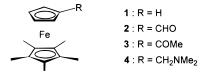
Cyclopentadienyl(pentamethylcyclopentadienyl)iron **Derivatives. A New and Highly Selective Synthesis**

Gerhard E. Herberich,* Andreas Gaffke,¹ and Hartmut J. Eckenrath


Institut für Anorganische Chemie, Technische Hochschule Aachen, D-52056 Aachen, Germany

Received August 19, 1998

Summary: $[Cp*Fe(AN)_3]PF_6$ (5) (AN = MeCN) reacts with alkali metal cyclopentadienides $M(C_5H_4R)$ (M = Li, Na; R = H, CHO, COMe, CH_2NMe_2) in acetonitrile at ambient temperature to produce the corresponding (known) pentamethylferrocenes $Cp^*Fe(C_5H_4R)$ (**1**-**4**) in high yields. The potential ligand scrambling products $Fe(C_5H_4R)_2$ and $FeCp^*_2$ are not formed. The new method should be widely applicable; the related syntheses of the boratabenzene complex $Cp*Fe(C_5H_5BMe)$ and of the phosphaferrocene Cp*Fe(C₄Me₄P) are pertinent examples.

Introduction

The sequential addition of two different cyclopentadienides to a metal center is an important synthetic problem in metallocene chemistry. This paper deals with one of the more prominent examples, the synthesis of cyclopentadienyl(pentamethylcyclopentadienyl)iron FeCpCp^{* 2} (1) and its derivatives.³

The parent compound **1** is efficiently made by the method of Manriquez via an intermediate pentane-2,4dionate [Cp*Fe(acac)]_x, which, in a second step, is treated with MCp (M = Li, Na).² We and others have observed that, depending on subtle details of the experimental conditions, some ligand scrambling takes place which results in the formation of ferrocene and decamethylferrocene as byproducts.³ Ligand scrambling may become dominant for weakly nucleophilic cyclopentadienides such as [C₅H₄CHO]^{-.4} Therefore the Manriquez method is not recommendable for the synthesis of, for example, the formyl and acetyl derivatives, $\mathbf{2}^4$ and $\mathbf{3}^3$, respectively.

We have developed a new and highly selective alternative for the preparation of pentamethylferrocene (1) and its derivatives such as the compounds 2-4.

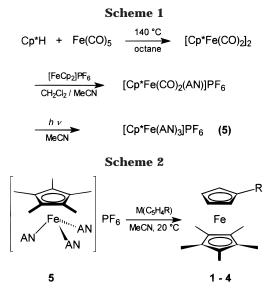
Results and Discussion

We use the robust salt $[Cp*Fe(AN)_3]PF_6^5$ (5) as starting material. This complex can be made in three steps (Scheme 1), commencing with the thermal reaction of Fe(CO)₅ with 1,2,3,4,5-pentamethylcyclopentadiene in octane to give [Cp*Fe(CO)₂]₂.⁶ Subsequent oxidation with $[FeCp_2]PF_6^7$ in acetonitrile affords $[Cp^*Fe(CO)_2$ -(AN)]PF₆,⁵ and exhaustive photochemical decarbonylation in acetonitrile finally produces the desired compound 5.⁵ We find that optimized large-scale preparations give 20 g lots of spectroscopically pure 5 with an overall yield of 82%.^{1,8} The material may be stored at ambient temperature over months but is rather sensitive in solvents other than acetonitrile.

When compound 5 is treated with alkali metal cyclopentadienides $M(C_5H_4R)$ (R = H, CHO,⁹ COMe,⁹ CH_2NMe_2) in acetonitrile at ambient temperature, the corresponding pentamethylferrocenes 1-4 are formed in high yields (Scheme 2). This is especially remarkable for the formyl compound 2^4 (92% isolated yield) and the acetyl derivative 3^3 (99%), where the Manriquez method requires careful chromatographic product separation and gives only moderate yields. Our method was also applied to the synthesis of the N,N-dimethylaminomethyl derivative 4, which has previously been made by aminomethylation of 1.3 The required cyclopentadienide $Na(C_5H_4CH_2NMe_2)$ (6) can readily be made from 6-(N,N-dimethylamino) fulvene¹⁰ (7) by hydride addition with NaBHEt₃ in toluene at -30 °C; the closely related reaction of 6,6-dimethylfulvene with LiAlH₄ to give isopropylcyclopentadienide is a long known reaction.¹¹ It should be noted, however, that the specified reaction conditions for the synthesis of 6 are critical; if the same hydride addition is attempted with NaBHEt₃ in THF or with LiAlH₄, the NMe₂ group is lost and methylcyclopentadienide is formed.

Our method is clearly advantageous in terms of efficiency and yield when complexes of weakly nucleophilic cyclopentadienides such as 2 and 3 are to be made. Other ligands that are akin to cyclopentadienides can also be linked to Cp*Fe fragments by this method. We have already published two pertinent examples. The reaction of 5 with Li(C₅H₅BMe) affords the boratabenzene complex Cp*Fe(C5H5BMe),12 and the reaction with

⁽¹⁾ Gaffke, A. Doctoral Dissertation, Technische Hochschule Aachen, Aachen, Germany, 1998.
(2) (a) Bunel, E. E.; Valle, L.; Manriquez, J. M. Organometallics


^{1985, 4, 1680. (}b) Manriquez, J. M.; Bunel, E. E.; Oelckers, B. Inorg. Synth. 1997, 31, 214.

⁽³⁾ Bildstein, B.; Hradsky, A.; Kopacka, H.; Malleier, R.; Ongania,
K.-H. J. Organomet. Chem. 1997, 540, 127.
(4) Calabrese, J. C.; Cheng, L.-T.; Green, J. C.; Marder, S. R.; Tam,

W. J. Am. Chem. Soc. 1991, 113, 7227.

⁽⁵⁾ Catheline, D.; Astruc, D. Organometallics **1984**, *3*, 1094. (6) (a) King, R. B.; Bisnette, M. B. J. Organomet. Chem. **1967**, *8*, 287. (b) Salzer, A.; Marko, I. In Synthetic Methods in Organometallic and Inorganic Chemistry; Herrmann W. A., Ed.; Thieme Verlag: Stuttgart, 1997; Vol. 8, p 68.

^{(7) (}a) Nesmeyanov, A. N.; Materikova, R. B.; Lyatifov, I. R.; Kurbanov, T. K.; Kochetkova, N. S. *J. Organomet. Chem.* **1978**, *145*, 241. (b) Preparation: Zybill, C. E. In *Synthetic Methods in Organo-*Wei (b) Hopfaction. Eysin, Eysin, Synthetic Methods in Organic Americanic Incompanic Chemistry, Hermann W. A., Ed.; Thieme Verlag: Stuttgart, 1997; Vol. 8, p 12. (c) Review: Connelly, N. G.; Geiger, W. E. Chem. Rev. 1996, 96, 877.
(8) Gaffke, A.; Eckenrath, H. J. Manuscript in preparation.

Li(C₄Me₄P) produces the phosphaferrocene Cp*Fe- $(C_4Me_4P).^{13}$

Experimental Section

General Procedures. Reactions were carried out under an atmosphere of dinitrogen by means of conventional Schlenk techniques. Hexane was distilled from potassium, CH2Cl2, and Et₂O from sodium benzophenone ketyl. Acetonitrile was filtered through a column with activated alumina and distilled under dinitrogen. NMR spectra were recorded on a Varian Unity 500 spectrometer (1H, 500 MHz;13C{1H}, 125.7 MHz) and a Bruker WM-250 (1H, 250 MHz; 13C, 62.9 MHz) spectrometer.

Preparation of Cp*FeCp (1). Solid 5 (2.66 g, 5.79 mmol) was added with stirring to a suspension of NaCp (0.52 g, 6.0 mmol) in acetonitrile (40 mL) at 0 °C. The temperature was allowed to rise to ambient temperature, and stirring was continued for 1 h. The solvent was removed under vacuum, and the resulting residue was carefully extracted with pentane. Filtration through alumina (10 cm layer on a frit) and removal of the solvent left 1 (1.42 g, 96%) as an orange crystalline solid. Data are as in ref 3 and in the literature quoted therein.

Preparation of Cp*Fe(C5H4CHO) (2). Reaction of 5 (24.1 g, 52.5 mmol) in acetonitrile (200 mL) with $Na(C_5H_4CHO)^9$ (6.1 g, 52.5 mmol) in acetonitrile (100 mL) and workup as described for 1 gave 2 (13.8 g, 92%) as a red solid, mp 62.5-63 °C (lit. red oil³).

Preparation of Cp*Fe(C₅H₄COMe) (3). Reaction of 5 (10.41 g, 22.7 mmol) in acetonitrile (100 mL) and $Na(C_5H_4-$ COMe)⁹ in acetonitrile (100 mL) at -30 °C and standard workup gave 3 (6.7 g, 99%) as a brownish red crystalline solid. Data are as in ref 3.

Synthesis of Na(C₅H₄CH₂NMe₂) (6) and Cp*Fe-(C₅H₄CH₂NMe₂) (4). (a) A solution of 7 (2.44 g, 20.1 mmol) in toluene (50 mL) was cooled with an efficient ice bath. NaBHEt₃ (22 mL, 1 M in toluene, Aldrich) was added slowly (10 min). The temperature was then allowed to rise to room temperature, and stirring was continued for 2 h. The solid formed was collected on a frit, washed several times with toluene, and thoroughly dried under high vacuum to give impure 6 (2.7 g, ca. 80% yield) as a pale yellow powder. This material contained mainly some BEt₃ (ca. 10%, NMR), presumably coordinated to the NMe₂ group, and was used as obtained.

¹H NMR (250 MHz, CD₃CN) δ 5.50 ("s", C₅H₄), 3.20 (s, CH₂), 2.09 (s. NMe₂).

(b) A suspension of **6** (1.62 g, 11.1 mmol) in acetonitrile (15 mL) was cooled to -30 °C and quickly combined with a saturated solution of 5 (5.11 g, 11.1 mmol) in acetonitrile. Workup as described for 3 gave a raw product, which was chromatographed on deactivated alumina using a pentane/ NEt₃ mixture (20/1) as eluent. Removal of the eluent left 4 (2.54 g, 73%) as a red-brown liquid. Data are as in ref 3.

Acknowledgment. This work was generously supported by the Deutsche Forschungsgemeinschaft and by the Fonds der Chemischen Industrie.

OM980708A

(9) (a) Hart, W. P.; Macomber, D. W.; Rausch, M. D. J. Am. Chem. Soc. 1980, 102, 1196. (b) Hart, W. P.; Macomber, D. W.; Rausch, M. D. Adv. Organomet. Chem. 1982, 21, 1.

(10) Meerwein, H.; Florian, W.; Schön, N.; Stopp, G. Liebigs Ann. Chem. 1961, 641, 2.

 (11) Knox, G. R.; Pauson, P. L. J. Chem. Soc. 1961, 4610.
 (12) Herberich, G. E.; Englert, U.; Ganter, B.; Lamertz, C. Organometallics 1996, 15, 5236.

(13) Herberich, G. E.; Ganter, B. Organometallics 1997, 16, 522.