Complexes with a Monohapto Bound Phosphorus Tetrahedron and Phosphaalkyne1

Thomas Gröer, Gerhard Baum, and Manfred Scheer*,2

Institut fu¨ *r Anorganische Chemie der Universita*¨*t Karlsruhe, D-76128 Karlsruhe, Germany*

Received August 7, 1998

Summary: The reaction of white phosphorus with the coordinatively unsaturated [M(CO)3(PR3)2] complexes (M $=M_0$, $W; R = Cy, Pr^i$) yields the compounds $[M(CO)_3$ -
(PR₂)₂(n¹-P₄)l in which the P₄-tetrahedron is end-on *(PR3)2(η1-P4)] in which the P4-tetrahedron is end-on bonded to the metal. In the same manner reacts Ar^{<i>′*}C≡P $(At' = C_6H_2But_3.2, 4, 6)$ with this complex to give $[W(CO)_3$ -
 $[PC_3]_2/n^1.P \equiv CAt')$] The X-ray structures of the products *(PCy3)2(η1-P*t*CAr*′*)]. The X-ray structures of the products are discussed, and for the* P_4 *-unit in* $[W(CO)_3(PCy_3)_2(n^1-PC)$ *P4)] the librational analysis was performed to correct their translational and rotational motions.*

Interest has been focused on unsubstituted group 15 ligands bonded to transition metal complexes for several years.³ Most of the P_x ligand complexes are formed by reaction of white phosphorus with the appropriate transition metal complexes. However, only one type of compounds with a monohapto bound P_4 -tetrahedron is known, the $[(\eta^1-P_4)M(np_3)]$ (**1**) (M = Ni (**a**), Pd (**b**); np₃ $= N(CH_2CH_2PPh_2)_3$ complexes reported by Sacconi and co-workers.4 Moreover, Ginsberg and Lindsell suggested the occurrence of a side-on coordinated P_4 -unit in compounds of the type $[(R_3P)_2MCl(\eta^2-P_4)]$ (2) (M = Rh (a), Ir (b)).⁵ The nature of bonding to P_4 in the latter complexes was established to be a side-on coordination of a P-P edge of the intact P_4 tetrahedron. The long ^P-P bond of 2.4616(22) Å, however, rather gives evidence for an open edge, where a tetraphosphabicyclobutane coordinates to a metal(III) center. Other reactions of transition metal complexes with white phosphorus lead to transformation of the tetrahedral P4 unit.3,6 In a similar manner, the number of mononuclear coordination complexes formed with untransformed phosphaalkyne remains small.7 Among them only the complexes *trans*-[Mo(η ¹-P=CAd)₂(depe)₂] **3a**⁸ and *trans*-

 $[FeH(\eta^1-P=CBu^t)(dppe)_2][BPh_4]$ **3b**⁹ with a η^1 -ligated phosphaalkyne are structurally characterized. Recently, Bedford et al. reported the synthesis of the complex $[Ru(\eta^1-P=Car')(CO)_2(PPh_3)_2]$ suggesting an η^1 -coordination of the phosphaalkyne $P = \tilde{C}Ar'$ ($\tilde{Ar}' = C_6H_2Bu'_{3-}$
2.4.6) to the central ruthenium atom, which was con-2,4,6) to the central ruthenium atom, which was confirmed by spectroscopic data.10

We found that in both respects—forming η^1 -complexes of P_4 as well as of phosphaalkynes-the electronically and coordinatively unsaturated compounds $[M(CO)₃]$ $(PCy_3)_2$ (M = Mo, W), serve as the ideal starting material. These complexes are known to coordinate numerous small molecules such as H_2 and N_2 .¹¹

The reaction of $[M(CO)_3(PR_3)_2]$ with 1 equiv of P_4 in toluene at -78 °C leads to the capture of one phosphorus lone pair yielding the η ¹-bonded P₄ complexes [M(CO)₃- $(PR_3)_2(\eta^1-P_4)$] (**4a**-**c**) (**4a**: M = W, R = Cy; **4b**: M = W, $R = Prⁱ$; **4c**: $M = Mo$, $R = Cy$). These complexes are stable in solution (beyane, toluene) un to 0 °C, and then stable in solution (hexane, toluene) up to 0 °C, and then they decompose to the 18 VE compounds $[M(CO)₄ (PR_3)_2$ ¹² (**5a,b**) (M = W, Mo) and P₄. However at low temperatures **4a**-**^c** crystallize as orange-yellow compounds. The air-sensitive solids are stable at ambient temperatures under argon. They are soluble in common organic solvents.

The structure of **4a** reveals the 18-valence-electron complex $[W(CO)_3(PCy_3)_2(\eta^1-P_4)]$ with a η^1 -bonded P₄ tetrahedron (Figure 1). The distance of the coordinated

⁽¹⁾ Dedicated to Prof. Dr. O. J. Scherer in occasion of his 65th birthday.

⁽²⁾ To whom the correspondence should be addressed. Tel.: +49(0) 721 608 3088. Fax: +49 (0) 721 662119. E-mail: mascheer@ achibm6.chemie.uni-karlsruhe.de.

^{(3) (}a) Scheer, M.; Herrmann, E. *Z. Chem.* **1990**, *30*, 41. (b) Scherer, O. J. *Angew. Chem., Int. Ed. Engl.* **1990**, *29*, 1137. (4) (a) Dapporto, P.; Midollini, S.; Sacconi, L. *Angew. Chem., Int.*

Ed. Engl. **1979**, *18*, 510. (b) Dapporto, P.; Sacconi, L.; Stoppioni P.;

Zanobini, F. *Inorg. Chem.* **1981**, *20*, 3834. (5) Ginsberg, P.; Lindsell, W. E.; McCullough, K. J.; Sprinkle, C. R.; Welch, A. J. *J. Am. Chem. Soc.* **1986**, *108*, 403.

^{(6) (}a) Scheer, M.; Schuster, K.; Becker, U. *Phosphorus, Sulfur, Silicon* **¹⁹⁹⁶**, *¹⁰⁹*-*110*, 141. Scheer, M.; Becker, U. *Chem. Ber*. **¹⁹⁹⁶**, *¹²⁹*, 1307. (c) Scheer, M.; Becker, U. *J. Organomet. Chem*. **¹⁹⁹⁷**, *⁵⁴⁵*- *546*, 451.

^{(7) (}a) Nixon, J. F. *Chem. Rev*. **1988**, *88*, 1327. (b) Binger, P. In *Multiple Bonds and Low Coordination in Phosphorus Chemistry*; Regitz, M., Scherer, O. J., Eds.; G. Thieme Verlag: Stuttgart, 1990; p 90ff. (c) Nixon, J. F.; *Chem. Ind*. **1993**, *7*, 404. (d) Nixon, J. F. *Chem. Soc. Rev*. **¹⁹⁹⁵**, 319. (e) Nixon, J. F. *Coord*. *Chem. Rev.* **¹⁹⁹⁵**, *⁹⁵*, 201- 258.

⁽⁸⁾ Hitchcock, P. B.; Maah, M. J.; Nixon, J. F.; Zora, J. A.; Leigh, G. J.; Bakar, M. A. *Angew. Chem., Int. Ed. Engl.* **1987**, *26*, 474.

^{(9) (}a) Nixon, J. F.; Meidine, M. F.; Lemos, M. A. N. D. A.; Hitchcock, P. B.; Pombeiro, A. J. L. *J. Chem. Soc, Dalton, Trans*. **1998**, in press. (b) Hitchcock, P. B.; Amelia, M.; Lemos, M. A. N. D. A.; Meidine, M. F.; Nixon, J. F.; Pombeiro, A. J. L. *J. Organomet. Chem*. **1991**, *402*, C23.

⁽¹⁰⁾ Bedford, B.; Hill, A. F.; Wilton-Ely, J. D. E. T.; Francis, M. D.; Jones, C. *Inorg. Chem.* **1997**, *36*, 5142.

⁽¹¹⁾ Wassermann, J.; Kubas, G. J.; Ryan, R. R. *J. Am. Chem. Soc.* **1986**, *108*, 2294.

⁽¹²⁾ Moers, F. G.; Reuvers, J. G. A. *Recl. Trav. Chim. Pays-Bas.* **1974**, *93*, 246.

^{10.1021/}om9806794 CCC: \$15.00 © 1998 American Chemical Society Publication on Web 11/20/1998

phosphorus to the central tungsten atom is of 2.463(2) Å, which is shorter than the $P-W$ bond lengths of the two tricyclohexylphosphine phosphorus atoms which increase from 2.463(1) and 2.494(1) Å in the starting complex to $2.520(2)$ and $2.525(2)$ Å upon coordination of P4.

There are substantial differences in the bond distances within the P_4 -tetrahedron compared to those in 1a reported by Sacconi and co-workers.^{4a} The basal P-P bonds [P(4)-P(5), P(5)-P(6), P(6)-P(4)] in **4a** vary between 2.183(3) Å and 2.195(5) Å and hence tend to be longer than the apical $P-P$ distances $[P(3)-P(4)]$, $P(3)-P(5)$, $P(3)-P(6)$], which are in the range of 2.162(3) Å to 2.181(3) Å. Whereas in **1a** was found the basal $P-P$ distances at 2.09(3) Å to be shorter than the apical $P-P$ bond lengths at 2.20(3) Å (due to symmetry reasons, all basal as well as apical distances are equal). The structure of **1a** was established at ambient temperature without a librational analysis. For the X-ray structure of **4a** at 200 K, the rigid-body model was applied for the P4 unit to correct the shortened bond length due to translational and rotational motions of the P atoms.13 By using a "dummy atom" as described for β -P₄¹⁴ the iterations converged to $R = 0.020$ with a lengthening of the P-P bond distance between 1.8 and 4.3 pm (Figure 1). The analysis shows the same relation of the ^P-P bonds, longer basal and shorter apical bonds. These experimental features are furthermore supported by recent MP2/6-31G(d,p) calculations, revealing at the "end-on" H^+ attached P_4 tetrahedron longer basal P-P bonds of 2.269 Å and shorter apical ones of 2.122 Å.15

31P NMR data of the isostructural complexes **4a**-**^c** reveals three different groups of signals as an A_2MX_3 spin system $[A = P(1), P(2); M = P(3); X = P(4), P(5),$ P(6)], two of which, a doublet and a quartet, are assignable to the η ¹-bound P₄-tetrahedron. No WPcoupling can be observed in the quartet resonance of the coordinated P_M -atom, probably due to the similarity between PP- and WP-coupling constants, which causes the set of satellites to be obscured by the main signals. The ${}^1J_{P(M),P(X)}$ values, ranging from 206 (**4b**) to 185 (**4c**)

Figure 1. Molecular structure of **4a** (ellipsoids drawn at 50% probability level). Selected bond distances (Å) and angles (deg) [by librational analysis corrected distances]: ^W-P(1) 2.520(2), W-P(2) 2.525(2), W-P(3) 2.463(2), P(3)- P(4) 2.162(3) [2.187], P(3)-P(5) 2.181(3) [2.199], P(3)-P(6) 2.172(3) [2.199], $P(4) - P(5)$ 2.191(3) [2.225], $P(4) - P(6)$ 2.195(5) [2.238], P(5)-P(6) 2.183(3) [2.214], P(1)-W-P(2) 179.29(5), $C(2)-W-P(3)$ 174.5(2), $C(1)-W-C(3)$ 171.9(3).

Figure 2. Molecular structure of **5a** (ellipsoids drawn at 30% probability level). Selected bond distances (Å) and angles (deg): $\dot{W} - P(2)$ 2.506(3), $W - P(1)$ 2.525(3), $W - C(1)$ 2.129(13), $W-C(2)$ 2.064(13), $W-C(3)$ 2.018(14), $W-C(4)$ 1.99(2), P(2)-W-P(1) 170.93(8), C(4)-W-C(2) 170.0(4), $C(3)-W-C(1)$ 177.9(5), $C(2)-W-C(1)$ 96.6(4).

Hz, reflect a relatively high s-character in the $P-P$ bonds of the P_4 tetrahedron. The third group of signals (PA) can be assigned to the phosphine phosphorus atoms and bears a set of satellites due to a WP-coupling. The spectra of **4a,b** reveal a doublet with a very small ${}^2J_{P(A)P(M)}$ of 11 and 20 Hz, respectively.

The molecular structure of the complex **5a** is shown in Figure 2. For the isostructural Mo complex **5b**, the X-ray structural analysis was also carried out.16 The cyclohexyl substituents are eclipsed with a slightly bent ^P-M-P axis. In contrast to this, the Cy groups in the P_4 -complex **4a** are staggered with an almost linear $P(2)-W-P(1)$ arrangement.

P(2)-W-P(1) arrangement. (13) Dunitz, J. D.; Maverick, E. F.; Trueblood, K. N. *Angew. Chem., Int Ed. Engl.* **1988**, *27*, 880.

⁽¹⁴⁾ Simon, A.; Borrmann, H.; Horakh, J. *Chem. Ber./Recueil* **1997**, *130*, 1235.

⁽¹⁵⁾ Abboud, J.-L. M.; Herreros, M.; Notario, R.; Esseffar, M.; Mo´, O.; Ya´n˜ ez, M. *J. Am. Chem. Soc.* **1996**, *118*, 1126.

⁽¹⁶⁾ Recently, Alyea et al. described the X-ray structure of the solvent-free Mo complex **5b**: Alyea, E. C.; Ferguson, G.; Kannan, S. *Acta Crystallogr. C* **1996**, *52*, 765.

Addition of the phosphaalkyne P \equiv CAr' (Ar' = C₆H₂- $Bu^t₃$ -2,4,6) to $[M(CO)₃(PCy₃)₂]$ (M = W, Mo) in hexane
produces an orange precipitate of $[M(CO)₂(PCy₃)₂/n¹]$ produces an orange precipitate of [M(CO)3(PCy3)2(*η*1- \overline{P} =CAr['])] (6a,b),¹⁷ which is insoluble in nonpolar solvents, but slightly soluble in toluene, CH_2Cl_2 , and THF. The mass spectrum of **6b** reveals the molecular ion, while **6a** shows significant fragmentation assignable to the free phosphaalkyne and the complex fragment $[W(CO)_{3}(PCy_{3})_{2}]^{+}$. ³¹P{¹H} NMR spectra of 6 reveal a doublet at *δ* 29.6 and 54.1 ppm, respectively, assigned to the two equivalent phosphine phosphorus atoms and a triplet at *δ* 24.4 and 57.0 ppm, respectively, due to the phosphorus atom of the η^1 -coordinated P=CAr', the two showing mutual PP-coupling of 25 and 31 Hz, respectively. In the X-ray structure analysis the poor quality of the very small crystals of **6a** led to significant residual electron density at the phosphine phosphorus atoms of the PCy₃ groups and hence did not allow the complete refinement of its structure. However, the position of all desired atoms could be determined and clearly reveals the monohapto coordination of $P=CAr'$ to the tungsten atom (d(W-PC) = 2.390(5) Å, d(P=C)) 1.54(2) Å, Figure 3). To the best of our knowledge **6a** is one of the very rare examples for the coordination chemistry of the "supermesityl" phosphaalkyne P≡CAr^{'10,18} and for a structurally characterized *η*¹ligated phosphaalkyne.3 ${}^{a}R = \sum |F_0| - |F_c||\sum |F_0|$. ${}^{b}wR_2 = [\sum \omega (F_0^2 - F_c^2)^2]/[\sum (F_0^2)^2]^{1/2}$; $\omega^{-1} = \sigma^2 (F_0^2) + a(P)^2 + bP$; $P = [F_0^2 + 2F_c^2]/3$.

In conclusion, the reactivity of $[M(CO)_3(PR_3)_2]$ toward Lewis-base, diminished by the steric influence of its bulky phosphine ligands, allows the smooth formation of complexes with unusual η ¹-coordination.

Figure 3. Molecular structure of **6a** (ellipsoids drawn at 30% probability level). Selected bond distances (Å) and angles (deg): W-P(1) 2.390(5), W-P(2) 2.523(5), W-P(3) 2.510(5), P(1)–C(4) 1.54(2), P(1)–W–P(3) 92.4(2), P(1)– $W-P(2)$ 91.5(2), P(3)-W-P(2) 175.1(2), C(4)-P(1)-W 179.3(7), $C(5)-C(4)-P(1)$ 178(2).

Experimental Section

General Comments. All reactions were performed under an Ar atmosphere using standard Schlenk techniques. Solvents were dried prior to use: toluene over Na/benzophenone, hexane over LiAlH4. Phosphaalkynes P \equiv CAr', ¹⁹ P \equiv CBu^{t 20} as well as the complexes $[M(CO)_3(PR_3)_2]$ (M = W, Mo; R = Cy, Prⁱ⁾¹¹ were prepared according to modified literature methods.

⁽¹⁷⁾ Furthermore the reaction of Bu^tC=P with $[W(CO)_3(PCy_3)_2]$ leads to a mixture of products inseparable by chromatography. The ^{31P{1}H} NMR studies reveal resonances indicating primary products with oligomerized phosphaalkynes. Within the resonances a doublet at *δ* 25.4 ppm and a triplet at *δ* 18.2 ppm with a small PP-coupling of 4.4 Hz appear, which can be assigned to the compound [W(CO)₃(PCy₃₎₂- $(\eta^1$ -P=CBu^t)] (6c).

⁽¹⁸⁾ Kramkowski, P.; Scheer, M. *J. Organomet. Chem.* **1998**, *553*, $511 - 516$.

⁽¹⁹⁾ Ma¨rkl, G.; Sejpka, H. *Tetrahedron Lett*. **1986**, *27*, 171. Seipka, H. Ph.D. Thesis, University of Regensburg, 1987.

⁽²⁰⁾ Ro¨sch, W.; Alspach, T.; Bergstra¨sser, U.; Regitz, M. In *Synthetic Methods of Organometallic and Inorganic Chemistry*; Herrmann, W. A., Ed.; Thieme Verlag: Stuttgart, 1996; p 13.

Synthesis of $[M(CO)_3(PR_3)_2(\eta^1-P_4)]$ **(4a-c).** To a solution of $[M(CO)₃(PR₃)₂]$ (M = W, R = Cy: 140 mg, 0.17 mmol) in toluene at -78 °C was added 1 equiv of P₄ (21 mg, 0.17 mmol) in toluene over a period of 30 min. On warming up to -20 °C the solution changed color from violet to green. On concentrating the solution in vacuo and storing it at -30 °C, orangeyellow crystalline product could be obtained. Solutions of **4a**-**^c** decompose above $0-5$ °C, whereas the crystalline solids are stable under argon at ambient temperature. **4a** (65% yield): ³¹P{¹H} NMR [101.26 MHz, 244 K, toluene- d_8 , A = P(1), P(2); $M = P(3); X = P(4), P(5), P(6)$: *δ* 26.5 (P_A) (d, 11 Hz, ¹*J*_{WP} 262 Hz), δ -422 (P_M) (q, ¹ J_{MX} 204 Hz, ² J_{AM} and ¹ J_{WP} not resolved); *δ* -473 (P_X) (d, ¹ J_{MX} 204 Hz). IR (KBr, cm⁻¹): 1951 s, 1922 w, 1836 vs [*ν* (CO)]. EI MS: *m*/*z* (%) = 952.6 (1) [M]⁺, 828.7 (1.5) [M-P4]+, 123.9 (74) [P4]. **4b** (58% yield): 1H NMR (250.13 MHz, 244 K, toluene-*d*₈): δ 1.12 (dd, 36H, *J*_{HH} 7.2 Hz, *J*_{PH} 12.9 Hz), *δ* 2.10 (sept, 6H, J_{HH} 7.2 Hz). ³¹P{¹H} NMR (101.26 MHz, 244 K, toluene-*d*8): *δ* 33.7 (PA) (d, ²*J*AM 20 Hz, ¹*J*WP 263.9 Hz), *^δ* -422.6 (PM) (q, ²*J*AM 20 Hz, ¹*J*MX 206 Hz,), *^δ* -476.9 (PX) (d, ¹*J*MX 206 Hz, ¹*J*WP not resolved). IR (KBr, cm-1): 1964 s, 1923 w, 1844 vs [ν (CO)]. EI MS: m/z (%) = 656.1 (5) [M - 2CO]⁺, 588.2 (50) [M - P4]+. **4c** (62% yield): 31P{1H} NMR (101.26 MHz, 244 K, toluene-*d*₈): *δ* 51.2 (P_A) (s), *δ* -400.2 (P_M) (q, ¹J_{MX}) 185 Hz), δ -480.0 (P_X) (d, ¹ J_{MX} 185 Hz). EI MS: m/z (%) = 742.4 (45) $[M - P_4]^{+}$.

Synthesis of $[M(CO)_3(PCy_3)_2(\eta^1 \cdot P \equiv \text{CAT}$ **^{*}** $)$ **] (6a,b).** To a solution of $[M(CO)_3(PCy_3)_2]$ (M = W: 166 mg, M = Mo: 148 mg, 0.2 mmol) in hexane at -20 °C was added an equimolar solution of $P=CAr'$ (58 mg, 0.2 mmol) in hexane dropwise over a period of 30 min. The violet solution changed color to bright red, and upon being warmed, a microcrystalline orange precipitate formed, which was filtered off, washed with hexane, and dried in vacuo (yields are about 76-85%). **6a**: ¹H NMR (250.13 MHz, 300 K, THF-*d*8): *^δ* 1.26-2.21 (m, 93H), *^δ* 7.35 (s, 2H). 31P{1H} NMR (101.26 MHz, 300 K, THF-*d*8): *δ* 24.4 (t, ²*J*PP 25 Hz, ¹*J*WP 280 Hz), *δ* 29.6 (d, ²*J*PP 25 Hz, ¹*J*WP 260 Hz). IR (KBr): 1975 w, 1965 s, 1859 vs cm⁻¹ [*ν* (CO)]. EI MS:
 m/z (%) = 828.75 (1) [M – PCAr']⁺, 288.2 (72) [PCAr']⁺. **6b**: *¹H NMR (250.13 MHz, 300 K, THF-* d_8 *):* δ *1.25-2.20 (m, 93H),*

 δ 7.42 (s, 2H). ³¹P{¹H} NMR (THF-*d*₈): δ 54.1 (d, ²*J*_{PP} 31 Hz), δ 57.0 (t, ²*J*_{PP} 31 Hz). IR (KBr): 1979 s, 1960 w, 1881 vs cm⁻¹ [*ν* (CO)]. EI MS: *m*/*z* (%) = 1030.56 (3) [M]⁺, 742.34 (12) [M – $PCAr'$ \vdash .

X-ray Structure Determination and Details of Refinement. Data were collected on a Stoe IPDS diffractometer using Mo Kα ($λ = 0.71069$ Å) radiation, no absorption corrections were performed. Machine parameters, crystal data, and data collection parameters are summarized in Table 1. The structures were solved by direct methods using SHELXS-8621a and a full-matrix-least-squares refinement on \mathbb{F}^2 in SHELXL-93^{21b} with anisotropic displacement for non-H atoms. Hydrogen atoms were placed in idealized positions and refined isotropically according to the riding model.

 $[W(CO)_3(PCy_3)_2(\eta^1-P\equiv CAr']$ (6a): C₅₈H₆₂O₃P₃W, *M* = 1083.83, crystal dimensions $0.2 \times 0.15 \times 0.03$ mm, triclinic, space group P1, unit cell parameters $a = 10.114(2), b = 16.904(3), c =$ 19.054(4) Å, $\alpha = 92.11(3)$, $\beta = 101.71(3)$, $\gamma = 97.69(3)$ °, $Z = 2$, $V = 3154.2(11)$ Å³, $T = 200(1)$ K, $D_c = 1.176$ mg m⁻³, μ (Mo K_0) $= 19.44 \text{ cm}^{-1}$, 14230 independent reflections ($2\theta_{\text{max}} = 56.66^{\circ}$), 8115 observed with $F_0 \geq 4\sigma$ (F_0); 296 parameter, $R_1 = 0.1584$, $wR_2 = 0.4074$. Only the W, P, and the C(4)-atom were refined anisotropically. Several attempts to receive crystals of better quality of **6a** and **6b**, respectively, remained unsuccessful.

Acknowledgment. The authors thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support.

Supporting Information Available: Complete tables of atomic coordinates, H-atom parameters, bond distances and anisotropic displacement parameters, and fully labeled figures for **4a**, **5a,b**, and **6a** (38 pages). Ordering information is given on any current masthead page.

OM9806794

^{(21) (}a) Sheldrick, G. M. *SHELXS-86*, University of Göttingen, 1986.
(b) Sheldrick, G. M. *SHELXL-93*, University of Göttingen, 1993.