(1)$	98.9(2)		

1,2-dichlorobenzene solution of **11** at 23 °C, followed by slow addition of ${}^{n}Bu_2O$ (over ca. 5 min) until crystals began to form. Further crystallization at room temperature occurred over ca. 0.5 h to afford **24** in 38% yield. The molecular structure of the cation in **24** (Figure 1) consists of a dimethylsilylene ligand that is planar at silicon (summation of bond angles $= 359(1)°$) and coordinated to a $\mathsf{Cp}^*(\mathsf{Me}_3\mathsf{P})_2\mathsf{Ru}^+$ fragment. The $\mathsf{Ru}\text{-}\mathsf{Si}$ distance of 2.238(2) Å is the shortest yet reported and slightly shorter than the Ru-Si bond lengths in Cp*- $(Me_3P)_2RuSi[S(p-Tol)]Os(CO)_4, 2.286(2) Å^{22b} and Cp*$ (Me3P)2RuSi[S(*p-*Tol)](phen)2+, 2.269(5) Å.31 The Cp*- (centroid)-Ru-Si-Me dihedral angle is 34°. This angle deviates from what might be expected on the basis of efficient *π*-overlap involving the frontier orbitals of a CpL_2M^+ fragment,^{22d,38} which is expected to result in a dihedral angle of 0°.39

Thermal Decompositions of Silylene Complexes. Thiolate-substituted silylene complexes of the type [Cp*- $(Me_3P)_2Ru=Si(SR)_2[[BPh_4]$ thermally decompose via phenyl transfer from the BPh4 anion. For example, when $[Cp*(Me_3P)_2Ru=Si[S(p-Tol)]_2][BPh_4]$ (21) is heated to 120 °C in a *o-*dichlorobenzene solution, complete conversion to $Cp^*(Me_3P)_2RuSi[S(p-Tol)]_2Ph$ (26) within 10 min is observed (by 31P NMR spectroscopy). Compound **26** was identified by comparison of 1H and 31P NMR spectra with those for an authentic sample.

⁽³⁶⁾ Straus, D. A.; Zhang, C.; Tilley, T. D. *J. Organomet. Chem*. **1989**, *369*, C13.

⁽³⁷⁾ Massey, A. G.; Park, A. J. *J. Organomet. Chem.* **1964**, *2,* 245.

⁽³⁸⁾ Albright, T. A.; Burdett, J. K.; Whangbo, M.-W. *Orbital Interactions in Chemistry*; Wiley-Interscience: New York: 1985.

⁽³⁹⁾ Recent calculations at the RHF level of theory indicate that this twist of 34° is electronically preferred: Arnold, F. P. Unpublished results.

Similarly, attempts to generate $[Cp^*(Me_3P)_2Ru=SiMe_2]$ -[BPh4] are complicated by the low solubility for the NaBPh4 reagent, which results in a slow reaction with $Cp^*(Me_3P)_2RuSiMe_2OTf$ in dichloromethane- d_2 to produce thermally unstable $[Cp*(Me_3P)_2Ru=SiMe_2][BPh_4]$ (over 3 days, as monitored by 31P NMR spectroscopy). The latter silylene complex decomposes to $Cp^*(Me_3P)_2$ - $RuSiMe₂Ph$ (27) (75-95%) as it is produced.

Reactions of Silylene Complexes with Lewis Bases. We have previously reported the interactions of silylene complexes with nitrogen-based donors such as acetonitrile and 4-(dimethylamino)pyridine (DMAP).²⁰ Generally, it is found that adducts of the type [Cp*- $(Me_3P)_2RuSiX_2(base)]^+$ form readily, and the stability of these adducts appears to correlate with the strength of the donor-acceptor interaction.^{20c} Thus, the DMAP adduct $[Cp*(Me_3P)_2RuSiMe_2(DMAP)][BPh_4]$ is exceptionally stable.^{20c} Such adducts tend to thermally decompose via elimination of the silylene group, with formation of a $[\text{Cp}^*(\text{Me}_3\text{P})_2\text{Ru}(\text{base})]^+$ cation. It remains unclear whether these decompositions proceed via dissociation of silylene from the base-free complex (which is in equilibrium with the adduct) or via dissociation of the silylene adduct : $\text{SiX}_2(\text{base})$.^{20c}

Compound **24** reacts quantitatively with 1 equiv of PMe₃ or PPh₃ in dichloromethane- d_2 to form the basestabilized silylene complexes $[Cp*(Me_3P)_2RuSiMe_2(PR_3)]$ - $[BCC_6F_5)_4]$ (28, R = Me; 29, R = Ph), identified by ¹H and 31P NMR spectroscopy. The 31P NMR spectra of both complexes contain two inequivalent phosphorus resonances in a 2:1 ratio, and the SiMe resonance for each is split into a doublet with ${}^{3}J_{\text{PH}} = 4.5$ Hz. Unfortunately, the thermal instability of **28** and **29** prevented their isolation and full characterization. In dichloromethane solution, **28** decomposes ($t_{1/2} \approx 5$ h at 0 °C) to $[Cp*(Me_3P)_3Ru][B(C_6F_5)_4]$ (30, confirmed by independent synthesis of $[Cp*(Me_3P)_3Ru][OTf]$ as the only phosphorus-containing product. In addition, **29** cleanly decomposes ($t_{1/2} \approx 5$ h at 0 °C) to $[Cp^*(Me_3P)_2$ - $RuPPh_3][B(C_6F_5)_4]$ (31, by ¹H and ³¹P NMR spectroscopy). Presumably, both **28** and **29** decompose via extrusion and rapid oligomerization of the silylene fragment (eq 8). Consistent with this is the appearance

in the 1H NMR spectra of several resonances in the region of *^δ* 0.0-0.2. However, when **²⁸** decomposed in the presence of the known silylene trapping agents $HSiEt₃$ and $HSi(SiMe₃)₃,^{2e}$ the respective insertion products $HSiMe₂SiEt₃$ and $HSiMe₂Si(SiMe₃)₃$ were not observed by 1H NMR spectroscopy nor GC/MS.

There is a marked difference in stability between the nitrogen-donor-stabilized compounds reported previously and the phosphine adducts described here. For example, the stabilized silylene complex $[Cp*(Me_3P)_2$ - $RuSiMe₂(NCMe)[BPh₄]$ has a half-life of about 17 days in dichloromethane, and $[Cp*(Me_3P)_2RuSiMe_2(DMAP)]$ -[BPh4] is similarly stable (3% decomposition after 1 day in dichloromethane- d_2 ^{20c} Although the reasons for this difference in stability are not yet fully understood, it appears that the strength of the donor-acceptor interaction plays an important role.

The ylide CH_2 PPh₃ reacts rapidly with **24** to form a single product (**32a**), isolated as yellow crystals in 80% yield (eq 9). Likewise, the complex $Cp^*(Me_3P)_2RuSiMe_2$ -OTf reacts with CH_2PPh_3 to form the analogous triflate salt **32b**. Compounds **32a** and **32b** display remarkable stabilities, exhibiting no decomposition after 1 week in dichloromethane- d_2 at room temperature (by ¹H and ³¹P NMR spectroscopy). Heating a toluene solution of **32a** for 1 day at 100 °C, however, resulted in decomposition to many products. The ${}^{1}H$ NMR spectra reveal equivalent SiMe groups, and the 31P NMR spectra display a single resonance for the PMe₃ ligands, indicating the presence of a molecular plane of symmetry. The connectivity depicted in eq 9 was confirmed by a single-crystal X-ray diffraction study of **32b** (vide infra). The 29Si

spectrum contains a triplet of doublets ($^2J_{\text{SiP}} = 32$ and 15 Hz for the triplet and doublet, respectively) centered at 35.24 ppm, a shift of 276.17 ppm upfield from the resonance of **24**. Such an upfield chemical shift indicates little, if any, silylene character in the bonding of **32b** and is more characteristic for a saturated Ru(II) silyl complex.

The molecular structure of the cation in **32b** is shown in Figure 2. Ruthenium adopts a three-legged piano stool geometry, with the phosphine and silyl groups approximately evenly distributed about the metal. The Ru-Si bond length of 2.381(2) Å is slightly longer than the analogous separation in the base-stabilized silylene complex $[Cp*(Me_3P)_2RuSiPh_2(NCMe)][BPh_4]$ (2.328(2) $\rm \AA$)^{20a,b} and is comparable to the corresponding distance in $Cp^*(Me_3P)_2RuSiPh_2H$ (2.387(5) Å).^{20b} The silicon atom is in a pseudo-tetrahedral environment, with distances of 1.920(9) and 1.899(9) Å to the two methyl carbon atoms and a somewhat longer distance of 1.976- (7) A to the ylide carbon atom. The $C(19)-P(3)$ distance of 1.779(6) Å is considerably longer than the 1.692(3) Å C=P distance in free $\mathrm{CH_2PPh_3}, ^{4\overline{0}}$ indicating significant loss of double-bond character in the ylide upon coordi-

Figure 2. ORTEP view of the cation in $[Cp^*(Me_3P)_2$ - $RuSiMe₂(CH₂PPh₃)]_{OTf} (32b).$

Table 3. Selected Bond Distances (Å) and Angles (deg) for $32\text{b} \cdot \text{CH}_2\text{Cl}_2$

(a) Bond Distances					
$Ru-P(1)$	2.261(2)	$Si-C(19)$	1.976(7)		
$Ru-P(2)$	2.273(2)	$P(3)-C(19)$	1.779(6)		
$Ru-Si$	2.381(2)	$P(3)-C(20)$	1.796(8)		
$Si-C(17)$	1.920(9)	$P(3)-C(26)$	1.805(8)		
$Si-C(18)$	1.899(9)	$P(3)-C(32)$	1.811(7)		
(b) Bond Angles					
$P(1) - Ru - P(2)$	92.71(8)	$C(18) - Si - C(19)$	103.4(4)		
$P(1) - Ru-Si$	94.83(8)	$C(19) - P(3) - C(20)$	111.9(4)		
$P(2)-Ru-Si$	89.51(6)	$C(19) - P(3) - C(26)$	110.0(4)		
$Ru-Si-C(17)$	116.1(3)	$C(19) - P(3) - C(32)$	108.4(3)		
$Ru-Si-C(18)$	125.7(3)	$C(20) - P(3) - C(26)$	110.9(4)		
$Ru-Si-C(19)$	108.1(2)	$C(20)-P(3)-C(32)$	106.1(4)		
$C(17) - Si - C(18)$	97.7(4)	$C(26)-P(3)-C(32)$	109.4(4)		
$C(17) - Si - C(19)$	103.3(4)	$P(3)-C(19)-Si$	126.8(3)		

nation to silicon. The adducts **32a** and **32b** are therefore best viewed as ruthenium silyl complexes of the type $Cp^*(Me_3P)_2RuSiR_2R'$, with the positive charge localized on the phosphonium phosphorus atom.

Reactions of Silylene Complexes with Hydrogen and Hydrosilanes. Many of the hypothetical catalytic cycles that have been proposed in the context of intermediate silylene complexes involve hydrogen and/or hydrosilanes as reagents or products.¹ It is therefore of interest to characterize the reactivity of isolated silylene complexes toward these small molecules. Note that we have previously shown that silylene complexes of the type $[Cp^*(Me_3P)_2Ru=SiX_2]^+$ exhibit low reactivities toward nonpolar unsaturated substrates, probably due to the coordinatively saturated nature of the ruthenium center.24a

The reaction of $[Cp*(Me_3P)_2RuSi(SEt)_2]BPh_4$ (20) with H_2 (1 atm) in dichloromethane- d_2 resulted in slow conversion to a ruthenium hydride complex **33** (δ_{RuH} = -10.04; 35% conversion after 9 h) and the silane HSi- (SEt) ₃ (by NMR spectroscopy and GC/MS). A preparative scale reaction (50 psi H_2) generated isolable quantities of **33**, which was characterized as the hydride complex shown in eq 10. The latter compound exhibits a triplet in the ³¹P NMR spectrum ($^2J_{\text{PH}}$ = 33 Hz) due to coupling to equivalent hydride ligands, after selective decoupling of the methyl protons. The $HSi(SEt)_{3}$ may result from redistribution of the kinetic product H_2S i- $(SEt)_2$, as was observed in attempts to prepare this

Table 4. Summary of Crystallographic Data for 24 and $32b$ **·CH₂Cl₂**

	24	$32b$ ·CH ₂ Cl ₂
formula		$C_{42}H_{39}BF_{20}P_2RuSi$ $C_{39}H_{58}Cl_2F_3P_3RuSSi$
fw	1125.6	956.93
cryst color, habit	yellow block	yellow trapezoidal
cryst size, mm		$0.30 \times 0.34 \times 0.34$ $0.15 \times 0.20 \times 0.30$
cryst syst	monoclinic	monoclinic
space group	$P2_1/n$ (No. 14)	$P2_1$ (No. 4)
a, Å	13.577(2)	10.1344(3)
b, Å	22.314(4)	14.7333(4)
c, Å	15.423(3)	15.1684(5)
β , deg	94.44(2)	95.183(1)
V, \mathring{A}^3	4658.4(15)	2255.6(1)
Z	4	$\mathbf{2}$
D (calc), g cm ⁻³	1.605	1.409
μ (Mo K α), cm ⁻¹	5.42	8.06
F(000)	2256	908.00
temp, K	240	157
$2\theta_{\text{max}}$, deg	50.0	46.5
total no. of data	8444	9339
no. of unique obsd data	4112	3557
no. of variables	604	477
R(int)	0.0265	0.032
goodness of fit indicator 1.31		2.75
$R(F)$, %	5.78	4.1
$R(wF)$, %	7.46	5.0
max./min. residual	$0.80/-0.52$	$0.93/-1.01$
density, e \AA^{-3}		

silane independently from H_2 SiCl₂, HSEt and NEt₃, which resulted in the isolation of $HSi(SEt)_{3}.^{41}$ This type

of redistribution reaction of thiosilanes has also been observed for the silane $Cl_2Si(SMes)_2.^{5e}$

Reaction of **24** with H₂ (1 atm) at -78 °C in dichloromethane- d_2 led to a mixture of products that included **30**, **33**, and **34** (eq 11).24a The 1H NMR spectra of the

reaction mixture showed that the SiMe resonances for **24** diminished over the course of 4 days and were replaced by various peaks in the δ 0.0-0.2 region, presumably representing species derived from the displaced silylene fragment. Although the hydride ligands

⁽⁴⁰⁾ Schmidbaur, H.; Jeong, J.; Schier, A.; Graf, W.; Wilkinson, D. (41) Grumbine, S. K., Ph.D. Thesis, UC San Diego, 1993.
L.; Müller, G.; Krüger, C. *New J. Chem.* **1989**, 13, 341. (41) Grumbine, S. K., Ph.D. Thesis, UC

of **33** and **34** are most likely derived from H2, no formation of H_2 SiMe₂ was detected (by ¹H NMR spectroscopy and GC/MS).

The reaction of 20 with $H_3SiSiPh_3$ in dichloromethane*d*² proceeded slowly (75% conversion after 3 days) to one ruthenium product and two main Si-H products, one of which is $HSi(SEt)_{3}$. In a scaled-up version of this reaction, the new product $[Cp*(Me_3P)_2Ru(H)(SiH_2SiPh_3)]$ -[BPh4] (**35**) was crystallized from the reaction mixture in 24% yield (eq 12). The $Si-H¹H NMR$ resonance for

$$
MP3PWw = RU + S1 + S2 + S3 + S4 + S1 + S2 + S4 + S3 + S4 + S4 + S5 + S4 + S6 + S7 + S7 + S8 + S7 + S8 + S1 + S
$$

this compound appeared as a virtual triplet at *δ* 3.81, and the hydride ligand appeared as a triplet at δ -10.10 $(J_{PH} = 9 Hz)$. The volatile products from the reaction mixture were found to contain mainly $HSi(SEt)_{3}$ (by ¹H NMR and mass spectrometry). Thus, it appears that this reaction is also complicated by a redistribution at silicon.

The reaction of 20 with H₃SiMes proceeds very slowly (70% conversion after 7 h in dichloromethane- d_2) to a mixture of products (eq 13). The hydride **34** and BPh3

were isolated from the reaction mixture in 34% and 24% yields, respectively. In addition, the major silane product was identified as H_2 SiMes(SEt), by comparison of its 1H, 13C, 29Si NMR and mass spectra to those for an independently prepared sample. Monitoring the reaction by 1H NMR spectroscopy provided evidence for an intermediate in this transformation, characterized by triplet resonances assigned to RuSiH (δ 4.69, $^3J_{\text{PH}} = 8$ Hz) and RuH (δ -11.23, ² J_{PH} = 9 Hz) groups. After speculating that this intermediate might be analogous to **35**, we generated $[Cp*(Me_3P)_2Ru(H)(SiH_2Mes)][BPh_4]$ **(36)** independently via reaction of $[Cp*(Me_3P)_2Ru(NCMe)]$ -[BPh4] with 1 equiv of H3SiMes in dichloromethane-*d*2. Compound **36**, which exists in a 1:12 equilibrium with $[Cp*(Me_3P)_2Ru(NCMe)][BPh_4]$, was identified as the intermediate indicated in eq 13. To the solution containing 36 was added HSi(SEt)₃, and after 6 days the main SiH-containing product was H_2 SiMes(SEt) (90% by ¹H and 29Si NMR spectroscopy). It therefore seems that reactions of **20** with $H_3SiSiPh_3$ and H_3SiMes proceed via similar pathways that initially produce $HSi(SEt)_{3}$

and a silyl hydride complex of the type $[Cp^*(Me_3P)_2Ru$ $(H)(SiH₂R)⁺$. When R = Mes, these products react further to produce H_2 SiMes(SEt), by an unknown mechanism.

As with the reaction of 24 with H_2 , reactions of 24 with H_2SiPh_2 , $HSiEt_3$, and $HSi(SiMe)_3$ in dichloromethane- d_2 at 0 °C gave a complex mixture of products consisting primarily of **30**, **33**, and **34** (by 1H and 31P NMR spectroscopy). The chloride ligand of **34** is presumed to originate from the solvent, and no redistribution or Si-Si bond formation was observed.

Concluding Remarks

In this paper we have described a synthetic route to ruthenium silylene complexes of the type [Cp*(Me3P)2- $Ru=SiX_2$ ⁺. This method works well in selected cases, where $X =$ thiolate, Me, or Ph, but so far has not proven successful with a number of other substituents at silicon. The key precursor compounds in this approach are triflato(silyl) derivatives of the type $Cp^*(Me_3P)_2RuSiX_2$ -OTf, which possess labile triflate groups. In solution, the triflate may be exchanged for less coordinating anions that result in stabilization of the three-coordinate silicon compounds. In one case, this exchange was successful with use of a starting silyl chloride derivative (**6**), presumably because a relatively stable silylene complex, [Cp*(Me3P)2RuSi(SCy)2][BPh4] (**22**), is formed. Note that the $\mathrm{BPh_{4}^{-}}$ anion is compatible with thiolatesubstituted silylene complexes, but isolation of the less stable dimethyl- and diphenylsilylene complexes (**24** and **25**) requires use of the more inert anion $B(C_6F_5)_4^-$. The silylene complexes reported here are characterized by highly downfield-shifted 29Si NMR resonances in the region *^δ* ²⁵⁰-310. These shift values are consistent with others that have been characterized for silylene complexes, including [*trans*-(Cy₃P)₂(H)PtSi(SEt)₂][BPh₄] (*δ* 308.65),^{22c} [(ⁱPr₂PCH₂CH₂PⁱPr₂)(H)Pt=SiMes₂][BMe- $(C_6F_5)_3$] (δ 338.5),^{22e} (Cy₃P)₂Pt=SiMes₂ (δ 358),^{22f} and $({}^{1}Pr_{3}P)_{2}Pt =$ SiMes₂ (δ 367).^{22f} The complete characterization of **²⁰**-**²⁵** represents a significant advance in the development of transition metal-silylene chemistry. Now that stable examples with a number of substitution patterns are known, it is clear that such species are viable synthetic targets and reasonable chemical intermediates.

Many of the reactions observed for silylene complexes reflect the presence of a highly electrophilic silicon center. Thus, the silylene complexes reported here readily form adducts with a number of Lewis bases. It is interesting to compare the structural and spectroscopic properties for adducts of these types, which have often been described as having considerable silylene character, with authentic silylene complexes possessing $sp²$ silicon. This comparison shows that the "donor-stabilized" silylene complexes possess structural and spectroscopic properties that are much more similar to metal silyl complexes and reflect the presence of $sp³$ silicon. This is perhaps dramatically illustrated by formation of the ylide "adduct" **32**, which exhibits structural parameters and an 29Si NMR shift that are highly consistent with a simple ruthenium silyl complex. Similar observations for other donor-stabilized silylene complexes^{3,5,14-17,20} suggest that these compounds are also best represented by resonance structures reflecting tetrahedral silicon centers with four covalent bonds (e.g., structures **^A**-**E**).

Finally, initial reactivity studies with the ruthenium silylene complexes reported here demonstrate that they are relatively unreactive toward nonpolar substrates such as hydrosilanes and hydrogen. This appears to reflect the coordinative saturation of the metal center, and in fact in other studies we have observed that the 16-electron silylene complex $(Cy_3P)_2Pt=SiMes_2$ reacts more readily with hydrogen.^{22f}

Experimental Section

General Procedures. Manipulations were performed under an inert atmosphere of nitrogen or argon. Dry, oxygenfree solvents were employed throughout. Elemental analyses were performed by Pascher Analytical Laboratories, Desert Analytics, and the UC Berkeley College of Chemistry Microanalytical Facility. All NMR spectra were recorded at room temperature unless otherwise indicated. 29Si NMR spectra were obtained on a GE QE-300 or a Bruker AM 300 instrument at 59.6 MHz, using single-pulse techniques (typically with a $2-4$ s delay time and ca. 10 000 transients) or DEPT. 1 H, 13 C, and 31P NMR spectra were obtained at 300, 75.5, and 121.5 MHz, respectively, unless otherwise noted. Infrared spectra were recorded on a Perkin-Elmer 1330 infrared spectrometer as Nujol mulls on CsI plates, unless otherwise indicated, and all absorptions are reported in cm^{-1} . Conductivity measurements were acquired with a YSI model 3S conductance meter. The compounds HSMes,⁴² LiB(C₆F₅₎₄·Et₂O,³⁷ B(C₆F₅₎₃,⁴³ NaC₂B₉H₁₂,⁴⁴
Ph.CBPh, ³⁶ NaBl3 5-(CEa),CaHal, ⁴⁵ NaPh,BNCBPh, ⁴⁶ and $Ph_3CBPh_4^{36}$ NaB[3,5-(CF₃)₂C₆H₃]₄,⁴⁵ NaPh₃BNCBPh₃,⁴⁶ and $NaCo(C_2B_9H_{12})$ ⁴⁷ were prepared by literature methods. The complex $[Cp^*(Me_3P)_2Ru(NCMe)][BPh_4]$ was prepared by the reaction of $Cp^*(Me_3P)_2RuCl^{27}$ with AgBPh4 in acetonitrile.

 $\text{HSi}(\text{SEt})_3$. NEt₃ (32 mL, 240 mmol) was added to a 1 L flask containing diethyl ether (800 mL), HSiCl₃ (8.0 mL, 80 mmol), and HSEt (18 mL, 240 mmol). A large volume of white precipitate ($HNEt_3Cl$) formed, creating a viscous solution that was stirred for 10 h. The reaction was then filtered, and the solid was extracted with 200 mL of diethyl ether. The combined diethyl ether solutions were concentrated to an oil, and vacuum distillation (bp 110-113 °C/0.01 Torr) gave 10 g of the product (59%). GC/MS (EI) parent ion: calcd *m*/*e* 212; found m/e 212. ¹H NMR (benzene- d_6): δ 1.13 (t, $J = 8$ Hz, 9 H, SCH₂CH₃), 2.55 (q, $J = 8$ Hz, 6 H, SCH₂CH₃), 5.89 (s, 1 H, SiH). ¹³C{¹H} NMR (benzene-*d*₆): *δ* 17.16 (SCH₂CH₃), 22.42 (SCH_2CH_3) . ²⁹Si{¹H} NMR (benzene- d_6): δ 12.12 (s).

HSi(S-2-Naph)₃. The procedure for HSi(SEt)₃ was followed, using NEt $_3$ (12 mL, 90 mmol), diethyl ether (300 mL), HSiCl_3

H. *Bull. Chem. Soc. Jpn.* **1984**, *57*, 2600.

(2.1 mL, 21 mmol), and HS(2-Naph) (10 g, 62 mmol). The silane was crystallized from diethyl ether at -35 °C. Yield: 0.92 g/9% (not optimized). MS (EI) parent ion: calcd *m*/*e* 506; found *m*/*e* 506. 1H NMR (benzene-*d*6): *δ* 6.20 (s, 1 H, SiH), 7.15 (m, 2 H, Naph), 7.29 (m, 2 H, Naph), 7.45 (m, 2 H, Naph), 7.85 (s, 1 H, Naph).

HSi(SCy)3/HSi(SCy)2Cl Mixture (4:1). The procedure for HSi(SEt)₃ was followed, using NEt₃ (8.1 mL, 60 mmol), diethyl ether (800 mL), HSiCl₃ (2.3 mL, 23 mmol), and HSCy (5.4 mL, 44 mmol). The silane was isolated by filtration (from HNEt3-Cl) followed by vacuum distillation (bp 145-180 °C/0.1 Torr). Yield: 2.5 g. 1H NMR (benzene-*d*6): *^δ* 0.9-1.3 (m, SCy, di and tri), 1.78 (m, SCy, di), 1.95 (m, SCy, tri), 2.98 (m, SCy, di), 3.16 (m, SCy, tri), 5.87 (s, SiH, di), 6.14 (s, SiH, tri).

HSi(SMes)3/HSi(SMes)2Cl Mixture (4:1). The above procedure was employed, starting with 3.0 equiv of HSMes. The product mixture crystallized from diethyl ether as a mixture of $HSi(SMes)_{3}$ and $HSi(S Mes)_{2}Cl$ (4:1 ratio). ¹H NMR (benzene-*d*₆) HSi(SMes)₂Cl: δ 1.98 (s, 6 H, C₆Me₂H₂*Me*), 2.36 (s, 12 H, C6*Me*2H2Me), 5.73 (s, 1 H, SiH), 6.68 (s, 4 H, C6Me2*H*2- Me). HSi(SMes)₃: δ 2.00 (s, 9 H, C₆Me₂H₂*Me*), 2.32 (s, 18 H, $C_6Me_2H_2Me$, 5.27 (s, 1 H, SiH), 6.69 (s, 6 H, $C_6Me_2H_2Me$).

 $\text{HSi}(\text{SCH}_{2}\text{CH}_{2}\text{CH}_{2}\text{S})\text{Ph}$. The procedure for $\text{HSi}(\text{SEt})_3$ was followed, using NEt_3 (7.3 mL, 55 mmol), diethyl ether (600 mL), HSiCl₂Ph (4.0 mL, 14 mmol), and HS(CH₂)₃SH (1.4 mL, 14 mmol). Evaporation of the diethyl ether solvent produced the product as a reasonably pure, viscous liquid. Yield: 55%. MS (EI) parent ion: calcd *m*/*e* 211; found *m*/*e* 211.

Cp*(Me3P)2RuSiCl3 (1). Cp*(Me3P)2RuCH2SiMe3 (1.5 g, 3.2 mmol), HSiCl₃ (0.33 mL, 3.4 mmol), PMe₃ (0.054 mL, 0.7 mmol), and toluene (40 mL) were added to a flask equipped with a Teflon valve. The flask was closed and heated to 130 °C for 12 h, which resulted in precipitation of the product. After removing the volatile materials in vacuo, the precipitate was washed with pentane (10 mL) and extracted with benzene (3 \times 40 mL). After removing the benzene from the combined extracts, the remaining solid was extracted again with 3×15 mL of benzene. The combined extracts were evaporated to dryness to give a slightly yellow precipitate. Yield: 0.36 g, 22%. Anal. Calcd for $C_{16}H_{33}Cl_3P_2RuSi$: C, 36.8; H, 6.36. Found: C, 37.1; H, 6.38. 1H NMR (benzene-*d6*): *δ* 1.18 (vir t, 18 H, P*Me*3), 1.58 (t, $J_{HP} = 1$ Hz, 15 H, C_5Me_5). ¹³C{¹H} NMR (benzene*d₆*): *δ* 11.44 (C₅*Me*₅), 22.90 (vir t, P*Me*₃), 95.25 (*C*₅Me₅). ³¹P- 1H NMR (benzene- d_{θ}): δ 3.33. ²⁹Si 1H NMR (benzene- d_{θ}): *δ* 42.69 (t, ² *J*_{SiP} = 38 Hz). IR: 1300 w, 1271 m, 1065 w, 1023 m, 956 s, 939 s, 855 m, 715 s, 619 m, 486 vs, 433 vs.

Cp*(Me₃P)₂RuSi(NMe₂)₃ (2). Cp*(Me₃P)₂RuCH₂SiMe₃ (0.28 g, 0.59 mmol) and $HSi(NMe₂)₃$ (0.29 mL, 1.5 mmol) were heated (90 °C) in a closed flask for 12 h with stirring. The resulting solid was exposed to vacuum to remove the volatile materials and then extracted into pentane (20 mL). After concentrating to 1 mL and cooling to -35 °C, light yellow crystals formed (0.21 g; 64%). When the reaction was carried out in toluene, the only product isolated was $Cp^*(Me_3P)_2Ru$ (*m*/p-Tol). Anal. Calcd for C₂₂H₅₁P₂RuN₃Si: C, 48.2; H, 9.37; N, 7.65. Found: C, 48.2; H, 9.29; N, 7.64. 1H NMR (benzene*d₆*): δ 1.22 (vir t, 18 H, P*Me*₃), 1.66 (t, *J*_{HP} = 1 Hz, 15 H, C₅-Me5), 2.74 (br s, 18 H, NMe2). 13C{1H} NMR (benzene-*d6*): *δ* 11.93 (C5*Me*5), 24.61 (vir t, P*Me*3), 42.45 (NMe2), 93.88 (*C*5Me5). 31P{1H} NMR (benzene-*d6*): *δ* 5.40. IR: 1292 m, 1224 s, 1210 s, 1180 s, 1135 w, 1060 m, 985 s, 964 s, 938 s, 847 m, 700 m, 667 m, 642 m, 620 m, 600 s, 584 s, 462 m.

Cp*(Me3P)2RuSi(SEt)3 (3). This compound was prepared by the procedure reported for Cp*(PMe₃)₂RuSi[S(p-Tol)]₃.^{20c} Yield: 74% of yellow crystals, mp 190-195 °C. Anal. Calcd for $C_{22}H_{48}P_2RuS_3Si$: C, 44.1; H, 8.00. Found: C, 44.1; H, 8.20. ¹H NMR (benzene- d_6): δ 1.37 (virtual t, 18 H, PMe₃), 1.41 (t, $J = 7$ Hz, 9 H, SCH₂CH₃), 1.80 (s, 15 H, C₅Me₅), 2.99 (q, $J =$ 7 Hz, 6 H, SC*H*2CH3). 13C NMR (dichloromethane-*d*2): *δ* 12.23 $(q, J_{CH} = 127 Hz, C₅Me₅), 18.28 (q, J = 127 Hz, SCH₂CH₃),$

⁽⁴²⁾ Szmuszkovicz, J. *Org. Prep. Proced.* **1969**, *1,* 43. (43) Massey, A. G.; Park, A. J. *J. Organomet. Chem.* **1966**, *5,* 218.

⁽⁴⁴⁾ Plesek, J.; Hermanek, S.; Stibr, B. *Inorg. Synth.* **1983**, *22,* 231. (45) Nishida, H.; Takada, N.; Yoshimur, M.; Sonoda, T.; Kobayashi,

⁽⁴⁶⁾ Giandomenico, C. M.; Dewan, J. C.; Lippard, S. J. *J. Am. Chem. Soc.* **1981**, *99,* 1406.

⁽⁴⁷⁾ Hawthorne, M. F.; Andrews, T. D.; Garrett, P. M.; Olsen, F. P.; Reintjes, M.; Tebbe, R. N.; Warren, L. F.; Wegner, P. A.; Young, D. C. *Inorg. Synth.* **1967**, *10,* 91.

23.81 (br q, $J = 127$ Hz, PMe₃), 26.21 (t, $J_{CH} = 135$ Hz, S*C*H₂-CH₃), 94.74 (s, C_5Me_5). ³¹P{¹H} NMR (benzene- d_6): δ 3.04. ²⁹Si NMR (dichloromethane- d_2): δ 60.34 (t, $J_{\text{SiP}} = 34$ Hz). IR: 1292 m, 1276 m, 1250 m, 1063 w, 1022 w, 953 s, 938 s, 852 w, 708 m, 663 m.

Cp*(Me3P)2RuSi(S-2-Naph)3 (4). Toluene (20 mL) was added to $Cp^*(Me_3P)_2RuCH_2SiMe_3$ (1.36 g, 2.86 mmol) and HSi- $(S-2-Naph)_3$ (1.39 g, 2.86 mmol), and the resulting solution was stirred and heated (100 °C) in a closed flask for 5 h. After removing the volatile materials in vacuo, the solid was washed with diethyl ether $(3 \times 15 \text{ mL})$ and was then extracted into dichloromethane (3×30 mL). The combined extracts were reduced in volume and cooled to -35 °C to afford yellow crystals. A second crop was obtained by reducing the volume further and cooling to -35 °C. Total yield $= 1.45$ g, 57%. Anal. Calcd for $C_{46}H_{54}P_2RuS_3Si$: C, 61.8; H, 6.09. Found: C, 61.0; H, 5.95. Mp: 198-205 °C (dec). ¹H NMR (dichloromethane*d₂*): δ 1.57 (vir t, 18 H, P*Me*₃), 1.97 (t, *J*_{HP} = 1 Hz, 15 H, C₅*Me*₅), 6.85 (d, $J = 8$ Hz, 3 H, Naph), $7.14 - 7.41$ (m, 15 H, Naph), 7.56 (d, $J = 8$ Hz, 3 H, Naph). ¹³C{¹H} NMR (dichloromethane-*d₂*): *δ* 12.37 (C₅*Me*₅), 24.33 (vir t, P*Me*₃), 95.62 (*C*₅-Me5), 125.24, 125.71, 126.93, 127.49, 127.85, 128.17, 131.87, 132.89, 133.06, 135.45 (aryl carbons). 31P{1H} NMR (dichloromethane-*d2*): *δ* 2.32. IR: 1300 m, 1228 m, 1218 m, 1128 m, 1067 m, 1067 w, 1019 w, 952 br s, 936 br s, 897 m, 859 m, 845 m, 812 s, 741 s, 720 m, 471 w, 430 br s.

Cp*(Me3P)2RuSi(SCH2CH2CH2S)Ph (5). Toluene (15 mL) was added to $Cp^*(PMe_3)_2RuCH_2SiMe_3$ (1.8 g, 2.1 mmol) and $HSi(SCH_2CH_2CH_2S)Ph$ (1.3 g, 2.1 mmol), and the resulting solution was heated (120 °C) in a closed flask for 12 h. After removing the volatile materials by vacuum transfer, the resulting solid was extracted into diethyl ether, and then pentane was added until the solution became cloudy. Two types of crystals formed upon cooling to -35 °C, which were separated by hand and determined (by 1H and 31P NMR spectroscopy) to be the starting material, $Cp^*(Me_3P)_2RuCH_2$ -SiMe3, and the new product **5**. Yield: 0.42 g, 34%. Anal. Calcd for $C_{25}H_{44}P_2RuS_2Si$: C, 50.1; H, 7.40. Found: C, 49.8; H, 7.49. 1H NMR (benzene-*d6*): *δ* 1.43 (vir t, 18 H, P*Me*3), 1.52 (s, 15 H, C5*Me*5), 2.00 (m, 2 H, CH2*CH2*CH2), 2.69 (m, 4 H, *CH2*- CH_2CH_2), 7.72 (t, $J = 7$ Hz, 2 H, Ph), 7.39 (t, $J = 7$ Hz, 2 H, Ph), 8.35 (d, $J = 7$ Hz, 1 H, Ph). ¹³C{¹H} NMR (benzene- d_6): *δ* 11.70 (C₅*Me*₅), 24.76 (vir t, P*Me*₃), 28.72 (CH₂*CH*₂CH₂), 31.80 (*CH2*CH2*CH2*), 93.83 (*C*5Me5), 126.69, 127.34, 136.81, 147.16 (phenyl). 31P{1H} NMR (23 °C, benzene-*d6*): *δ* 5.87. 29Si{1H} NMR (benzene- d_{θ}): δ 48.23 (t, ² J_{SiP} = 29 Hz).

Cp*(Me3P)2RuSi(SCy)2Cl (6). Toluene (15 mL) was added to $Cp^*(Me_3P)_2RuCH_2SiMe_3$ (0.80 g, 1.7 mmol) and the HSi- $(SCy)_3/HSi(SCy)_2Cl$ (4:1) mixture (2.2 g, 1.4 mmol of HSi- $(Cy)_{2}Cl$, and the resulting mixture was stirred with heating (120 °C) in a closed flask for 5 h, resulting in some precipitation. After removing the volatile material in vacuo, the precipitate was washed with pentane $(2 \times 10 \text{ mL})$. The remaining yellow powder was extracted into diethyl ether (15 mL), and the resulting solution was cooled to -78 °C, resulting in 0.50 g of light yellow crystals. Yield: 52% (based on HSi- $(C(SC)y_2C)$. Anal. Calcd for $C_{28}H_{55}ClP_2RuS_2Si$: C, 49.3; H, 8.12. Found: C, 48.8; H, 8.07. Mp: 215-218 °C, dec. 1H NMR (dichloromethane-*d2*): *^δ* 1.1-1.9 (m, 16 H, Cy), 1.46 (vir t, 18 H, P*Me*3), 1.80 (s, 15 H, C5*Me*5), 2.07 (br m, 4 H, Cy), 3.15 (br m, 2 H, Cy). 13C{1H} NMR (dichloromethane-*d2*): *δ* 12.21 (C5*Me*5), 23.55 (vir t, P*Me*3), 26.34, 27.24, 27.43, 37.61, 38.30, 44.83 (Cy carbons), 95.06 (C₅Me₅). ³¹P{¹H} NMR (dichloromethane-*d2*): *δ* 3.20. 29Si NMR (dichloromethane-*d2*): *δ* 67.57 (t, $^{2}J_{\text{SiP}} = 40$ Hz). IR: 1300 w, 1278 m, 1255 w, 1203 w, 1025 w, 993 m, 959 s, 942 s, 882 w, 856 w, 842 w, 744 m, 710 m, 673 w, 665 s, 483 m, 453 s, 420 m.

Cp*(Me3P)2RuSi(SMes)2Cl (7). Toluene (6 mL) was added to $Cp*(Me_3P)_2RuCH_2SiMe_3$ (1.02 g, 2.15 mmol) and a 4:1 HSi- $(SMes)₃/HSi(SMes)₂Cl$ mixture (1.01 g, 2.26 mmol of the

chloride), and the resulting mixture was heated (115 °C) in a closed flask for 5 h. After removing the volatile material in vacuo and washing with pentane $(3 \times 20 \text{ mL})$, the product was crystallized from a 1:1 dichloromethane/diethyl ether mixture at -78 °C. Yield: 35% (0.57 g). Anal. Calcd for C34H55ClP2RuS2Si: C, 54.1; H, 7.35; Cl, 4.70. Found: C, 53.6; H, 7.37; Cl, 4.56. Mp: 232-234 °C, dec 1H NMR (dichloromethane-*d*2): *δ* 1.47 (virtual t, 18 H, PMe3), 1.95 (s, 15 H, Cp^{*}), 2.18 (s, 6 H, SC₆Me₂H₂*Me*), 2.28 (s, 12 H, SC₆*Me*₂H₂Me), 6.75 (s, 4 H, $SC_6Me₂H₂Me$). ³¹P{¹H} NMR (dichloromethane*d*2): *δ* 3.96. IR: 1298 m, 1279 m, 1048 w, 1023 w, 955 s, 940 s, 849 s, 710 m, 675 w, 665 w, 458 s.

 $\mathbb{C}\mathbf{p}^*(\mathbf{M}\mathbf{e}_3\mathbf{P})_2\mathbf{RuSi}(SEt)_2\mathbf{O}Tf(8)$. To a solution of 3 (2.80) g, 4.67 mmol) in pentane (20 mL) was added Me₃SiOTf (0.85 mL, 4.67 mmol). This mixture was stirred for 8 h, during which time the product precipitated as yellow microcrystals. The supernatant was removed by filtration and the product was washed with pentane (5 mL) to afford 2.91 g of **8** (91% yield; mp 173–179 °C dec). Anal. Calcd for $C_{21}H_{43}F_3O_3P_2RuS_3$ -Si: C, 36.7; H, 6.30. Found: C, 36.7; H, 6.54. 1H NMR (dichloromethane-*d*₂): *δ* 1.26 (t, *J* = 7 Hz, 6 H, SCH₂C*H*₃), 1.46 (virtual t, 18 H, PMe₃), 1.80 (s, 15 H, Cp^{*}), 2.88 (q, $J = 7$ Hz, 4 H, SC*H*2CH3). 13C{1H} NMR (dichloromethane-*d*2): *δ* 11.52 (C₅*Me*₅), 17.50 (SCH₂*C*H₃), 23.87 (t, *J*_{CP} = 15 Hz, PMe₃), 26.28 (S*C*H2CH3), 94.26 (*C*5Me5). 31P{1H} NMR (dichloromethane*d*₂): *δ* 2.07. ²⁹Si NMR (-80 °C, dichloromethane-*d*₂): *δ* 86.05 (t, $J_{\text{SiP}} = 37$ Hz). IR: 1358 s, 1281 w, 1235 m, 1208 s, 1172 s, 1152 m, 955 s, 938 s, 850 w, 712 w, 664 w, 628 s. Equivalent conductance = 12 Ω^{-1} cm² equiv⁻¹ (0.0018 M at 23 °C in dichloromethane).

Cp*(Me3P)2RuSi(NMe2)2(OTf) (13) and Cp*(Me3P)2RuSi- (NMe2)(OTf)2 (14). Trimethylsilyl triflate (0.12 mL, 0.7 mmol) was added to a cold (-78 °C) pentane solution (100 mL) of Cp*(Me3P)2RuSi(NMe2)3 (0.61 g, 1.1 mmol), the resulting solution was allowed to slowly warm to 23 °C, and then stirring was continued for 12 h. The resulting precipitate was isolated by filtration and washed with pentane (3 mL) to give 0.12 g (17%) of product that contained a small amount of contamination by 14. Anal. Calcd for $C_{21}H_{45}F_3P_2RuN_2O_3SSi$: C, 38.6; H, 6.94; N, 4.28. Found: C, 37.9; H, 6.29; N, 2.86. 1H NMR (dichloromethane-*d₂*): *δ* 1.50 (vir t, 18 H, P*Me*₃), 1.84 (t, *J*_{HP} $=$ 1 Hz, 15 H, C₅*Me*₅), 2.72 (s, 12 H, NMe₂). ¹³C{¹H} NMR (dichloromethane-*d2*): *δ* 11.31 (C5*Me*5), 24.17 (vir t, P*Me*3), 40.06 (NMe₂), 94.79 (*C*₅Me₅). ³¹P{¹H} NMR (dichloromethane*d2*): *^δ* -1.38. IR: 1365 m, 1265 s, 1188 m, 1139 s, 1029 s, 992 m, 978 m, 936 m, 720 m, 666 w, 633 s. To the filtrate from above, more trimethylsilyl triflate (0.36 mL, 2.1 mmol) was added, and the solution was then stirred for an additional 12 h. The resulting precipitate (0.55 g) was isolated and then crystallized from a 1:1 dichloromethane/diethyl ether mixture at -35 °C to give yellow crystals of **14**. Yield $= 0.18$ g (22%). Anal. Calcd for C21H45F3P2RuN2O3SSi: C, 31.7; H, 5.18; N, 1.85. Found: C, 31.3; H, 5.38; N, 2.23. 1H NMR (dichloromethane-*d₂*): δ 1.46 (vir t, 18 H, P*Me*₃), 1.77 (t, *J*_{HP} = 1 Hz, 15 H, C_5Me_5), 2.66 (s, 6 H, NMe₂). ¹³C{¹H} NMR (dichloromethane*d₂*): *δ* 11.13 (C₅*Me*₅), 23.68 (vir t, P*Me*₃), 39.34 (NMe₂), 95.21 (C_5Me_5) . ³¹P{¹H} NMR (dichloromethane-*d₂*): δ -0.03. ²⁹Si- ${^{1}H}$ NMR (dichloromethane-*d₂*): δ 37.88 (t, ²*J*_{SiP} = 41 Hz). IR: 1360 s *ν*(SO₃), 1286 m 1240 m, 1195 s, 1150 m, 1002 s, 972 m, 955 m, 924 m, 850 w, 712 w, 672 m, 629 s, 460 m.

Cp*(Me3P)2RuSi(SCH2CH2S)S-*p***-Tol) (16).** The compounds **15** (0.900 g, 1.08 mmol) and $ListCH_2CH_2SLi$ (0.266 g, 2.17 mmol) were stirred together in toluene (40 mL) for 11 days. The volatile materials were removed by vacuum distillation, and the resulting precipitate was then extracted with diethyl ether (2×25 mL). The combined ether extracts were cooled to -78 °C to obtain 0.116 g of product. After concentrating the solution, a second crop of crystals (0.095 g) was obtained. Total yield: 31%. Anal. Calcd for $C_{25}H_{44}P_2RuS_3$ -Si: C, 47.6; H, 7.03. Found: C, 47.9; H, 7.08. 1H NMR

(dichloromethane-*d2*): *δ* 1.49 (vir t, 18 H, P*Me*3), 1.91 (s, 15 H, C5*Me*5), 2.04 (m, 2 H, SC*H2*C*H2*S), 2.28 (s, 3 H, C6H4*Me*), 2.44 (m, 2 H, SC*H₂SCH₂S*), 6.98 (d, $J = 8$ Hz, 2 H, C₆*H₄Me*), 7.37 (d, 2 H, $J = 8$ Hz, C_6H_4Me). ¹³C{¹H} NMR (dichloromethane-*d2*): *δ* 12.22 (C5*Me5*), 21.22 (C6H4*Me*), 23.33 (vir t, P*Me3*), 37.17 (S*C*H2*C*H2S), 95.12 (*C5*Me5), 128.57, 134.55, 135.38, 135.98 (aryl carbons). ${}^{31}P{^1H}$ NMR (dichloromethane*d2*): *δ* 3.63. 29Si{1H} NMR (dichloromethane-*d2*): *δ* 71.71 (t, $^{2}J_{\text{SiP}} = 34$ Hz). IR: 1294 w, 1277 m, 1150 w, 1089 w, 1020 w, 957 s, 941 s, 845 m, 800 s, 710 br m, 668 m, 472 s, 420 m.

Cp*(Me3P)2RuSi(1,2,4-S2MeC6H3)(S-*p-***Tol) (17).** Benzene (30 mL) was added to a flask containing **15** (0.66 g, 0.79 mmol) and $Li_2S_2MeC_6H_3$ (0.17 g, 1.0 mmol), and the resulting heterogeneous mixture was stirred for 36 h. The reaction mixture was filtered to remove precipitated LiOTf, and the filtrate was evacuated to a solid, which was extracted into diethyl ether $(3 \times 15 \text{ mL})$. Upon cooling the combined extracts to -78 °C, precipitation of the product as a yellow powder occurred (0.12 g). After concentrating and cooling the solution further, a second crop (0.16 g) was obtained. Total yield: 51%. Anal. Calcd for $C_{30}H_{46}P_2RuS_3Si: C, 51.9; H, 6.68.$ Found: C, 51.5; H, 6.98. 1H NMR (benzene-*d6*): *δ* 1.32 (vir t, 18 H, P*Me*3), 1.82 (s, 15 H, C_5Me_5), 1.95 (s, 3 H), 1.98 (s, 3 H), 6.40 (d, $J=$ 8 Hz, 1 H, S₂C₆H₃Me), 6.67 (d, J = 8 Hz, 2 H, SC₆H₄Me), 7.05 $(s, 1 H, S_2C_6H_3Me)$, 7.14 (d, $J = 8 Hz$, 1 H, $S_2C_6H_3Me$), 7.69 (d, 2 H, $J = 8$ Hz, SC_6H_4Me). ¹³C{¹H} NMR (dichloromethane d_2 : δ 12.04, 12.44 (C₅*Me₅*), 20.61 (C₆H₄*Me*), 23.40 (vir t, P*Me₃*), 95.03 (*C5*Me5), 123.48, 125.35, 126.42, 127.80, 128.74, 132.28, 135.15, 135.34, 138.33, 141.63 (aryl carbons). 31P{1H} NMR (dichloromethane-*d2*): *δ* 3.63. 29Si{1H} NMR (dichloromethane*d₂*): δ 69.12 (t, ² J_{SiP} = 33 Hz). IR: 1294 w, 1274 w, 1111 w, 1020 w, 955 s, 938 s, 845 w, 798 s, 712 m, 703 m, 665 m.

Reaction of Cp*(Me₃P)₂RuSi(SMes)₂Cl (7) with Me₃Si-**OTf.** Me₃SiOTf (8 μ L, 0.04 mmol) was syringed into a benzene- d_6 solution of **7** (0.03 g, 0.04 mmol), and the reaction was monitored by ¹H and ³¹P NMR spectroscopy. After 8 h, two new products with spectroscopic characteristics consistent with Cp^{*}(Me₃P)₂RuSi(SMes)Cl(OTf) (19) and Cp^{*}(Me₃P)₂RuSi-(SMes)2OTf (**18**) were observed in a 2:1 ratio. NMR spectroscopic data for 18 are as follows: ¹H NMR (dichloromethane*d*2): *δ* 1.50 (virtual t, 18 H, PMe3), 1.89 (s, 15 H, Cp*), 2.22 (s, 3 H, SC6Me2H2*Me*), 2.36 (s, 6 H, SC6*Me*2H2Me), 6.82 (s, 4 H, SC₆Me₂H₂Me). ³¹P{¹H} NMR (benzene- d_6): δ 3.48 (s).

Cp*(Me3P)2RuSi(SMes)(OTf)Cl (19). Me3SiOTf (0.11 mL, 1.5 mmol) was added to a dichloromethane (5 mL) solution of **7** (0.22 g, 0.75 mmol), and the resulting solution was stirred for 1 h. After the volatile materials were removed in vacuo, the resulting solid was washed with pentane $(3 \times 20 \text{ mL})$ and the product was crystallized from a 1:1 dichloromethane/ diethyl ether mixture at -10 °C. Yield: 49% (0.11 g). Anal. Calcd for $C_{26}H_{44}ClF_3O_3P_2RuS_2Si$: C, 41.5; H, 5.90; Cl, 4.71. Found: C, 41.6; H, 5.90; Cl, 5.10. 1H NMR (benzene-*d*6): *δ* 1.24 (virtual t, 18 H, PMe₃), 1.70 (s, 15 H, C₅Me₅), 2.12 (s, 3 $H, SC_6Me_2H_2Me$, 2.82 (s, 6 H, $SC_6Me_2H_2Me$), 6.95 (s, 4 H, SC_6 - $Me₂H₂Me$). ³¹P{¹H} NMR (benzene-*d*_{*6*}): *δ* 0.52 (d, *J*_{PP} = 39 Hz, 1 P, PMe₃), 2.06 (d, $J_{PP} = 39$ Hz, 1 P, PMe₃). IR: 1362 s *ν*(SO3), 1233 m, 1208 s, 1189 s, 1146 m, 950 br s, 850 w, 715 w, 619 m, 488 m, 418 m.

[Cp*(Me3P)2RuSi(SEt)2][BPh4] (20). Compound **20** was prepared from **8** in 48% yield by the method used to obtain **21**. Anal. Calcd for C44H63BP2RuS2Si: C, 61.6; H, 7.40; Cl, 0.00. Found: C, 61.7; H, 7.11; Cl, 0.12. 1H NMR (dichloromethane- d_2): δ 1.45 (t, $J = 8$ Hz, 6 H, SCH₂CH₃), 1.54 (virtual t, 18 H, PMe₃), 1.85 (s, 15 H, C₅Me₅), 3.14 (q, $J = 8$ Hz, 4 H, SCH_2CH_3), 6.88 (t, $J = 7$ Hz, 4 H, BPh), 7.04 (t, $J =$ 7 Hz, 8 H, BPh), 7.32 (br s, 8 H, BPh). 13C{1H} NMR (dichloromethane-*d*₂): *δ* 11.01 (C₅*Me*₅), 18.80 (SCH₂*C*H₃), 20.88 $(t, J_{CP} = 15$ Hz, PMe₃), 30.45 (S*C*H₂CH₃), 93.17 (*C*₅Me₅), 122.07, 126.00, 136.26 (BPh₄). ³¹P{¹H} NMR (dichloromethane*d*₂): *δ* −2.22. ²⁹Si NMR (−60 °C, dichloromethane-*d*₂): *δ* 264.4 br. IR: 1577 w, 1422 w, 1288 w, 1252 m, 1192 m, 1148 w,

1067 w, 1028 w, 958 s, 935 s, 852 m, 841 m, 750 w, 731 s, 704 s, 669 w, 664 w, 609 s, 561 s, 510 m. Equivalent conductance $=$ 30 Ω ⁻¹ cm² equiv⁻¹ (0.0018 M at 23 °C in dichloromethane). Attempts to measure the molecular weight in dichloromethane were hindered by decomposition of the compound.

[Cp*(Me3P)2RuSi(S-*p-***Tol)2][BPh4] (21).** Compound **11** $(3.00 \text{ g}, 3.69 \text{ mmol})$, NaBPh₄ $(1.50 \text{ g}, 4.43 \text{ mmol})$, and dichloromethane (20 mL) were stirred in a reaction flask for 2 h. The solution was then filtered to remove the precipitate of NaOTf. The resulting solution was then concentrated, and diethyl ether was added to precipitate **21** as yellow microcrystals in 58% yield (2.1 g; mp 91-95 °C dec). Anal. Calcd for C54H67BP2RuS2Si: C, 66.0; H, 6.87; S, 6.52. Found: C, 66.7; H, 7.11; S, 6.36. 1H NMR (dichloromethane-*d*2): *δ* 1.37 (virtual t, 18 H, PMe₃), 1.91 (s, 15 H, Cp^{*}), 2.34 (s, 6 H, SC₆H₄*Me*), 6.89 (t, J = 7 Hz, 4 H, BPh), 7.04 (t, J = 7 Hz, 8 H, BPh), 7.14 $(d, J = 8$ Hz, 4 H, SC₆H₄Me), 7.21 (d, $J = 8$ Hz, 4 H, SC₆H₄-Me), 7.31 (br s, 8 H, BPh). ^{13}C ¹H} NMR (dichloromethane*d*₂): *δ* 11.59 (s, C₅*Me*₅), 21.58 (s, SC₆H₄*Me*), 24.12 (t, $J_{CP} = 16$ Hz, PMe₃), 96.70 (s, C₅Me₅), 122.08, 125.98, 128.68, 130.79, 134.54, 136.30, 140.00 (aryl carbons). 31P{1H} NMR (dichloromethane- d_2): δ -2.86. ²⁹Si NMR (dichloromethane- d_2): δ 250.6 br. At -80 °C: δ 259.4 (t, $J_{\rm SiP} = 34$ Hz). IR: 1288 w, 1013 w, 952 m, 938 m, 808 w, 740 m, 739 s, 730 s, 704 s, 603 w. Equivalent conductance $= 31 \Omega^{-1}$ cm² equiv⁻¹ (0.0037 M at 23 °C in dichloromethane). Mol wt in dichloromethane (isopiestic method): 990 (calcd 982 for ion pair).

[Cp*(Me3P)2RuSi(SCy)2][BPh4] (22). Dichloromethane (20 mL) was added to $Cp^*(Me_3P)_2RuSi(SCy)_2Cl$ (0.41 g, 0.60 mmol) and $NaBPh_4$ (0.31 g, 0.90 mmol), and the resulting solution was stirred for 1.5 days. This yellow-orange solution was filtered to remove NaCl, and then all volatile components were removed in vacuo. Yield: 95%. Anal. Calcd for $C_{50}H_{28}$ -BP2RuS2Si: C, 63.7; H, 8.02. Found: C, 63.6; H, 7.65. Mp: ⁸⁹-96 °C, dec. 1H NMR (dichloromethane-*d2*): *^δ* 1.4-1.8 (m, 16 H, Cy) 1.55 (vir t, 18 H, PMe₃), 1.86 (s, 15 H, C₅Me₅), 2.04 (br m, 4 H, Cy), 3.63 (br m, 2 H, Cy), 6.88 (t, $J = 8$ Hz, 4 H, BPh₄), 7.04 (t, $J = 8$ Hz, 8 H, BPh₄), 7.32 (br m, 4 H, BPh₄). ¹³C{¹H} NMR (dichloromethane-*d₂*): *δ* 11.48 (C₅*Me*₅), 24.35 (vir t, P*Me*3), 25.40, 26.64, 37.05, 48.32 (Cy carbons), 95.84 (*C*5- Me₅), 122.03, 125.94, 136.21, 164.38 (q, $J_{CB} = 49$ Hz, ipso carbon of BPh₄). ³¹P_{¹H} NMR (dichloromethane-*d₂*): δ -2.47. ²⁹Si NMR (dichloromethane-*d₂*): *δ* 268.67 (t, ²*J*_{SiP} = 35 Hz). IR: 1577 w, 1284 w, 1258 m, 1022 br m, 952 s, 938 s, 848 w, 800 w, 730 s, 701 s, 679 w, 610 m, 598 w, 561 m, 528 m.

[Cp*(Me3P)2RuSi(S-2-Naph)2][B(C6F6)3(S-2-Naph)] (23). $B(C_6F_6)_3$ (0.075 g, 0.15 mmol) and **4** (0.12 g, 0.13 mmol) were combined in an NMR tube with 0.7 mL of dichloromethane*d*2, and the tube was shaken to dissolve the contents. After 20 min, 1H, 13C, 29Si, and 31P NMR spectroscopy revealed the formation of a single product (**23**). Afterward, *n*-butyl ether was added to the sample, and upon concentrating the solution, crystals formed (0.080 g). These crystals were analyzed (by 1H and 31P NMR spectroscopy and elemental analysis) as the starting material **4**. Data for **23**. 1H NMR (dichloromethane*d₂*): δ 1.37 (vir t, 18 H, P*Me*₃), 1.91 (t, *J*_{HP} = 1 Hz, 15 H, C₅-
Me₂) 7.22–7.75 (m. 21 H Naph), ¹³C¹¹H), NMR (dichlo- Me_5), 7.22–7.75 (m, 21 H, Naph). $^{13}C(^{1}H)$ NMR (dichlo-
romethane-dal: δ 11.47 (C-Me) 23.92 (vir t PMe) 96.95 romethane-*d2*): *δ* 11.47 (C5*Me*5), 23.92 (vir t, P*Me*3), 96.95 (*C*5Me5), 124.22, 125.68, 126.29, 126.67, 127.52, 127.55, 127.64, 128.05, 129.44, 129.54, 130.84, 130.93, 131.81, 133.08, 133.78, 133.83, 134.05 (Naph aryl carbons), 136.95 (d of mult, J_{CF} = 235 Hz, $(S-2-Naph)B(C_6F_5)_3$, 138.85 (d of mult, $J_{CF} = 253$ Hz, $(S-2-Naph)B(C_6F_5)_3$, 184.43 (d of mult, $J_{CF} = 245$ Hz, (S-2-Naph) $B(C_6F_5)_3$. ³¹P{¹H} NMR (dichloromethane-*d₂*): δ -2.65. ²⁹Si{¹H} NMR (dichloromethane-*d₂*): *δ* 260.51 (t, *J*_{SiP} = 33 Hz).

[Cp*(Me3P)2Rud**SiMe2][B(C6F5)4] (24).** LiB(C6F5)4'Et2O (0.12 g, 0.16 mmol) and $Cp^*(Me_3P)_2RuSiMe_2OTf$ (0.090 g, 0.15 mmol) were combined in an NMR tube, which was then cooled to -78 °C. Dichloromethane- d_2 (0.6 mL) was then added, and the tube was shaken to mix the reagents. The tube was warmed to 0 °C, and NMR spectra at this temperature indicated 90% conversion to one ruthenium product. X-ray quality crystals were grown by addition of a ⁿBu₂O solution (0.5 mL) of $LiB(C_6F_5)_4$ Et₂O (0.050 g, 0.066 mmol) to a dichlorobenzene solution (1 mL) of $Cp^*(Me_3P)_2RuSiMe_2OTf$ (0.040 g, 0.066 mmol) at 23 °C. Over the course of 5 min, ⁿBu₂O (2.5 mL) was added slowly until crystals began to form. The solution was left undisturbed for 18 h before the crystals were isolated by filtration. Yield: 0.028 g/38%. Anal. Calcd for $C_{42}H_{39}BF_{20}P_2RuSi$: C, 44.8; H, 3.49. Found: C, 44.7; H, 3.42. 1H NMR (0 °C, dichloromethane-*d*2): *δ* 0.99 (s, 6 H, SiMe₂), 1.44 (vir t, 18 H, PMe₃), 1.81 (t, $J_{HP} = 1$ Hz, 15 H, C5Me5). 31P{1H} NMR (0 °C, dichloromethane-*d*2): *δ* 2.29. 29- Si $\{^1H\}$ NMR (0 °C, dichloromethane-*d*₂): δ 311.41 (br s).

X-ray Crystal Determination for 24. A yellow, blocklike crystal with approximate dimensions of $0.30 \times 0.34 \times 0.34$ mm was mounted in a glass capillary. The mounted crystal was placed under a cold stream of nitrogen on a Siemens P4 diffractometer. Crystal quality was evaluated via measurement of intensities and inspection of peak scans. Automatic peak search and indexing procedures yielded a monoclinic reduced primitive cell. The 8444 raw intensity data were converted to structure factor amplitudes and their esd's by correction for scan speed, background, and Lorentz and polarization effects. Inspection of the systematic absences indicated uniquely space group $P2_1/n$. Removal of systematically absent and redundant data left 8128 unique data in the final data set. The structure was solved by direct methods and refined via standard least-squares and Fourier techniques. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.80 and -0.52 e Å⁻³. The final residuals for 604 variables refined against the 4112 data were $R = 5.78\%, R_w = 7.46\%, \text{ and GOF} = 1.31.$

 $[Cp^*(Me_3P)_2Ru=SiPh_2][B(C_6F_5)_4]\cdot 0.1CH_2Cl_2$ (25). LiB- $(C_6F_5)_4$ Et₂O (0.13 g, 0.16 mmol) and $Cp^*(Me_3P)_2RuSiPh_2OTf$ (0.12 g, 0.15 mmol) were combined in an NMR tube, which was then cooled to -78 °C. Dichloromethane- d_2 (0.6 mL) was then added, and the tube was shaken to give an orange-red solution. The tube was warmed to -30 °C, and NMR spectra at this temperature revealed the presence of only one product. After acquiring a ²⁹Si NMR spectrum $(-30 \degree C)$, the tube was cooled to -78 °C for 16 h to give orange-red crystals. The solvent was syringed out of the tube, and the tube was warmed to 23 °C. Under vacuum, the crystals desolvated and turned opaque. Yield: 0.042 g/22%. Anal. Calcd for $C_{52}H_{43}BF_{20}P_{2}$ -RuSi'(0.1CH2Cl2: C, 49.7; H, 3.46; Cl, 0.53. Found: C, 49.1; H, 3.42; Cl, 0.4. ¹H NMR (-30 °C, dichloromethane-*d*₂): *δ* 1.50 (br s, 18 H, P*Me*3), 1.91 (br s, 15 H, C5*Me*5), 7.53 (br s, 10 H, SiPh₂). ¹³C{¹H} NMR (-30 °C, dichloromethane-*d*₂): *δ* 10.91 (C5*Me*5), 22.70 (vir t, P*Me*3), 95.22 (*C*5Me5), 127.52, 131.02, 133.38, 147.05 (aryl carbons). ${}^{31}P{^1H}$ NMR (-30 °C, dichloromethane-*d*₂): *δ* 1.67. ²⁹Si{¹H} NMR (-30 °C, dichloromethane-*d*₂): δ 299 (t, *J*_{SiP} = 32 Hz).

Cp*(Me3P)2RuSi[S(Tol-*p***)]2Ph (26).** PhMgBr (0.10 mL of a 3.2 M solution, 0.31 mmol) was syringed into a benzene (20 mL) solution of Cp*(Me₃P)₂RuSi[S(Tol-*p*)]₂OTf (0.25 g, 0.31 mmol), and the resulting solution was stirred for 2 h while precipitation of MgBrOTf occurred. After the volatile material was removed in vacuo, the resulting residue was extracted with 2 \times 20 mL of diethyl ether and the combined extracts were cooled to -35 °C to give a light yellow precipitate (0.041 g). Yield: 18%. ¹H NMR (dichloromethane-*d*₂): *δ* 1.51 (virtual t, 18 H, PMe₃), 1.77 (s, 15 H, Cp^{*}), 2.09 (s, 6 H, SC₆H₄*Me*), 6.52 (d, $J = 8$ Hz, 4 H, SC₆H₄Me), 6.70 (d, $J = 8$ Hz, 4 H, SC6*H*4Me), 6.98 (m, 3 H, Ph), 7.75 (m, 2 H, Ph). 13C{1H} NMR (dichloromethane-*d*2): *δ* 12.14 (C5*Me*5), 20.86 (SC6H4*Me*), 24.04 (virtual t, PMe3), 94.77 (*C*5Me5), 126.09, 126.77, 128.38, 133.81, 134.13, 135.36, 137.57, 144.67 (aryl carbons). 31P{1H} NMR (dichloromethane- d_2): δ 3.24 (s).

 $\mathbb{C}p^*(\mathbf{Me}_3\mathbf{P})_2\mathbf{RuSiMe}_2\mathbf{Ph}$ (27). This compound was prepared from **11** by the same method used for **26**. Yield: 45%. Anal. Calcd for $C_{24}H_{44}P_2RuSi$: C, 55.0; H, 8.47. Found: C, 53.3; H, 8.34. ¹H NMR (dichloromethane- d_2): δ 0.30 (s, 6 H, SiMe₂), 1.40 (virtual t, 18 H, PMe₃), 1.60 (s, 15 H, C₅Me₅), 7.05-7.21 (m, 3 H, Ph), 7.54 (m, 2 H, Ph). 13C{1H} NMR (dichloromethane-*d*₂): *δ* 10.41 (SiMe₂), 11.84 (C₅*Me*₅), 24.04 (virtual t, PMe3), 93.13 (*C*5Me5), 125.48, 126.50, 134.99, 154.95 (aryl carbons). 31P{1H} NMR (dichloromethane-*d*2): *δ* 6.48. ²⁹Si{¹H} NMR (dichloromethane-*d*₂): δ 18.91 (t, *J*_{SiP} = 28 Hz).

Observation of $[Cp^*(Me_3P)_2RuSiMe_2(PMe_3)][B(C_6F_5)_4]$ **(28).** A solid mixture of $Cp^*(Me_3P)_2RuSiMe_2OTf$ (0.012 g, 0.020 mmol) and $(Et_2O)LiB(C_6F_5)_4$ (0.014 g, 0.020 mmol) was dissolved in 0.5 mL of dichloromethane- d_2 to generate the silylene complex **24**. The solution was then transferred to an NMR tube, which was sealed with a rubber septum. After cooling the tube to 0 °C, PMe₃ (3.1 μ L, 0.030 mmol) was added via syringe, generating a yellow solution of **28**. 1H NMR (dichloromethane- d_2): δ 0.52 (d, ³ J_{HP} = 4.5 Hz, 6 H, SiMe), 1.39 (vir t, 18 H, PMe₃), 1.42 (d, ² J_{HP} = 9.1 Hz, 9 H, PMe₃), 1.78 (s, 15 H, C_5Me_5). ³¹P{¹H} NMR (dichloromethane- d_2): δ -15.20 (s, 1 P), 2.87 (s, 2 P).

Observation of $[Cp^*(Me_3P)_2RuSiMe_2(PPh_3)][B(C_6F_5)_4]$ **(29).** A solution of **24** was generated in the same manner and on the same scale as described for 28 . PPh₃ (0.008 g, 0.030) mmol) was added to the solution of **24**, giving a dark yellow solution of **29**. ¹H NMR (dichloromethane- d_2): δ 0.45 (d, ³*J*_{HP} $= 4.5$ Hz, 6 H, SiMe), 1.30 (vir t, 18 H, PMe₃), 1.79 (s, 15H, C₅Me₅), 7.34 (m, ArH), 7.65 (m, ArH). ${}^{31}P{^1H}$ NMR (dichloromethane-*d*2): *δ* 5.34 (s, 2 P), 21.53 (s, 1 P).

 $[Cp^*(Me_3P)_3Ru][OTT]$. To a solution of $[Cp^*Ru(NCCH_3)_3]$ -OTf (0.300 g, 0.590 mmol) in 20 mL of dichloromethane was added PMe₃ (0.250 mL, 2.42 mmol) via syringe. After stirring this solution for 12 h, the volatile material was removed in vacuo and the residue was extracted with dichloromethane (2 \times 10 mL). Concentration of the solution to 10 mL, addition of 5 mL of diethyl ether, and cooling to -78 °C gave crystals of the product. Yield: 90% (0.326 g). Anal. Calcd for C20H42F3O3P3RuS: C, 39.15; H, 6.90. Found: C, 38.80; H, 7.15. Mp: 175-178 °C. 1H NMR (400 MHz, dichloromethane-*d*2): *δ* 1.46 (vir t, 27 H, PMe₃), 1.76 (s, 15 H, C₅Me₅). ¹³C{¹H} NMR (100 MHz, dichloromethane-*d*2): *δ* 12.10 (s, Cp*), 23.24 (m, PMe₃), 96.36 (s, ring C_5Me_5). ³¹P{¹H} NMR (121.5 MHz, dichloromethane-*d*₂): δ 1.98 (s). IR (KBr pellet): 2977 s, 2915 s, 1481 m, 1429 s, 1378 m, 1261 s, 1145 s, 1029 m, 962 s, 856 m, 715 m, 669, m, 636 s, 570 w, 516 m.

Observation of $[Cp*(Me_3P)_2RuPPh_3][B(C_6F_5)_4]$ **(31).** A solution of **29** in dichloromethane-*d*2, as generated above, was allowed to stand at room temperature for 2 days. $\mathrm{^{1}H}$ and $\mathrm{^{31}P}$ NMR spectroscopy indicated nearly quantitative conversion to the product. ¹H NMR (400 MHz, dichloromethane- d_2): δ 1.47 (m, 18 H, PMe3), 1.70 (s, 15 H, C5Me5), 7.45 (m, ArH), 7.74 (m, ArH). $^{31}P\{^1H\}$ NMR (161.98 MHz, dichloromethane*d*₂): δ -4.88 (d, ²*J*_{PP} = 35 Hz, 2 P), 53.12 (t, ²*J*_{PP} = 35 Hz, 1 P).

[Cp*(Me3P)2RuSiMe2(CH2PPh3)][B(C6F5)4] (32a). A 50 mL round-bottom Schlenk flask was charged with $Cp^*(Me_3P)_2$ -RuSiMe₂OTf (0.150 g, 0.252 mmol) and $(Et_2O)LiB(C_6F_5)_4$ (0.192 g, 0.252 mmol). Dichloromethane (5 mL) was added after cooling the flask to 0 °C, and the mixture was stirred until all reactants dissolved. A cloudy yellow solution formed within 30 s, indicating the formation of **24**. The solution was then filtered into a precooled (0 °C) flask containing CH_2PPh_3 (0.070 g, 0.253 mmol). The reaction mixture was stirred for 5 min, after which the volatile materials were removed under reduced pressure. The crude product was crystallized from 1:1 dichloromethane/diethyl ether (15 mL) at -78 °C. Yield: 80% (0.282) g). Anal. Calcd for C₆₁H₅₆BF₂₀P₃RuSi: C, 52.26; H, 4.03. Found: C, 52.01; H, 3.67. Mp: 180-183 °C. 1H NMR (400 MHz, dichloromethane-*d*₂): δ -0.03 (s, 6 H, SiMe₂), 1.27 (vir t, 18 H, PMe₃), 1.84 (s, 15 H, C₅Me₅), 2.26 (d, ²J_{HP} = 16 Hz, 2 H, CH2), 7.68 (m, ArH), 7.78 (m, ArH). 13C{1H} NMR (100 MHz, dichloromethane-*d*₂): δ 1.26 (s, SiMe₂), 15.25 (s, C₅Me₅), 18.43 (d, $^{1}J_{CP} = 36$ Hz, PMe₃), 41.41 (s, CH₂), 114.78 (s, ring

 C_5Me_5 , 113.10 (m, C_6F_5), 137.7 (dm, ${}^1J_{CF} = 258$ Hz, C_6F_5), 145.15 (dm, $^{1}J_{CF} = 243$ Hz, C₆F₅), 148.44 (dm, $^{1}J_{CF} = 249$ Hz, C_6F_5 , 163.9 (dd, ²*J*_{CP*cis*} = 5.2 Hz, ²*J*_{CP*trans*} = 49 Hz). ³¹P{¹H} NMR (121.5 MHz, dichloromethane-*d*₂): δ 5.85 (s, PMe₃), 21.81 (s, PPh3). 29Si{1H} NMR (dichloromethane-*d*2): *δ* 35.24 (td, $2J_{\text{SiP}} = 32$ Hz, $2J_{\text{SiP}} = 15$ Hz). IR: 1278 s, 1251 m, 1202 m, 1095 w, 988 s, 791 m, 767 w, 743 m, 663 m, 585 m.

[Cp*(Me3P)2RuSiMe2(CH2PPh3)]OTf (32b). CH2PPh3 (0.070 g, 0.253 mmol) was dissolved in dichloromethane (5 mL), and the resulting solution was added via cannula to a solution of $Cp*(Me_3P)_2RuSiMe_2OTf$ (0.150 g, 0.252 mmol) in dichloromethane (5 mL). After stirring the reaction mixture for approximately 5 min, the volatile material was removed in vacuo to leave a bright yellow residue, which was crystallized from 1:1 dichloromethane/diethyl ether (15 mL) at -78 °C. Yield: 89% (0.196 g). Anal. Calcd for $C_{38}H_{56}F_3O_3P_3RuSSi$: C, 52.34; H, 6.47. Found: C, 52.04; H, 6.10. Mp: 129-133 °C. The 1H and 31P NMR spectra were identical to those for **32a**. IR: 1268 m, 1249 s, 1210 w, 1156 s, 1043 m, 943 w, 832 m, 812 m, 774 m, 715 w, 686 w, 602 w, 593 w, 574 w.

X-ray Crystal Determination for 32b'**CH2Cl2.** A yellow trapezoidal crystal with approximate dimensions of 0.15×0.20 \times 0.30 mm was mounted on a glass fiber using Paratone N hydrocarbon oil. The mounted crystal was placed under a cold stream of nitrogen on the diffractometer. Data were collected using a Siemens SMART diffractometer with a CCD area detector. A preliminary orientation matrix and unit cell parameters were determined by collecting 60 10-s frames. A hemisphere of data was collected at a temperature of -116 \pm 1 °C using *ω* scans of 0.30° and a collection time of 20 s per frame. Frame data were integrated using SAINT. The data were corrected for Lorentz and polarization effects. No absorption correction was applied. The 9339 reflections that were integrated were averaged in point group 2/*m* to yield 3557 unique reflections ($R_{\text{int}} = 0.032$). No decay correction was necessary. The space group was determined to be *P*21 (No. 4). The structure was solved using direct methods (SIR92) and refined by full-matrix least-squares methods using teXsan software. The non-hydrogen atoms were refined anisotropically, while the hydrogen atoms were included at calculated positions but not refined. The number of variable parameters was 477, giving a data/parameter ratio of 7.25. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.93 and $-1.01 \text{ e}^{-}/\text{\AA}$ ³: $R = 0.041$, $R_w = 0.050$, $GOF = 2.75.$

Reaction of 20 with H2 and Isolation of [Cp*(Me3P)2- RuH2][BPh4] (33). Compound **8** (0.500 g, 0.727 mmol) and NaBPh4 (0.498 g, 1.46 mmol) were stirred in dichloromethane for 2 h, and then the solution was filtered. Hydrogen gas was bubbled into the resulting solution of $[Cp*(Me₃P)₂Ru=Si(SEt)₂]$ -[BPh4], the reaction flask was closed, and then the reaction mixture was stirred for 3.5 days. The volatile material was removed under reduced pressure to yield a light green oil. The oil was washed with pentane $(3 \times 10 \text{ mL})$, leaving a solid, which was purified by crystallizing from a 1:1 dichloromethane/ diethyl ether mixture at -40 °C. Yield: 38% (0.198 g). Anal. Calcd for $C_{40}H_{55}RuP_2B$: C, 67.70; H, 7.81. Found: C, 67.96; H, 7.48. Mp: 190 °C (dec). 1H NMR (dichloromethane-*d*2): *δ* -10.04 (t, *^J*PH) 33 Hz, 1 H, RuH), 1.51 (vir t, 18 H, P*Me*3), 1.94 (s, 15 H, C₅*Me*₅), 6.96 (t, *J* = 7 Hz, 4 H, BPh₄), 7.11 (t, *J* $= 7$ Hz, 8 H, BPh₄), 7.41 (br s, 8 H, BPh₄). ¹³C{¹H} NMR (dichloromethane-*d*₂): *δ* 11.56 (C₅*Me*₅), 24.70 (m, PMe₃), 100.33 (*C*5Me5), 122.04, 125.94, 136.28, (aryl carbons), 164.33 (q, *J*CB $=$ 49 Hz, ipso carbon of BPh₄). ³¹P{¹H} NMR (dichloromethane*d*2): *δ* 10.10. IR (KBr pellet): 3052 s, 2996 s, 2910 m, 2138 m, 1961 m, 1941 m, 1579 w, 1479 m, 1427 m, 1288 m. 1147 w, 1068 w, 1029 m, 943 s, 854 m, 732 s, 703 s, 605 m.

Reaction of 20 with H3SiSiPh3 and Isolation of [Cp*(Me3P)2RuH(SiH2SiPh3)][BPh4] (35). Complex **20** (0.796 g, 0.928 mmol) and H₃SiSiPh₃ (0.282 g, 0.972 mmol) were stirred in dichloromethane (15 mL) for $\overline{7}$ days. Diethyl ether

(15 mL) was added, and the solution was cooled to -35 °C to give crystals of **35**. A second crop was obtained upon addition of more diethyl ether and further cooling, to give a total yield of 0.225 g (24%). The filtrate was concentrated to 1 mL, and the volatile components of the mixture were vacuum transferred and analyzed by 1H NMR and mass spectroscopy as consisting of primarily $HSi(SEt)_{3}$. Anal. Calcd for $C_{58}H_{71}BP_{2}$ -RuSi2: C, 68.8; H, 7.17. Found: C, 68.1; H, 7.31. 1H NMR (dichloromethane-*d*₂): *δ* −10.10 (t, *J*_{PH} = 9 Hz, 1 H, RuH), 1.31 (vir t, 18 H, P*Me*3), 1.61 (s, 15 H, C5*Me*5), 3.77 (vir t, 2 H, SiH2- Ph₃), 6.87 (t, $J = 7$ Hz, 4 H, BPh₄), 7.03 (t, $J = 7$ Hz, 8 H, BPh_4), 7.31 (br s, 8 H, BPh_4), 7.42 (m, 9 H, SiH_2Ph_3), 7.59 (m, 6 H, SiH2Ph3). 13C{1H} NMR (dichloromethane-*d*2): *δ* 10.69 (C5*Me*5), 20.95 (vir t, PMe3), 99.65 (*C*5Me5), 122.07, 125.98, 128.67, 130.14, 135.23, 136.26, 136.33 (aryl carbons), 164.33 (q, $J_{\text{CB}} = 49$ Hz, ipso carbon of BPh₄). ³¹P{¹H} NMR (dichloromethane- d_2): δ -0.34 (s).

Reaction of 20 with H3SiMes. Compound **8** (0.875 g, 1.27 mmol) and NaBPh4 (0.800 g, 2.34 mmol) were stirred in dichloromethane (10 mL) for 5 h, and then the solution was filtered. H_3 SiMes (1 equiv) was syringed into the resulting solution, and stirring was continued for 4 days. The reaction solution was concentrated to 0.5 mL and was then extracted with pentane (2×4 mL) to leave a light yellow powder which was crystallized from dichloromethane/diethyl ether to give [Cp*(Me3P)2RuHCl][BPh4] (**34**). Addition of more diethyl ether and cooling (-35 °C) gave a second crop for a combined yield of 0.32 g (34%). The pentane extract from above was cooled to -35 °C, to give white crystals of BPh₃ (0.075 g, 24% yield; by 1H NMR spectroscopy). The pentane filtrate was concentrated further to an oil, and then this residue was vacuumtransferred (10 h at 35 °C and 0.001 Torr). Analysis by 1H, 13C, 29Si NMR and mass spectrometry revealed the presence of H_3 SiMes and the new product H_2 SiMes(SEt). The identity of the latter product was confirmed by an independent synthesis, involving reaction of H₃SiMes with Ph₃CCl to form H_2 SiMes(Cl), which was then reacted with LiSEt to form H_2 -SiMes(SEt).41 GC/MS (EI) parent ion: *m*/*e* 210. 1H NMR (dichloromethane- d_2): δ 1.34 (t, $J = 8$ Hz, 3 H, SCH₂CH₃), 2.34 (s, 3 H, Mes), 2.60, (s, 6 H, Mes), 2.66 (q, $J = 8$ Hz, 2 H, SC*H*₂-CH₃), 5.22 (s, 1 H, SiH), 6.95 (s, 2 H, Mes). ${}^{13}C[{^1}H]$ NMR (dichloromethane-*d*2): *δ* 18.18 (SCH2*C*H3), 21.40 (S*C*H2CH3), 23.50 (Mes), 23.68 (Mes), 128.79, 141.10, 145.29 (aryl carbons). ²⁹Si{¹H} NMR (dichloromethane- d_2): δ -37.35 (s).

[Cp*(Me₃P)₂RuH(SiH₂Mes)][BPh₄] (36). [Cp*(Me₃P)₂Ru- $(NCMe)$][BPh₄] (0.020 g, 0.027 mmol) was combined with H₃-SiMes (0.005 mL, 0.029 mmol) in dichloromethane- d_2 , and a small amount of new product was observed (8% by ¹H and ³¹P NMR spectroscopy, 2 h) with spectroscopic characteristics consistent with **36**. ¹H NMR (dichloromethane- d_2): δ -11.23 (t, *^J*PH) 9 Hz, 1 H, RuH), 1.48 (vir t, 18 H, P*Me*3), 1.66 (s, 15 H, C_5Me_5), 2.49 (s, 3 H, Mes), 2.49 (s, 6 H, Mes), 4.69 (t, $J =$ 8 Hz, 2 H, Si H_2 Mes). ³¹P{¹H} NMR (dichloromethane- d_2): δ -0.50 . The silane HSi(SEt)₃ was added to the reaction above (0.011 g, 0.060 mmol), and after 6 days the reaction mixture was found to contain H2SiMes(SEt) as the main SiH- and mesityl-containing product (90%, by 1H and 29Si NMR spectroscopy).

Acknowledgment is made to the National Science Foundation for their generous support of this work.

Supporting Information Available: Crystal, data collection, and refinement parameters, bond distances and angles, and anisotropic displacement parameters for 24 and 32b·CH₂- $Cl₂$ (21 pages). This material is contained in many libraries on microfiche, immediately follows this article in the microfilm version of the journal, can be ordered from ACS, and can be downloaded from the Internet; see any current masthead page for ordering information and Internet access instructions.

OM980506E