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Summary: UV-irradiation of the thiocarbonyl complex
Fe(CO)2(CS){P(OPh)3}2, prepared from Fe(CO)2(CS2)-
{P(OPh)3}2, affords the unstable thioaldehyde complex
Fe(CO)2{P(OPh)3}{(PhO)2P(OC6H4)C(H)S}, which reacts
with P(OPh)3 to give Fe(CO){P(OPh)3}2{(PhO)2P(OC6H4)-
C(H)S}, the crystal structure of which reveals an η2(C,S)-
bonded thioaldehyde group formally derived from inser-
tion of the thiocarbonyl C atom into an ortho C-H bond
of an axially bound P(OPh)3 phenyl group.

Transition metal complexes containing sulfur are of
interest both as potential analogues of intermediates
involved in catalytic CO/H2 chemistry1 and because
sulfur is a potent poison of many of these catalytic
systems.2 Metal-mediated reduction of CS2 to H2CS has
been demonstrated in only a few cases,3 and examples
of reduction with concomitant C-C bond formation are
also rare.4 In this preliminary communication we report
the stepwise conversion of CS2 to thioaldehyde at a
metal center.

Photolysis of the tricarbonyl complex Fe(CO)3-
{P(OPh)3}2 (1) to give the orthometalated iron-hydride
derivative HFe(CO)2{P(OPh)3}{(PhO)2P(OC6H4)} and
subsequent reaction with CS2 is one5a of a number of
routes to Fe(CO)2(η2-CS2){P(OPh)3}2 (2)5 (Scheme 1).
Solutions of 2 in acetonitrile or similar donor solvents
have been shown to react with PBu3 to afford the
thiocarbonyl derivative Fe(CO)2(CS){P(OPh)3}2 (3) (ca.
85%) by sulfur abstraction and Fe(CO)2(η2-CS2)(PBu3)2
(ca. 15%) by ligand exchange (Scheme 2).6 In view of
the preferential labilization of CO compared to CS upon
UV-irradiation,7 it was anticipated that photolysis of 3
would follow the same course as that of 1, i.e. loss of

CO and orthometalation to afford HFe(CO)(CS){P-
(OPh)3}{(PhO)2P(OC6H4)}. Instead the reaction pro-
ceeded with retention of both CO ligands (νCO 2014 and
1955 cm-1 vs 1995 and 1936 cm-1 in 3) and the
disappearance of the strong CS absorption band at 1266
cm-1. A single reaction product, 4, was isolated as an
orange-brown oily solid.8 Slow crystallization of 4,
however, afforded in low yield yellow crystals of a new
compound, 5, which exhibited only one ν(CO) absorption
band at 1951 cm-1 in the IR spectrum. This compound
was analyzed by X-ray diffraction, and its molecular
structure is shown in Figure 1.9

It reveals that 5 contains a bidentate ligand compris-
ing a thioaldehyde moiety RCHS formally derived from
insertion of the thiocarbonyl C atom of 3 into an ortho
C-H bond of an axially bound P(OPh)3 phenyl group.
The CS of the thioaldehyde group is bonded to the Fe
center in the η2(C,S) coordination mode and is es-
sentially coplanar with the CO group and the phospho-
rus atom of a second P(OPh)3 ligand. The remaining
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Crystallographic data: Chemical formula C56H45FeO10P3S, molecular
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coordination site is occupied by a third P(OPh)3 ligand
such that the overall geometry about the metal center
may be described as distorted trigonal bipyramidal.

Although the P(OPh)2{OC6H4C(H)S} ligand has not
previously been reported, mononuclear compounds con-
taining η2-thioaldehydes RCHS have been structurally
characterized for R ) H,10 Me,11 and Ph.12 As observed
in the complexes of these thioaldehydes,10-12 the CS
bond length of 1.752(4) Å in 5 is intermediate between
that of a typical C-S single bond (1.80-1.82 Å) and that
found for the CdS double bond in organic thiocarbonyls
(ca. 1.60 Å).13

The solution-state spectroscopic data for 514 are in
accordance with the solid-state structure. The η2(C,S)
coordination mode is confirmed by the high-field shifts
of both the 1H and the 13C NMR signals of the CHS

group (δ 4.73 and 50.0, respectively); in η1(S)-coordi-
nated thioaldehyde ligands the 13C NMR signals are
substantially deshielded at ca. δ 200.15 The strongly
trans-coupled nuclei P1 and P3 appear as the AB
portion of an ABX spin system in the 31P{1H} NMR
spectrum. The signal at δ 140.2 is assigned to P1 in view
of the expected shift to higher field for 31P in a six-
membered chelate ring.16 A doublet of doublets at δ
165.9 exhibiting small cis couplings is assigned to P2.

Since 5 may also be obtained in good yield17 by
refluxing solutions of 4 with P(OPh)3, we propose that
4 is the dicarbonyl intermediate Fe(CO)2{P(OPh)3}-
{(PhO)2P(OC6H4)C(H)S}18 and suggest Scheme 3 to
account for its formation. The first step in this mecha-
nism is analogous to the established reactivity of the
tricarbonyl complex 1 on UV-irradiation (see above), and
the subsequent steps have precedent in the work of
Roper et al., who have demonstrated the particular
facility with which CS undergoes migratory-insertion
reactions.19 In the absence of added phosphite, slow
decomposition of 4 affords free P(OPh)3, which converts
the remaining 4 to 5: the 31P{1H} NMR spectrum of a
freshly prepared sample of 4 exhibits an AB pattern
(2JPP ) 455 Hz) the intensity of which decreases over a
period of days with the formation of free P(OPh)3 (δ
128.8) and the appearance of resonances attributable
to 5. When the photolysis of the thiocarbonyl 3 is
repeated in the presence of P(OPh)3, then 5 is formed
exclusively.

Whereas 4 reacts with added P(OPh)3 to substitute
CO (Scheme 4), in the presence of the strong donor
ligand PMe3, 4 undergoes rapid substitution of P(OPh)3
to afford the dicarbonyl Fe(CO)2(PMe3){(PhO)2P(OC6H4)-
C(H)S} (6).20 This reactivity presumably derives from

(10) [(η5-C5H5)Re(NO)(PPh3)(η2-H2CdS)][PF6], d(C-S) ) 1.742(9)
Å: Buhro, W. E.; Etter, M. C.; Georgiou, S.; Gladysz, J. A.; McCormick,
F. B. Organometallics 1987, 6, 1150. (η5-C5H5)2Ti(η2-H2CdS)(PMe3),
d(C-S) ) 1.744(3) Å: Park, J. W.; Henling, L. M.; Schaefer, W. P.;
Grubbs, R. H. Organometallics 1990, 9, 1650.

(11) (η5-C5H5)2Zr{η2-MeC(H)dS}(PMe3), d(C-S) ) 1.785(11) Å,
1.739(13) Å: Buchwald, S. L.; Nielsen, R. B.; Dewan, J. C. J. Am. Chem.
Soc. 1987, 109, 1590.

(12) (Et2NCS2)(Et2NCS)W(CO){η2-PhC(H)dS}: Mayr, A.; McDer-
mott, G. A.; Dorries, A. M.; Holder, A. K.; Fultz, W. C.; Rheingold, A.
L. J. Am. Chem. Soc. 1986, 108, 310. [(η5-C5H5)Re(NO)(PPh3){η2-PhC-
(H)dS}][PF6], d(C-S) ) 1.70(1) Å: Schenk, W. A.; Burzlaff, N.;
Burzlaff, H. Z. Naturforsch. 1994, 49b, 1633.

(13) Orpen, A. G.; Brammer, L.; Allen, F. H.; Kennard, O.; Watson,
D. G.; Taylor, R. In Structure Correlation, Vol. 2; Bürgi, H.-B., Dunitz,
J. D., Eds.; VCH Publ.: Weinheim, Germany, 1994.

(14) Mp 147 °C (dec). Anal. Calcd for C56H45FeO10P3S: C, 63.52; H,
4.28; S, 3.03. Found: C, 63.32; H, 4.42; S, 3.17. IR (KBr) ν(CO) 1951
cm-1. 1H NMR (270 MHz, CDCl3) 7.70-6.52 (m, 44H, Ph), 4.73 (m,
1H, CHS); 13C{1H} NMR (67.9 MHz, CDCl3) 211.5 (m, CO), 153.2-
120.5 (Ph), 50.0 (m, CHS); 31P{1H} NMR (109 MHz, CDCl3) 165.9 (dd,
2JPP ) 97.7, 82.4 Hz, P2), 151.9 (dd, 2JP3P1 ) 450.0 Hz, 2JP3P2 ) 82.4
Hz, P3), 140.2 (dd, 2JP1P3 ) 450.0 Hz, 2JP1P2 ) 97.7 Hz, P1).

(15) Schenk, W. A.; Stur, T.; Dombrowski, E. Inorg. Chem. 1992,
31, 723. Schenk, W. A.; Stur, T.; Dombrowski, E. J. Organomet. Chem.
1994, 472, 257.

(16) Garrou, P. E. Chem. Rev. 1981, 81, 229.
(17) A solution of 3 (825 mg, 1.06 mmol) in toluene (50 mL) was

photolyzed as described in ref 8. A 2-fold excess of the ligand P(OPh)3
was then added, and the mixture was heated to reflux for 3 h. The
solvent volume was reduced and the residue chromatographed on
alumina (30 × 2.5 cm). A bright yellow band was eluted with toluene;
recrystallization from toluene/hexane afforded 5 (586 mg, 52%).

(18) IR (CH2Cl2) ν(CO) 2014 (s), 1955 (vs) cm-1. 1H NMR (270 MHz,
CDCl3) 7.71-6.50 (m, 29H, Ph), 4.87 (dd, 1H, 3JHP ) 6.1, 3.8 Hz, CHS);
13C{1H} NMR (67.9 MHz, CDCl3) 212.6 (3-line pattern, J ) 29.0 Hz,
CO), 210.2 (dd, 2JCP ) 45.2, 40.1 Hz, CO), 153.6-120.0 (Ph), 52.7 (3-
line pattern, J ) 11.1 Hz, CHS); 31P{1H} NMR (109 MHz, CDCl3) 158.3
(d, 2JPP ) 454.7 Hz, P), 148.2 (d, 2JPP ) 454.7 Hz, P-thioaldehyde).

(19) Clark, G. R.; Collins, T. J.; Hall, D.; James, S. M.; Roper, W. R.
J. Organomet. Chem. 1977, 141, C5. Clark, G. R.; Collins, T. J.;
Marsden, K.; Roper, W. R. J. Organomet. Chem. 1983, 259, 215.

Figure 1. Molecular structure of 5. Selected bond lengths
(Å) and angles (deg): Fe1-P1, 2.1468(11); Fe1-P2, 2.1255-
(11); Fe1-P3, 2.1696(11); Fe1-S1, 2.2760(11); Fe1-C1,
2.076(4); Fe1-C2, 1.758(4); S1-C1, 1.752(4); O2-C2,
1.161(4); C1-C11, 1.470(5); C1-H1, 0.95(3); P1-Fe1-P3,
165.70(4); P2-Fe1-C1, 87.48(10); P2-Fe1-C2, 106.61(12);
S1-Fe1-C1, 47.21(10); S1-Fe1-C2, 118.50(12); S1-C1-
H1, 112.1(17); C11-C1-H1, 111.5(17).

Scheme 3
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the strongly electron-withdrawing nature of the η2-
thioaldehyde ligand (reflected in the length of the CS
bond in 5) and consequent electron deficiency of the
metal center {evidenced by the high ν(CO) frequencies
of both 4 and 5}. Treatment of 4 with 1,2-bis(diphe-
nylphosphino)ethane (dppe) affords the complex Fe(CO)-
(η2-dppe){(PhO)2P(OC6H4)C(H)S} (7)21 as a 9:1 mixture
of isomers (Scheme 4). By analogy with the structure
of 5 we propose 7a as the major isomer. The reaction of
4 with p-tolylisocyanide similarly affords a mixture of

isomers Fe(CO)(p-CNC6H4Me)2{(PhO)2P(OC6H4)C(H)S}
(8)22 (Scheme 4) but in approximately 4:3 ratio.

In summary, this work describes a facile two-step
conversion of coordinated CS2 via CS to an unusual
bidentate thioaldehyde ligand and provides a contrast
of the reactivity of the thiocarbonyl complex Fe(CO)2-
(CS){P(OPh)3}2 with that of its oxygenate analogue Fe-
(CO)3{P(OPh)3}2. Further efforts are directed at explor-
ing the scope of these reactions.
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(20) Compound 6 was prepared analogously to 5 by 30 min reflux
of 4 with excess PMe3. Yield 40%. Mp 124 °C. Anal. Calcd for C24H24-
FeO5P2S: C, 53.19; H, 4.46; S, 5.92. Found: C, 53.23; H, 4.52; S, 6.31.
IR (KBr) ν(CO) 1990 (s), 1924 (vs) cm-1. 1H NMR (270 MHz, CDCl3)
7.41-6.62 (m, 14H, Ph), 4.09 (dd, 1H, 3JHP ) 5.9, 3.7 Hz, CHS), 1.20
(dd, 9H, 2JHP ) 9.3 Hz, 4JHP ) 2.0 Hz, CH3); 13C{1H} NMR (67.9 MHz,
CDCl3) 214.2 (3-line pattern, J ) 25.6 Hz, CO), 212.5 (dd, 2JCP ) 37.5,
30.7 Hz, CO), 152.1-120.4 (Ph), 50.8 (dd, 2JCP ) 12.0, 6.9 Hz, CHS),
15.4 (d, 1JCP ) 30.7 Hz, CH3); 31P{1H} NMR (109 MHz, CDCl3) 166.0
(d, 2JPP ) 283.8 Hz, phosphite), 21.3 (d, 2JPP ) 283.8 Hz, phosphine).

(21) Compound 7 was prepared analogously to 5 by 1 h reflux of 4
with excess dppe. Yield 51%. Mp 214 °C (dec). Anal. Calcd for C46H39-
FeO4P3S: C, 66.08; H, 4.70; S, 3.83. Found: C, 66.32; H, 4.61; S, 4.10.
IR (KBr) ν(CO) 1914 (m), 1896 (vs) cm-1. 1H NMR (270 MHz, CDCl3)
7.94-6.43 (m, 34H, Ph), 3.87 (br m, 1H, CHS), 2.90 (br d, 1H, J ) 18
Hz, CH), 2.68 (br d, 1H, J ) 18 Hz, CH), 2.36 (br s, 1H, CH), 2.10 (br
s, 1H, CH); 13C{1H} NMR (67.9 MHz, CDCl3) only major isomer
detected, 216.0 (m, CO), 153.0-119.7 (Ph), 46.3 (m, CHS), 32.7 (ddd,
1JCP ) 27.1 Hz, 2JCP ) 16.9 Hz, 3JCP ) 6.7 Hz, CH2), 28.0 (dd, 1JCP )
26.3 Hz, 2JCP ) 18.8 Hz, CH2); 31P{1H} NMR (109 MHz, CDCl3) major
isomer, 158.3 (dd, 2JPaPb ) 289.9 Hz, 2JPaPc ) 73.3 Hz, Pa), 87.4 (dd,
2JPbPa ) 289.9 Hz, 2JPbPc ) 27.5 Hz, Pb), 81.2 (dd, 2JPcPb ) 73.2 Hz,
2JPcPa ) 27.5 Hz, Pc); minor isomer, 163.3 (dd, 2JPaPb ) 274.7 Hz, 2JPaPc
) 69.5 Hz, Pa), 89.6 (dd, 2JPcPa ) 69.5 Hz, 2JPcPb ) 28.3 Hz, Pc), 74.9
(dd, 2JPbPa ) 274.7 Hz, 2JPbPc ) 28.3 Hz, Pb).

(22) Compound 8 was prepared analogously to 5 by 2 h reflux of 4
with excess p-CNC6H4Me. Yield 18%. Mp 133-134 °C (dec). Anal. Calcd
for C36H29FeN2O4PS: C, 64.29; H, 4.35; N, 4.17; S, 4.77. Found: C,
63.93; H, 4.45; N, 3.90; S, 4.94. IR (KBr) ν(CN) 2144 (s), 2096 (vs);
ν(CO) 1948 (br vs) cm-1. 1H NMR (270 MHz, CDCl3) major isomer,
7.58-6.61 (m, Ph), 4.80 (d, 1H, 3JHP ) 3.1 Hz, CHS), 2.40 (s, 3H, CH3),
2.35 (s, 3H, CH3); minor isomer, 7.58-6.61 (m, Ph), 4.88 (d, 1H, 3JHP
) 3.7 Hz, CHS), 2.34 (s, 3H, CH3), 2.28 (s, 3H, CH3); 13C{1H} NMR
(67.9 MHz, CDCl3) major isomer, 213.1 (d, 2JCP ) 40.9 Hz, CO), CN
not detected, 152.2-117.2 (Ph), 48.0 (d, 2JCP ) 11.9 Hz, CHS), 21.6
(br s, 2 H CH3); minor isomer, 214.8 (d, 2JCP ) 35.8 Hz, CO), CN not
detected, 152.2-117.2 (Ph), 49.4 (d, 2JCP ) 11.9 Hz, CHS), 21.5 (br s,
2H CH3); 31P{1H} NMR (109 MHz, CDCl3) major isomer, 162.5 (s);
minor isomer, 165.2 (s).

Scheme 4
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