Formation of $[Os_3(CO)_{10}(EPh_3)_2(\mu-Br)]^+$ (E = P, As) by Bromination: First Direct Evidence for the Bromonium Mechanism in Cluster Chemistry

Weng Kee Leong* and Yao Liu

Department of Chemistry, National University of Singapore, Kent Ridge, Singapore 119260

Received July 2, 1998

Summary: Bromination of the substituted triosmium clusters $Os_3(CO)_{10}(EPh_3)_2$ (E = P, As) yielded the cluster cations $[Os_3(CO)_{10}(EPh_3)_2(\mu-Br)]^+$, which crystallized as the $[Os(CO)_3Br_3]^-$ salts. The osmate anions were the result of nucleophilic attack of Br^- on the cluster cations.

Introduction

The mechanism by which triosmium clusters undergo halogenation reactions has been of recent interest. Essentially, the two major possibilities are via a radical mechanism¹ or a bromonium intermediate.² It has recently been shown that the reaction of Br⁺ with the parent carbonyl cluster Os₃(CO)₁₂ gave the bromonium cluster $[Os_3(CO)_{12}(\mu$ -Br)]⁺, and it was also demonstrated that this cluster was not the intermediate involved in the direct bromination reaction.³ In contrast, we have recently reported that the bromination of the substituted clusters Os₃(CO)₁₁(EPh₃) (E = P, Sb) gave two isomeric products, (Br)₂Os(CO)₃Os(CO)₄Os(CO)₄(EPh₃) and (Br)(OC)₄OsOs(CO)₄Os(CO)₃(Br)(EPh₃) and suggested that the intermediate was a bromonium cluster with a terminal Br atom.⁴

We now report that the direct bromination of Os_{3} -(CO)₁₀(EPh₃)₂ (E = P (**1a**), As (**1b**)) led, quite unexpectedly, to the isolation of stable bromonium cluster intermediates, $[Os_3(CO)_{10}(EPh_3)_2(\mu$ -Br)][Os(CO)₃Br₃] (**2**), thus providing the first direct evidence for the bromonium mechanism in the bromination of clusters.

Experimental Section

General Procedures. All reactions and manipulations were performed under a nitrogen atmosphere by using standard Schlenk techniques. Solvents were purified, dried, distilled, and kept under nitrogen prior to use. NMR spectra were recorded on a Bruker ACF300 300 MHz NMR spectrometer. Microanalyses were carried out by the microanalytical laboratory at the National University of Singapore. The clusters Os₃-(CO)₁₀(EPh₃) (E = P (**1a**), As (**1b**)) were prepared by the reaction of Os₃(CO)₁₀(CH₃CN)₂ with PPh₃ and AsPh₃, respectively;⁵ all other reagents were from commercial sources and used as supplied.

Bromination of Os₃(CO)₁₀(AsPh₃)₂ (1b). To a solution of 1b (190 mg, 0.130 mmol) in CH₂Cl₂ (30 mL), maintained in a

(3) Nagra, H. K.; Batchelor, R. J.; Bennet, A. J.; Einstein, F. W. B.; Lathioor, E. C.; Pomeroy, R. K.; Wang, W. *J. Am. Chem. Soc.* **1996**, *118*, 1207.

Table 1. Crystal and Refinement Data for
$[Os_3(CO)_{10}(PPh_3)_2(\mu-Br)][Os(CO)_3Br_3]\cdot 2CH_2Br_2$ (2a)
and [Os ₃ (CO) ₁₀ (AsPh ₃) ₂ (µ-Br)][Os(CO) ₃ Br ₃]·2CH ₂ Br ₂
(2b)

	2a	2b
formula	C ₅₁ H ₃₄ Br ₈ O ₁₃ Os ₄ P ₂	C ₅₁ H ₃₄ As ₂ Br ₈ -
		$O_{13}Os_4$
fw	2316.80	2404.70
cryst syst	triclinic	triclinic
space group	$P\bar{1}$	$P\overline{1}$
a, Å	12.7278(1)	12.8242(4)
b, Å	15.6244(1)	15.7024(5)
<i>c</i> , Å	17.7522(1)	17.9569(6)
α, deg	80.5383(2)	80.4290(8)
β , deg	70.7213(3)	70.6163(9)
γ , deg	72.7831(2)	72.7826(3)
V, Å ³	3174.28(4)	3248.9(2)
Z	2	2
$D(\text{calcd}), \text{ g cm}^{-3}$	2.424	2.458
μ (Mo K α), cm ⁻¹	13.121	13.781
F(000)	2116	2188
cryst size, mm	$0.35 \times 0.17 \times 0.10$	$0.30\times0.10\times0.08$
θ range, deg	1.76 - 29.51	1.21 - 28.50
no. of rflns collected	26 849	16 864
no. of indep rflns	15 313	12 835
no. of data/restraints/	15 313/46/728	12 835/6/708
params		
goodness of fit on F^2	1.012	0.955
final R indices	R1 = 0.0525	R1 = 0.0552
$(I > 2\sigma(I))$		
	wR2 = 0.1059	wR2 = 0.1206
R indices (all data)	R1 = 0.1036	R1 = 0.1112
	wR2 = 0.1304	wR2 = 0.1441
largest diff peak	1.646 and -2.053	1.722 and -2.059
and hole, e Å ⁻³		

-30 °C bath, was added Br₂ (1.7 mL of an 1/100 v/v solution in CH₂Cl₂, 0.29 mmol). The mixture was stirred for $^{1}\!/_{2}$ h and then concentrated to ~ 20 mL. Addition of hexane (~ 20 mL) resulted in precipitation of a yellow solid. Recrystallization from CH₂Br₂/hexane at -15 °C afforded yellow crystalline [Os₃-(CO)₁₀(AsPh₃)₂(μ -Br)][Os(CO)₃Br₃] (**2b**; 118 mg, 45%). IR (ν -(CO), CH₂Cl₂): 2121 (m), 2110 (w), 2087 (w), 2071 (m), 2039 (vs), 2017 (m) cm⁻¹. Anal. Calcd for C₄₉H₃₀As₂Br₄O₁₃Os₄: C, 28.61; H, 1.47. Found: C, 28.49; H, 1.67.

Bromination of Os₃ **(CO)** $_{10}$ **(PPh**₃)₂ **(1a)**. An analogous reaction with **1a** (80 mg, 0.058 mmol) afforded yellow crystalline [Os₃(CO)₁₀(PPh₃)₂(μ-Br)][Os(CO)₃Br₃] **(2a**; 40.7 mg, 36%). IR (ν(CO), CH₂Cl₂): 2120 (m), 2111 (w), 2086 (w), 2069 (m), 2039 (vs), 2017 (m) cm⁻¹. ³¹P{¹H} (CDCl₃): δ -5.86 (s). Anal. Calcd for C₄₉H₃₀Br₄O₁₃Os₄P₂: C, 29.88; H, 1.52. Found: C, 29.57; H, 1.13.

Crystal Structure Determination of 2a and 2b. The crystals, grown by slow cooling of a CH_2Br_2 /hexane solution, were sealed in glass capillaries with a small amount of the supernatant. Crystal data and structure refinement details are given in Table 1. The intensities were measured on a Siemens SMART diffractometer, equipped with a CCD detector, using Mo K α radiation ($\lambda = 0.710$ 73 Å) at 295 K. The data were

⁽¹⁾ Chen, Y.-S.; Wang, S.-L.; Jacobson, R. A.; Angelici, R. J. Inorg. Chem. 1986, 25, 1118.

⁽²⁾ Sanati, H.; Becalska, A.; Ma, A. K.; Pomeroy, R. K. J. Chem. Soc., Chem. Commun. 1990, 197.

⁽⁴⁾ Liu, Y.; Leong, W. K.; Pomeroy, R. K. Organometallics 1998, 17, 3387.

⁽⁵⁾ Johnson, B. F. G.; Lewis, J.; Pippard, D. A. J. Chem. Soc., Dalton Trans. 1981, 407.

Table 2. Selected Bond Lengths (Å) and Bond

Figure 1. ORTEP diagram of the molecular structure of the cluster cation in 2a.

corrected for absorption effects with SADABS (G. M. Sheldrick, 1996). The final unit cell parameters were obtained by least squares on 8192 (for 2a) or 7015 (for 2b) strong reflections. Structural solution and refinement were carried out with the SHELXTL suite of programs (Siemens Energy & Automation Inc., Madison, WI). The structures were solved by direct methods to locate the heavy atoms, followed by difference maps for the light, non-hydrogen atoms. Two molecules of solvent of crystallization (CH₂Br₂) in the asymmetric unit were found, one of which was disordered. Details on the modeling of the disorder are given in the Supporting Information. All the hydrogen atoms were placed in calculated positions. All nonhydrogen atoms were given anisotropic displacement parameters in the final refinement. Refinements were on $\Sigma [w(F_0^2 F_{\rm c}^2$ ²]. Atomic coordinates are given in the Supporting Information; selected bond lengths and angles are listed in Table 2.

Results and Discussion

When bromine was added to a dichloromethane solution of the disubstituted triosmium clusters Os₃- $(CO)_{10}(EPh_3)_2$ (E = P (**1a**), As (**1b**)), the initial yellow mixture faded to a pale yellow, from which the clusters $[Os_3(CO)_{10}(EPh_3)_2(\mu-Br)][Os(CO)_3Br_3]$ (2) could be isolated. Compounds 2a and 2b are isomorphic and isostructural, and they are only the third examples of structurally characterized halonium ions of carbonyl clusters. The X-ray crystal structure of the cluster cation in **2a** (Figure 1) shows that the osmium–osmium edge carrying the two group 15 substituents has been cleaved (Os(1)...Os(2) distances of 4.038(5) and 4.027(7) Å for

Figure 2. ${}^{31}P{}^{1}H$ NMR spectra at $-80 \degree C$ of (a) $Os_3(CO)_{10}$ - $(PPh_3)_2$, (b) $Os_3(CO)_{10}(PPh_3)_2 + Br_2$ (0.3 equiv) at -50 °C, (c) $Os_3(CO)_{10}(PPh_3)_2 + Br_2$ (0.5 equiv) at -50 °C, (d) Os_3 - $(CO)_{10}(PPh_3)_2 + Br_2$ (1.0 equiv) at -50 °C, and (e) $[Os_3 (CO)_{10}(EPh_3)_2(\mu-Br)[Os(CO)_3Br_3] + [Et_4N]Br (1.0 equiv) at$ room temperature (peak 1, trans, trans-1a; peak 2, cis, trans-1a; peak 3, cis, trans-2a; peak 4, cis, cis-2a).

2a and 2b, respectively) to form an open bromoniumbridged compound. Their structures are similar to that of the earlier reported $[Os_3(CO)_{12}(\mu-Br)]^+$, and they may thus be viewed as group 15 substituted derivatives of the latter cluster cation.³

We have followed the course of formation of 2a by both ³¹P{¹H} NMR and IR spectroscopy (Figures 2 and 3, respectively). Data obtained at or near room temperature suggested that the initial product was the bro-

Figure 3. IR spectra $(2200-1900 \text{ cm}^{-1} \text{ region})$ of (a) Os₃-(CO)₁₀(PPh₃)₂, (b) Os₃(CO)₁₀(PPh₃)₂ + Br₂ (0.5 equiv), (c) Os₃(CO)₁₀(PPh₃)₂ + Br₂ (1.0 equiv), and (d) Os₃(CO)₁₀-(PPh₃)₂ + Br₂ (3.0 equiv) after stirring for 3 h. The asterisks indicate the absorption band positions expected for *fac*-[Os-(CO)₃Br₃]⁻.⁶

monium cluster cation $[Os_3(CO)_{10}(PPh_3)_2(Br)]^+$, but monitoring of the reaction at -50 °C by ${}^{31}P{}^{1}H$ NMR spectroscopy (at -80 °C) indicated the formation of another species prior to the formation of 2a. The situation was complicated by the presence of isomers in 1a;⁷ three signals were observed in its ³¹P{¹H} NMR spectrum taken at -80 °C-a resonance at -1.91 ppm (peak 1 in Figure 2) assigned to the isomer in which the two PPh₃ ligands are *trans* to the Os–Os edge carrying the two phosphines (*trans, trans*-1), and two resonances of equal intensities at -2.50 and -5.64 ppm (peaks 2 in Figure 2) assigned to the isomer in which the PPh₃ ligands are *cis* and *trans* to this Os–Os edge (*cis,trans*-1a). The ${}^{31}P{}^{1}H{}$ NMR spectra, however, clearly showed that bromination of **1a** at ca. -50 °C gave rise initially to three new signals; the two with the same intensities (peaks 3 in Figure 2) later collapsed while the third signal (peak 4 in Figure 2), corresponding to the bromonium cluster cation, grew. One explanation for this observation is that outlined in Scheme

1; i.e., there is an isomerization step involved in the formation of **2a**. This is consistent with the fact that, in **2a**, the two phosphine ligands are *cis* to the bromine, while in neither of the two isomers of **1a** are the phosphines arranged in that relative stereochemistry.

We were able to verify that **2a** did not react directly with bromine, but it reacted fairly rapidly with Et_4NBr at room temperature to give a similar mixture of products as in the reaction of **1** with excess Br_2 . Interestingly, the spectroscopic evidence showed that the expected initial product from this reaction, the trimetallic chain compound $Os_3(CO)_{10}(PPh_3)_2Br_2$ obtained by Angelici et al. from the reaction of $Os_3(CO)_{12}$ - Br_2 with PPh₃,¹ was not formed. Instead, it appears that the attack of Br^- on the cationic bromonium cluster led to rapid cluster fragmentation.

As mentioned earlier, it has been demonstrated that the bromination of $Os_3(CO)_{12}$ did not proceed via the bromonium cluster $[Os_3(CO)_{12}(\mu\text{-Br})]^+$, which was isolated from the reaction of $Os_3(CO)_{12}$ with $Br^{+,3}$ while the bromination of $Os_3(CO)_{11}(PPh_3)$ gave products which suggested a bromonium cluster intermediate, the structure of which has not been confirmed.⁴ The isolation and characterization of the compounds **2** here therefore constitute the first direct verification for the bromonium mechanism in the bromination of clusters. Bromine attacks, in a very specific manner, the most electronrich osmium–osmium bond, similar to what occurs in alkenes.⁸

Acknowledgment. This work was supported by the National University of Singapore (Research Grant No. RP 960677), and Y.L. thanks the University for a Research Scholarship.

Supporting Information Available: Text giving details about the X-ray experiments and refinement and tables of crystal data and structure refinement details, atomic coordinates, bond lengths and angles, anisotropic displacement parameters, and hydrogen atom coordinates for **2a** and **2b** (27 pages). Ordering information is given on any current masthead page.

OM980557B

⁽⁶⁾ Johannsen, F. H.; Preetz, W. J. Organomet. Chem. **1978**, 104, 79.

⁽⁷⁾ Deeming, A. J.; Donova-Mtunzi, S.; Kabir, S. E.; Manning, P. J. *J. Chem. Soc., Dalton Trans.* **1985**, 1037. (b) Alex, R. F.; Pomeroy, R. K. *Organometallics* **1987**, *6*, 2437.

⁽⁸⁾ See for example: House, H. O. *Modern Synthetic Reactions*, 2nd ed.; Benjamin/Cummings: London, 1972; Chapter 8.