Conversion of CS2 to Thioaldehyde at a Single Iron Center

Natalie L. Cromhout,† John F. Gallagher,‡ Anthony R. Manning,*,† and Alexander Paul†,§

Department of Chemistry, University College Dublin, Dublin 4, Ireland, School of Chemical Sciences, Dublin City University, Dublin 9, Ireland, and Department of Chemistry, Universita¨*t Hamburg, Martin-Luther-King Platz 6, 20146, Hamburg, Germany*

Received January 4, 1999

Summary: UV-irradiation of the thiocarbonyl complex $Fe(CO)_2(CS){P(OPh)_3}_2$, prepared from $Fe(CO)_2(CS_2)$ -{*P(OPh)3*}*2, affords the unstable thioaldehyde complex Fe(CO)2*{*P(OPh)3*}{*(PhO)2P(OC6H4)C(H)S*}*, which reacts with P(OPh)₃ to give Fe(CO)*{*P(OPh)₃}*₂{*(PhO)*₂*P(OC₆H₄)*-*C(H)S*}*, the crystal structure of which reveals an η2(C,S) bonded thioaldehyde group formally derived from insertion of the thiocarbonyl C atom into an ortho C*-*H bond of an axially bound P(OPh)3 phenyl group.*

Transition metal complexes containing sulfur are of interest both as potential analogues of intermediates involved in catalytic $CO/H₂$ chemistry¹ and because sulfur is a potent poison of many of these catalytic systems.² Metal-mediated reduction of CS_2 to H_2CS has been demonstrated in only a few cases,³ and examples of reduction with concomitant C-C bond formation are also rare.4 In this preliminary communication we report the stepwise conversion of $CS₂$ to thioaldehyde at a metal center.

Photolysis of the tricarbonyl complex $Fe(CO)₃$ - ${P(OPh)_3}_2$ (1) to give the orthometalated iron-hydride derivative $HFe(CO)_2{P(OPh)_3}{(PhO)_2P(OC_6H_4)}$ and subsequent reaction with CS_2 is one^{5a} of a number of routes to $Fe(CO)_2(\eta^2$ -CS₂){P(OPh)₃}₂ (2)⁵ (Scheme 1). Solutions of **2** in acetonitrile or similar donor solvents have been shown to react with PBu₃ to afford the thiocarbonyl derivative $Fe(CO)_2(CS){P(OPh)_3}_2$ (3) (ca. 85%) by sulfur abstraction and $Fe(CO)₂(\eta^2-CS_2)(PBu_3)₂$ (ca. 15%) by ligand exchange (Scheme 2).6 In view of the preferential labilization of CO compared to CS upon UV-irradiation,7 it was anticipated that photolysis of **3** would follow the same course as that of **1**, i.e. loss of

- (2) Bartholomew, C. H.; Agrawal, P. K.; Katzer, J. R. *Adv. Catal.* **1982**, *31*, 135. Barbier, J.; Lamy-Pitara, E.; Marecot, P.; Boitiaux, J. P.; Cosyns, J.; Verna, F. *Adv. Catal.* **1990**, *37*, 279.
- (3) Collins, T. J.; Roper, W. R. *J. Organomet. Chem.* **1978**, *159*, 73. Adams, R. D.; Golembeski, N. M.; Selegue, J. P. *J. Am. Chem. Soc.* **1981**, *103*, 546.
- (4) Martin, A.; Mays, M. J.; Raithby, P. R.; Solans, G. A. *J. Chem. Soc., Dalton Trans.* **1993**, 1789. Alvarez, B.; Garcia´-Granda, S.; Li, J.;

CO and orthometalation to afford $HFe(CO)(CS){P-}$ $(OPh)_3$ }{(PhO)₂P(OC₆H₄)}. Instead the reaction proceeded with retention of both CO ligands (v_{CO} 2014 and 1955 cm-¹ vs 1995 and 1936 cm-¹ in **3**) and the disappearance of the strong CS absorption band at 1266 cm-1. A single reaction product, **4**, was isolated as an orange-brown oily solid.8 Slow crystallization of **4**, however, afforded in low yield yellow crystals of a new compound, **5**, which exhibited only one *ν*(CO) absorption band at 1951 cm^{-1} in the IR spectrum. This compound was analyzed by X-ray diffraction, and its molecular structure is shown in Figure 1.9

It reveals that **5** contains a bidentate ligand comprising a thioaldehyde moiety RCHS formally derived from insertion of the thiocarbonyl C atom of **3** into an ortho C-H bond of an axially bound $P(OPh)$ ₃ phenyl group. The CS of the thioaldehyde group is bonded to the Fe center in the $\eta^2(C,S)$ coordination mode and is essentially coplanar with the CO group and the phosphorus atom of a second $P(OPh)$ ₃ ligand. The remaining

[†] University College Dublin.

[‡] Dublin City University.

[§] Universität Hamburg.

⁽¹⁾ Stiefel, E. I.; Matasumoto, K. *Transition Metal Sulfur Chemistry, Biological and Industrial Significance*; American Chemical Society: Washington, DC, 1996.

Miguel, D.; Riera, V. *Organometallics* **1994**, *13*, 16. (5) (a) Grant S.; Manning, A. R. *J. Chem. Soc., Dalton Trans.* **1979**, 1789. (b) Baird, M. C.; Hartwell, G., Jr.; Wilkinson, G. *J. Chem. Soc. (A)* **1967**, 2037. Le Bozec, H.; Dixneuf, P. H.; Carty, A. J.; Taylor, N. J.

Inorg. Chem. **1978**, *17*, 2568. (6) Barrow, M.; Cromhout, N. L.; Cunningham, D.; Manning, A. R.; McArdle, P.; Renze, J. *J. Organomet. Chem.* **1998**, *563*, 201.

⁽⁷⁾ Angelici, R. J.; Dunker, J. W. *Inorg. Chem.* **1985**, *24*, 2209.

⁽⁸⁾ Synthesis of **4**: A stirred solution of **3** (500 mg, 0.64 mmol) in toluene (50 mL) was cooled in an ice-water bath and irradiated with a 125 W mercury-vapor lamp until the starting material was consumed (typically $2-3$ h) as determined by IR spectroscopy. The solvent volume (typically 2-3 h) as determined by IR spectroscopy. The solvent volume was reduced, and the residue was chromatographed on alumina (30 × 2.5 cm). An orange-brown band was eluted with toluene and concentrated to afford **4** as an oily solid (304 mg).

⁽⁹⁾ Single crystals of 5 were obtained from acetonitrile solution.
Crystallographic data: Chemical formula $C_{56}H_{45}FeO_{10}P_3S$, molecular
weight 1058.74, triclinic, space group \overline{PI} (No. 2), $a = 11.3305(15)$ Å, b cm⁻³, *F*(000) = 1096, μ = 4.91 cm⁻¹, 9439 reflections from 2 to 25.5°, 5274 unique (with *I* > 2*σJ*), *R*-factor is 0.0546, GoF = 0.93, wR_2 = 0.117 (based on *F*² for all reflections), final A-man is -0.32 0.117 (based on F^2 for all reflections), final ∆-map is -0.32 to $+0.30$ e $\mathbf{\tilde{A}}^{-3}$

Figure 1. Molecular structure of **5**. Selected bond lengths (A) and angles (deg): Fe1-P1, 2.1468(11); Fe1-P2, 2.1255- (11) ; Fe1-P3, 2.1696(11); Fe1-S1, 2.2760(11); Fe1-C1, 2.076(4); Fe1-C2, 1.758(4); S1-C1, 1.752(4); O2-C2, 1.161(4); C1-C11, 1.470(5); C1-H1, 0.95(3); P1-Fe1-P3, 165.70(4); P2-Fe1-C1, 87.48(10); P2-Fe1-C2, 106.61(12); $S1-Fe1-C1, 47.21(10); S1-Fe1-C2, 118.50(12); S1-C1-$ H1, 112.1(17); C11-C1-H1, 111.5(17).

coordination site is occupied by a third $P(OPh)$ ₃ ligand such that the overall geometry about the metal center may be described as distorted trigonal bipyramidal.

Although the $P(OPh)_{2} \{OC_6H_4C(H)S\}$ ligand has not previously been reported, mononuclear compounds containing *η*2-thioaldehydes RCHS have been structurally characterized for $R = H$,¹⁰ Me,¹¹ and Ph.¹² As observed in the complexes of these thioaldehydes, 10^{-12} the CS bond length of 1.752(4) Å in **5** is intermediate between that of a typical C-S single bond $(1.80-1.82 \text{ Å})$ and that found for the $C=S$ double bond in organic thiocarbonyls (ca. 1.60 Å).13

The solution-state spectroscopic data for **5**¹⁴ are in accordance with the solid-state structure. The *η*2(C,S) coordination mode is confirmed by the high-field shifts of both the 1 H and the 13 C NMR signals of the CHS

(13) Orpen, A. G.; Brammer, L.; Allen, F. H.; Kennard, O.; Watson, D. G.; Taylor, R. In *Structure Correlation, Vol. 2*; Bürgi, H.-B., Dunitz,

group (δ 4.73 and 50.0, respectively); in η ¹(S)-coordinated thioaldehyde ligands the 13C NMR signals are substantially deshielded at ca. *δ* 200.15 The strongly trans-coupled nuclei P1 and P3 appear as the AB portion of an ABX spin system in the 31P{1H} NMR spectrum. The signal at δ 140.2 is assigned to P1 in view of the expected shift to higher field for $31P$ in a sixmembered chelate ring.16 A doublet of doublets at *δ* 165.9 exhibiting small cis couplings is assigned to P2.

Since 5 may also be obtained in good yield¹⁷ by refluxing solutions of 4 with $P(OPh)_{3}$, we propose that **4** is the dicarbonyl intermediate $Fe(CO)_{2} \{P(OPh)_{3}\} {(PhO)_2P(OC_6H_4)C(H)S}^{18}$ and suggest Scheme 3 to account for its formation. The first step in this mechanism is analogous to the established reactivity of the tricarbonyl complex **1** on UV-irradiation (see above), and the subsequent steps have precedent in the work of Roper et al., who have demonstrated the particular facility with which CS undergoes migratory-insertion reactions.19 In the absence of added phosphite, slow decomposition of **4** affords free $P(OPh)_{3}$, which converts the remaining **4** to 5: the ${}^{31}P{^1H}$ NMR spectrum of a freshly prepared sample of **4** exhibits an AB pattern $(^{2}J_{\rm PP} = 455$ Hz) the intensity of which decreases over a period of days with the formation of free $P(OPh)$ ₃ (δ 128.8) and the appearance of resonances attributable to **5**. When the photolysis of the thiocarbonyl **3** is repeated in the presence of $P(OPh)_{3}$, then 5 is formed exclusively.

Whereas 4 reacts with added $P(OPh)_{3}$ to substitute CO (Scheme 4), in the presence of the strong donor ligand PMe₃, 4 undergoes rapid substitution of $P(OPh)_{3}$ to afford the dicarbonyl $Fe(CO)_2(PMe_3){P(OC_6H_4)}$ -C(H)S} (**6**).20 This reactivity presumably derives from

(17) A solution of **3** (825 mg, 1.06 mmol) in toluene (50 mL) was photolyzed as described in ref $\overline{8}$. A 2-fold excess of the ligand P(OPh)₃ was then added, and the mixture was heated to reflux for 3 h. The solvent volume was reduced and the residue chromatographed on alumina (30 \times 2.5 cm). A bright yellow band was eluted with toluene;

recrystallization from toluene/hexane afforded **5** (586 mg, 52%).
(18) IR (CH₂Cl₂) *ν*(CO) 2014 (s), 1955 (vs) cm⁻¹. ¹H NMR (270 MHz, CDCl₃) 7.71-6.50 (m, 29H, Ph), 4.87 (dd, 1H, ³*J*_{HP} = 6.1, 3.8 Hz, C*HS*); ¹³C{¹H} NMR (67.9 MHz, CDCl₃) 212.6 (3-line pattern, *J* = 29.0 Hz, *CO*), 210.2 (dd, ²*J*_{CP} = 45.2, 40.1 Hz, *CO*), 153.6-120.0 (*C*O), 210.2 (dd, ²*J*_{CP} = 45.2, 40.1 Hz, *C*O), 153.6-120.0 (Ph), 52.7 (3-
line pattern, *J* = 11.1 Hz, *C*HS); ³¹P{¹H} NMR (109 MHz, CDCl₃) 158.3
(d, ²*J*_{pp} = 454.7 Hz, P), 148.2 (d, ²*J*_{pp} = 454.7 Hz,

(d, ²J_{PP} = 454.7 Hz, P), 148.2 (d, ²J_{PP} = 454.7 Hz, P-thioaldehyde).
(19) Clark, G. R.; Collins, T. J.; Hall, D.; James, S. M.; Roper, W. R.
J. Organomet. Chem. **1977**, *141*, C5. Clark, G. R.; Collins, T. J.; M

⁽¹⁰⁾ $[(\eta^5-C_5H_5)Re(NO)(PPh_3)(\eta^2-H_2C=S)][PF_6]$, $d(C-S) = 1.742(9)$ Å: Buhro, W. E.; Etter, M. C.; Georgiou, S.; Gladysz, J. A.; McCormick,
F. B. *Organometallics* **1987**, *6*, 1150. (η⁵-C₅H₅)₂Ti(η²-H₂C=S)(PMe₃), *d*(C-S) = 1.744(3) Å: Park, J. W.; Henling, L. M.; Schaefer, W. P.;
Grubbs, R. H. *Organometallics* **1990**, *9*, 1650.
(11) (η^{5-} C₅H5)2Zr{*n*²-MeC(H)=S}(PMe₃), *d*(C-S) = 1.785(11) Å,
1.739(13) Å: Buchwald S. L.

^{1.739(13)} Å: Buchwald, S. L.; Nielsen, R. B.; Dewan, J. C. *J. Am. Chem. Soc.* **1987**, *109*, 1590.

⁽¹²⁾ $(Et_2NCS_2)(Et_2NCS)W(CO){\eta^2-PhC(H)=S}$: Mayr, A.; McDermott, G. A.; Dorries, A. M.; Holder, A. K.; Fultz, W. C.; Rheingold, A. L. *J. Am. Chem. Soc.* **1986**, *108*, 310. [(*η*⁵-C₅H₅)Re(NO)(PPh₃){*η*²-PhC-(H)=S}][PF₆], *d*(C-S) = 1.70(1) Å: Schenk, W. A.; Burzlaff, N.;
Burzlaff, H. *Z. Naturforsch*, **1994**, 49b, 1633. Burzlaff, H. *Z. Naturforsch.* **1994**, *49b*, 1633.

J. D., Eds.; VCH Publ.: Weinheim, Germany, 1994.

(14) Mp 147 °C (dec). Anal. Calcd for C₅₀H₄₅FeO₁₀P₃S: C, 63.52; H, 4.28; S, 3.03. Found: C, 63.32; H, 4.42; S, 3.17. IR (KBr) ν (CO) 1951

em⁻¹. ¹H NMR (270 1H, CHS); ¹³C{¹H} NMR (67.9 MHz, CDCl₃) 211.5 (m, *C*O), 153.2-
120.5 (Ph), 50.0 (m, *C*HS); ³¹P{¹H} NMR (109 MHz, CDCl₃) 165.9 (dd, 120.5 (Ph), 50.0 (m, *C*HS); ³¹P{¹H} NMR (109 MHz, CDCl₃) 165.9 (dd, ${}^2J_{\text{PP}} = 97.7$, 82.4 Hz, P2), 151.9 (dd, ${}^2J_{\text{P3P1}} = 450.0$ Hz, ${}^2J_{\text{P3P2}} = 82.4$ Hz, P3), 140.2 (dd, ${}^2J_{\text{P1P3}} = 450.0$ Hz, 2J

⁽¹⁵⁾ Schenk, W. A.; Stur, T.; Dombrowski, E. *Inorg. Chem.* **1992**, *31*, 723. Schenk, W. A.; Stur, T.; Dombrowski, E. *J. Organomet. Chem.* **1994**, *472*, 257.

⁽¹⁶⁾ Garrou, P. E. *Chem. Rev.* **1981**, *81*, 229.

the strongly electron-withdrawing nature of the *η*2 thioaldehyde ligand (reflected in the length of the CS bond in **5**) and consequent electron deficiency of the metal center {evidenced by the high *ν*(CO) frequencies of both **4** and **5**}. Treatment of **4** with 1,2-bis(diphenylphosphino)ethane (dppe) affords the complex Fe(CO)- (*η*2-dppe){(PhO)2P(OC6H4)C(H)S} (**7**)21 as a 9:1 mixture of isomers (Scheme 4). By analogy with the structure of **5** we propose **7a** as the major isomer. The reaction of **4** with *p*-tolylisocyanide similarly affords a mixture of

isomers $Fe(CO)(p\text{-}CNC_6H_4Me)_2\{(PhO)_2P(OC_6H_4)C(H)S\}$ (**8**)22 (Scheme 4) but in approximately 4:3 ratio.

In summary, this work describes a facile two-step conversion of coordinated CS_2 via CS to an unusual bidentate thioaldehyde ligand and provides a contrast of the reactivity of the thiocarbonyl complex $Fe(CO)₂$ - (CS) {P(OPh)₃}₂ with that of its oxygenate analogue Fe- $(CO)_{3}$ {P(OPh)₃}₂. Further efforts are directed at exploring the scope of these reactions.

Acknowledgment. J.F.G. thanks Dublin City University and Forbairt for funding a research visit to the University of Guelph (1998) and especially Professor George Ferguson for use of his diffractometer and computer system. A.P. thanks the Erasmus Student Exchange Programme for funding.

Supporting Information Available: Tables of crystallographic data for **5**. This material is available free of charge via the Internet at http://pubs.acs.org.

OM9900014

(dd, ² J_{PbPa} = 274.7 Hz, ² J_{PbPc} = 28.3 Hz, P_b).
(22) Compound **8** was prepared analogously to 5 by 2 h reflux of 4 with excess $p\text{-CNC}_6H_4\text{Me}$. Yield 18%. Mp 133–134 °C (dec). Anal. Calcd for C₃₆H₂ 63.93; H, 4.45; N, 3.90; S, 4.94. IR (KBr) *ν*(CN) 2144 (s), 2096 (vs); *ν*(CO) 1948 (br vs) cm⁻¹. ¹H NMR (270 MHz, CDCl₃) major isomer, 7.58–6.61 (m, Ph), 4.80 (d, 1H, ³*J*_{HP} = 3.1 Hz, C*H*S), 2.40 (s, 3H, C*H*₃),
2.35 (s, 3H, C*H*₃); minor isomer, 7.58–6.61 (m, Ph), 4.88 (d, 1H, ³*J*_{HP}
= 3.7 Hz, C*H*S), 2.34 (s, 3H, C*H*₂), 2.28 (s, 3H, C*H* $=$ 3.7 Hz, C*H*S), 2.34 (s, 3H, C*H*₃), 2.28 (s, 3H, C*H*₃); ¹³C{¹H} NMR (67.9 MHz, CDCl₃) major isomer, 213.1 (d, ²*J*_{CP} = 40.9 Hz, *CO*), *CN* not detected, 152.2–117.2 (Ph), 48.0 (d²*J_{CP}* = 11.9 Hz, not detected, 152.2–117.2 (Ph), 48.0 (d, ²*J*_{CP} = 11.9 Hz, *C*HS), 21.6
(br s, 2 H *C*H₃); minor isomer, 214.8 (d, ²*J*_{CP} = 35.8 Hz, *C*O), *CN* not
detected, 152.2–117.2 (Ph), 49.4 (d, ²*J*_{CP} = 11.9 Hz, *C* detected, 152.2–117.2 (Ph), 49.4 (d, ²*J*_{CP} = 11.9 Hz, *C*HS), 21.5 (br s, 2H *C*H₃); ³¹P{¹H} NMR (109 MHz, CDCl₃) major isomer, 162.5 (s); minor isomer, 165.2 (s).

⁽²⁰⁾ Compound **6** was prepared analogously to **5** by 30 min reflux of **4** with excess PMe₃. Yield 40%. Mp 124 °C. Anal. Calcd for C₂₄H₂₄-
FeO₅P₂S: C, 53.19; H, 4.46; S, 5.92. Found: C, 53.23; H, 4.52; S, 6.31. IR (KBr) *ν*(CO) 1990 (s), 1924 (vs) cm⁻¹. ¹H NMR (270 MHz, CDCl₃)
7.41–6.62 (m, 14H, Ph), 4.09 (dd, 1H, ³*J*_{HP} = 5.9, 3.7 Hz, C*H*S), 1.20
(dd, 9H, ² *I*_{μp} = 9.3 Hz, ⁴ *I*_{μp} = 2.0 Hz, C*H*₂), ¹³C(¹ (dd, 9H, ²*J*_{HP} = 9.3 Hz, ⁴*J*_{HP} = 2.0 Hz, *CH*₃); ¹³C{¹H} NMR (67.9 MHz, *CDCl*₃) 214.2 (3-line pattern, *J* = 25.6 Hz, *CO*), 212.5 (dd, ²*J*_{CP} = 37.5, 30.7 Hz, *CO*), 152.1–120.4 (Ph), 50.8 (dd. ² 30.7 Hz, *C*O), 152.1-120.4 (Ph), 50.8 (dd, ² *J*_{CP} = 12.0, 6.9 Hz, *C*HS), 15.4 (d, ¹ *J*_{CP} = 30.7 Hz, *CH*₃); ³¹P{¹H} NMR (109 MHz, CDCl₃) 166.0 (d, ² *J*_{pp} = 283.8 Hz, phosphine). (d, ² J_{PP} = 283.8 Hz, phosphite), 21.3 (d, ² J_{PP} = 283.8 Hz, phosphine).

⁽²¹⁾ Compound 7 was prepared analogously to 5 by 1 h reflux of 4 with excess dppe. Yield 51%. Mp 214 °C (dec). Anal. Calcd for C₄₆H₃₉-FeO₄P₃S: C, 66.08; H, 4.70; S, 3.83. Found: C, 66.32; H, 4.61; S, 4.10. IR (KBr) *ν*(CO) 1914 (m), 1896 (vs) cm⁻¹. ¹H NMR (270 MHz, CDCl₃) 7.94–6.43 (m, 34H, Ph), 3.87 (br m, 1H, C*H*S), 2.90 (br d, 1H, *J* = 18
Hz, C*H*), 2.68 (br d, 1H, *J* = 18 Hz, C*H*), 2.36 (br s, 1H, C*H*), 2.10 (br Hz, C*H*), 2.68 (br d, 1H, *J* = 18 Hz, C*H*), 2.36 (br s, 1H, C*H*), 2.10 (br s, 1H, C*H*); ¹³C{¹H} NMR (67.9 MHz, CDCl₃) only major isomer detected, 216.0 (m, CO), 153.0-119.7 (Ph), 46.3 (m, CHS), 32.7 (ddd, $J_{CP} = 27.1$ Hz, $^2J_{CP} = 16.9$ Hz, $^3J_{CP} = 6.7$ Hz, CH_2), 28.0 (dd, $^1J_{CP} = 26.3$ Hz, $^2J_{CP} = 16.9$ Hz, 3D_f ^c H₂ 26.3 Hz, Cl_{2}), 31p₍¹