Unique Complexation of 1,4-Diaza-1,3-butadiene Ligand on Half-Metallocene Fragments of Niobium and Tantalum

Kazushi Mashima,* Yutaka Matsuo, and Kazuhide Tani*

Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan

Received December 8, 1998

We report the synthesis of half-metallocene 1,4-diaza-1,3-butadiene (dad) complexes of niobium and tantalum and the flexible coordination modes of the dad ligand. Treatment of $MCl_4(\eta^5-C_5R_5)$ (1a, M = Ta, R = CH₃; 1b, M = Ta, R = H; 2a, M = Nb, R = CH₃; 2b, M = Nb, R = H) with 1 equiv of a dilithium salt of 1,4-bis(*p*-methoxyphenyl)-1,4-diaza-1,3butadiene (p-MeOC₆H₄-dad) in THF yielded the corresponding half-sandwich 1,4-diaza-1,3butadiene complexes $MCl_2(\eta^5-C_5R_5)(\eta^4$ -supine-p-MeOC₆H₄-dad) (**3a**, M = Ta, R = CH₃; **3b**, M = Ta, R = H; **4a**, M = Nb, $R = CH_3$; **4b**, M = Nb, R = H). Similar reaction of **1a** with the dianions of 1,4-bis(p-tolyl)-1,4-diaza-1,3-butadiene (p-Tol-dad), 1,4-bis(p-tolyl)-1,4-diaza-1,3butadiene (o-Tol-dad), and 1,4-dicyclohexyl-1,4-diaza-1,3-butadiene (Cy-dad) afforded tantalum complexes TaCl₂Cp*(η^4 -supine-p-Tol-dad) (5) (Cp* = pentamethylcyclopentadienyl), $TaCl_2Cp^*(\eta^4$ -supine-o-Tol-dad) (**6**), and $TaCl_2Cp^*(\eta^4$ -supine-Cy-dad) (**7**), respectively. When a dinuclear Ta(III) complex [TaCl₂Cp^{*}]₂ (8) was treated with 1,4-bis(2,6-diisopropylphenyl)-1,4-diaza-1,3-butadiene ((Pr)₂C₆H₃-dad), a η^2 -C,N-imine complex TaCl₂Cp*(η^2 -C,N-(Pr)₂C₆H₃dad) (9) was formed. Dialkylation of the dichloro complexes caused the change of the orientation of the dad ligand from supine fashion to a prone one of dimethyl complexes TaMe₂- $Cp^*(\eta^4$ -prone-dad) (10, dad = p-MeOC₆H₄-dad; 11, dad = o-Tol-dad) and bis(benzyl) complexes $M(CH_2Ph)_2Cp^*(\eta^4$ -prone-dad) (**12**, M = Ta, dad = p-MeOC_6H_4-dad; **13**, M = Nb, dad = p-MeOC₆H₄-dad; **14**, M = Ta, dad = Cy-dad), while a mono(benzyl) complex Ta(CH₂Ph)- $ClCp^*(\eta^4$ -supine-o-Tol-dad) (16) kept the supine orientation. The bis(benzyl) complexes 12-**14** thus isolated were thermally stable in solid state, but in solution these complexes gradually decomposed to give the corresponding benzylidene complexes $M(=CHPh)Cp^*(\eta^4$ *prone*-dad) (**17**, M = Ta, dad = p-MeOC₆H₄-dad; **18**, M = Nb, dad = p-MeOC₆H₄-dad; **19**, M = Ta, dad = Cy-dad) with the release of toluene. Treatments of **3a**, **b**, **4a**, **b**, **5**, and **7** with a slight excess of 1,3-butadiene-magnesium adduct afforded mixed-ligand 16-electron complexes $M(\eta^5-C_5R_5)(\eta^2-N,N-p-MeOC_6H_4-dad)(\eta^4-s-cis-1,3-butadiene)$ (**20a**, M = Ta, R = CH₃; **20b**, M = Ta, R = H; **21a**, M = Nb, R = CH₃; **21b**, M = Nb, R = H) and TaCp*(η^2 -N,Ndad)(η^4 -s-cis-1,3-butadiene) (**22**, dad = p-Tol-dad; **23**, dad = Cy-dad), respectively. These complexes showed characteristic intense red or purple color due to LMCT bands where the filled N(p π) orbital is donated to the empty M(d π^*) orbital.

Introduction

Recent development in the metallocene chemistry of early transition metals is due to their potential applicability as catalysts of various organic reactions as well as polymerization and as source of versatile materials.^{1,2} To attain legitimate metallocene complexes for each purpose, modification of the cyclopentadienyl ligand, including the *ansa*-type bis(cyclopentadienyl) ligand, has been extensively investigated. Another, more flexible approach may be a half-metallocene system, in which one Cp ligand of the metallocene is replaced by different kinds of ancillary ligand. We have chosen diene as a ligand for the half-metallocene complexes of niobium and tantalum; the diene complexes having " $M(\eta^5-C_5R_5)(1,3-diene)$ " fragments are isoelectronic and isolobal to group 4 metallocene fragments " MCp_2 ", which are 14-electron species. We had found not only that these metallocene-like fragments stabilized various reactive species such as benzyne³ similar to the corresponding metallocene complexes of group 4 metals but also that *cis*-dialkyl derivatives were catalyst precursors for the living polymerization of ethylene⁴⁻⁶ and the stereose-lective ROMP of norbornene.⁷⁻⁹

⁽¹⁾ Metallocenes: Togni, A., Halterman, R. L., Eds.; Wiley-VCH: Weinheim, Germany, 1998; Vol. 1 and 2.

⁽²⁾ Mashima, K.; Nakayama, Y.; Nakamura, A. Adv. Polym. Sci. 1997, 133, 1.

⁽³⁾ Mashima, K.; Tanaka, Y.; Nakamura, A. Organometallics **1995**, *14*, 5642.

⁽⁴⁾ Mashima, K.; Fujikawa, S.; Tanaka, Y.; Urata, Y.; Oshiki, T.; Tanaka, E.; Nakamura, A. *Organometallics* **1995**, *14*, 2633.

⁽⁵⁾ Mashima, K.; Fujikawa, S.; Urata, H.; Tanaka, E.; Nakamura, A. J. Chem. Soc., Chem. Commun. **1994**, 1623.

⁽⁶⁾ Mashima, K.; Fujikawa, S.; Nakamura, A. J. Am. Chem. Soc. 1993, 115, 10990.

Herein we report the syntheses of various 1,4-diaza-1,3-butadiene (dad) complexes of niobium and tantalum. The dad ligand is known to exhibit the unique coordination feature of binding to the metal center in several modes, *N*,*N*-chelation (A, B, and C) and η^2 -*C*,*N*-imine (D) (Chart 1).^{10,11} By tuning the substituents on the dad ligand and on the metal center, the niobium and tantalum complexes having three coordination modes, A, B, and D, have been prepared, although the mode C has been reported for many late transition metal complexes. Furthermore, since these are the halfmetallocene complexes, the σ^2 , π -endiamido ligand (mode B) can adopt two conformations, i.e., *supine* and *prone*, relative to the η^5 -C₅R₅ ligand, depending sensitively on the coordination environment on the metal center. A part of this work was the subject of preliminary communications,¹² and the syntheses of closely related tantalum complexes have recently been reported.^{13,14}

Results and Discussion

Synthesis and Characterization of Dichloro Complexes of Niobium and Tantalum Bearing a dad Ligand. Treatment of tetrachloro compounds of tantalum and niobium, $MCl_4(\eta^5-C_5R_5)$ (**1a**, M = Ta, $R = CH_3$; **1b**, M = Ta, R = H; **2a**, M = Nb, $R = CH_3$; **2b**, M = Nb, R = H), with a dilithium salt¹⁵ of 1,4-bis(*p*-methoxyphenyl)-1,4-diaza-1,3-butadiene (p-MeOC₆H₄-dad) in THF led to the formation of the corresponding half-sandwich 1,4-diaza-1,3-butadiene complexes, $MCl_2(\eta^5-C_5R_5)(\eta^4$ supine-p-MeOC₆H₄-dad) (**3a**, M = Ta, $R = CH_3$; **3b**, M = Ta, R = H; **4a**, M = Nb, $R = CH_3$; **4b**, M = Nb, R =H), whose formulations were in accordance with spectroscopic data and combustion analyses. These tantalum and niobium complexes were obtained as yellow and red precipitates, respectively. These were stable in the solid state, but gradually decomposed in solution upon exposure to air. The inner H^{2,3} protons of the *p*-MeOC₆H₄dad ligand were observed as a singlet in the olefinic region (δ 6.00 for **3a**; δ 6.09 for **3b**; δ 6.05 for **4a**; δ 6.19

for **4b**), suggesting a distinct σ^2 , π -endiamido structure (mode B in Chart 1). Furthermore, for half-metallocene complexes, two conformations, i.e., *supine* and *prone*, of the dad ligand in the direction of the cyclopentadienyl ligand are possible. On the basis of NMR spectral data compared with those of the prone complexes (vide infra), we concluded that the dad ligand of 3 and 4 predominantly adopted the supine conformation, which was further confirmed by X-ray crystallographic studies (vide infra).

In the case of the other *p*-substituted dad ligand, 1,4bis(p-tolyl)-1,4-diaza-1,3-butadiene (p-Tol-dad), we also obtained TaCl₂Cp*(η^4 -supine-p-Tol-dad) (5) (Cp* = pentamethylcyclopentadienyl) in modest yield after treating **1a** with the corresponding dad lithium salt in THF. In contrast, the bulkiness due to the ortho-substituted phenyl group of the dad ligand affected the complexation with half-metallocene fragments of niobium and tantalum. The reactions of 1a with dilithium salts of 1,4-bis-(2,6-dimethylphenyl)-1,4-diaza-1,3-butadiene (Xyl-dad) and 1,4-bis(2,6-diisopropylphenyl)-1,4-diaza-1,3-butadiene $[(^{i}Pr)_{2}C_{6}H_{3}$ -dad] resulted in the complicated mixture, from which, in both reactions, any identifiable products could not be obtained. On the other hand, the reaction of **1a** with a dilithium salt of 1,4-bis(o-tolyl)-1,4-diaza-1,3-butadiene (o-Tol-dad) afforded the corresponding tantalum complex, TaCl₂Cp*(η^4 -supine-o-Toldad) (6). Cyclohexyl substitutions on nitrogen atoms afforded TaCl₂Cp*(η^4 -supine-Cy-dad) (7) on treating **1a** with a dilithium salt of the 1,4-dicyclohexyl-1,4-diaza-1,3-butadiene (Cy-dad) in a similar manner.

Another synthetic method starting from a dinuclear Ta(III) complex, $[TaCl_2Cp^*]_2$ (8), can be applicable to the preparation of the dad complexes.^{16,17} When the benzene solution of 8 was treated with 1 equiv of p-MeOC₆H₄-dad, the deep green color of **8** faded out and the yellow complex 3a was formed in quantitative yield, monitored by the ¹H NMR spectrum. Reaction of 8 with o-Tol-dad afforded the complex 6, while reaction with

⁽⁷⁾ Mashima, K.; Tanaka, Y.; Kaidzu, M.; Nakamura, A. Organometallics 1996. 15, 2431

⁽⁸⁾ Mashima, K.; Kaidzu, M.; Nakayama, Y.; Nakamura, A. Organometallics 1997, 16, 1345.

⁽⁹⁾ Mashima, K.; Kaidzu, M.; Tanaka, Y.; Nakayama, Y.; Nakamura, A.; Hamilton, J. G.; Rooney, J. J. Organometallics 1998, 17, 4183.
 (10) van Koten, G.; Vrieze, K. Adv. Organomet. Chem. 1982, 21, 151.

⁽¹¹⁾ Vrieze, K. J. Organomet. Chem. 1986, 300, 307.
(12) Mashima, K.; Matsuo, Y.; Tani, K. Chem. Lett. 1997, 767.

⁽¹³⁾ Pindado, G. J.; Thornton-Pett, M.; Bochmann, M. J. Chem. Soc., Dalton Trans. 1998, 393.

⁽¹⁴⁾ Kawaguchi, H.; Yamamoto, Y.; Asaoka, K.; Tatsumi, K. Organometallics 1998, 17, 4380.

⁽¹⁵⁾ Scholz, J.; Richter, B.; Goddard, R.; Krüger, C. Chem. Ber. 1993, 126. 57.

⁽¹⁶⁾ Ting, C.; Baenzinger, N. C.; Messerle, L. J. Chem. Soc., Chem. Commun. 1988, 1133.

⁽¹⁷⁾ Messerle, L. Chem. Rev. 1988, 88, 1229.

Xyl-dad did not give any identifiable product, consistent with the attempted synthesis by metathesis reaction. On the other hand, treatment of **8** with $({}^{i}Pr)_{2}C_{6}H_{3}$ -dad resulted in the unique formation of an orange complex $TaCl_2Cp^*(\eta^2 - C, N - (iPr)_2C_6H_3 - dad)$ (9), in which the dad ligand coordinated to the tantalum center in η^2 -*C*,*N*imine coordination (mode D). Such a η^2 -*C*,*N*-coordination of the dad ligand has already been reported for a niobium complex, $[Nb(\eta^4 - tBu - dad)(\eta^2 - C, N - tBu - dad)]_2(\mu - tBu - dad)]_2$ ^tBu-dad) (^tBu-dad = 1.4-di(*tert*-butyl)-1.4-diaza-1.3butadiene),¹⁸ and a tantalum complex, Ta(S^{*t*}Bu)₂Cp^{*}(η^2 - $C_{,N}$ -*t*Bu-dad).¹⁴ The complex **9** decomposed upon exposure to air or during the attempted isolation. The ¹H NMR spectrum of 9 displayed the asymmetric signals due to the presence of an asymmetric carbon center bound to the tantalum atom; the H² proton appeared at higher field (δ 3.67) than that (δ 7.73) of the other imine H³ proton, indicating that one of the two C=N moieties coordinated to the tantalum atom in an azametallacyclopropane structure, ¹⁹⁻²¹ while the other was free from coordination.

Crystal Structures of Dichloro Complexes of Niobium and Tantalum, 3a,b, 4a, 5, and 7. The molecular structures of the complexes **3a**, **3b**,¹² **4a**, **5**, and 7 were determined by X-ray crystallographic studies. Figure 1 shows the molecular structures of 3a and 4a. Selected bond distances and angles of all these complexes are listed in Table 1. Although 4a is a niobium complex and others are tantalum complexes with different combinations of η^5 -C₅R₅ and dad ligands, they are essentially isomorphous. Each complex adopts a four-legged piano stool geometry comprised of a η^5 -C₅R₅ ligand, two chlorine atoms, and a dad ligand; this geometry is similar to that of NbCl₂Cp(η^4 -supine-^tBudad)²² and TaCl₂Cp*(η^4 -supine-ⁱPr-dad) (ⁱPr-dad = 1,4di(isopropyl)-1,4-diaza-1,3-butadiene).¹⁴ Noteworthy is that the dad ligand is coordinated to the metal in the *supine* σ^2 , π -enediamide structure (mode B in Chart 1). The canonical structure B corresponds to the tendency that the 1,3-butadiene bound to the tantalum center has a contribution of a metallacyclopentene structure, and in addition, three C-C bond distances of the diene ligand are sequentially long-short-long.²³ Although

Figure 1. (a) Molecular structure of **3a** with the labeling scheme. (b) Molecular structure of **4a** with the labeling scheme.

Table 1.	Selected Bond Distances and Angles for)r
	Complexes 3a, 3b, 4a, 5, and 7	

	3a	3b	4a	5	7
	Bo	nd Distan	ces (Å)		
M-N(1)	2.02(1)	2.026(10)	2.049(3)	2.028(5)	2.020(6)
M-N(2)	2.03(1)	2.01(1)	2.038(3)	2.045(5)	2.004(5)
M-C(1)	2.48(2)	2.46(1)	2.480(4)	2.480(7)	2.451(7)
M-C(2)	2.47(2)	2.45(2)	2.474(4)	2.474(7)	2.464(7)
M-Cl(1)	2.488(4)	2.465(4)	2.483(1)	2.467(2)	2.494(2)
M-Cl(2)	2.473(4)	2.454(3)	2.494(1)	2.456(2)	2.490(2)
N(1) - C(1)	1.37(2)	1.38(2)	1.367(5)	1.373(8)	1.383(8)
N(2)-C(2)	1.37(2)	1.38(1)	1.371(5)	1.367(8)	1.383(8)
C(1) - C(2)	1.30(2)	1.36(2)	1.379(5)	1.389(10)	1.392(9)
M-CCP ^a	2.104	2.082	2.121	2.111	2.117
	Bo	ond Angles	(deg)		
N(1) - M - N(2)	81.4(5)	83.4(5)	82.8(1)	83.2(2)	84.0(2)
Cl(1)-M-Cl(2)	79.0(2)	79.9(1)	79.39(4)	78.64(8)	78.32(7)
N(1)-M-Cl(1)	86.1(4)	85.0(3)	83.76(9)	84.7(2)	84.3(2)
N(2)-M-Cl(2)	84.9(4)	83.3(3)	85.25(9)	84.4(2)	85.2(2)
M - N(1) - C(1)	91(1)	90.4(8)	90.9(2)	91.6(4)	90.1(4)
M - N(2) - C(2)	91.1(10)	90.6(8)	90.9(2)	90.7(4)	91.5(4)
N(1)-C(1)-C(2)	117(1)	117(1)	118.7(4)	117.6(6)	118.7(6)
N(2)-C(2)-C(1)	120(1)	120(1)	119.0(4)	119.8(6)	117.4(6)
dad-fold angle ^b	121.1(3)	120.0(3)	120.62(3)	121.1(3)	120.0(3)

^{*a*} CCP = centroid of cyclopentadienyl ring. ^{*b*} dad-fold angle: dihedral angle between the N(1)-M-N(2) plane and N(1)-C(1)-C(2)-N(2) plane.

such a long-short-long alternation is not clearly observed for the dad ligand, the $C^{1}-C^{2}$ distance of the dad ligand is significantly shortened compared with that of a free ligand, *s*-*trans*-Cy-dad (1.457(2) Å),¹⁰ and the

⁽¹⁸⁾ Richter, B.; Scholz, J.; Sieler, J.; Thiele, K.-H. Angew. Chem., Int. Ed. Engl. 1995, 34, 2649.

⁽¹⁹⁾ Durfee, L. D.; Hill, J. E.; Fanwick, P. E.; Rothwell, I. P. Organometallics **1990**, *9*, 75.

⁽²⁰⁾ Galakhov, M. V.; Gómez, M.; Jiménez, G.; Royo, P.; Pellinghelli, M. A.; Tiripicchio, A. *Organometallics* **1995**, *14*, 1901.

⁽²¹⁾ Takai, K.; Ishiyama, T.; Yasue, H.; Nobunaka, T.; Itoh, M.;
Oshiki, T.; Mashima, K.; Tani, K. Organometallics 1998, 17, 5128.
(22) Ukhart Dicharge (L. C.; Zali: A. Acta Caracterization (2009) (2009)

⁽²²⁾ Hubert-Pfalzgraf, L. G.; Zaki, A. Acta Crystallogr. 1993, C49, 1609.

 N^1-C^1 and N^2-C^2 distances are accordingly longer than those found for the s-trans-Cy-dad compound (1.258(2) Å). 10

The M–C¹ and M–C² distances are short enough for the metal to make the π -interaction with the inner olefin carbons of the dad ligand; hence the fold angle θ between the planes defined by the atoms M, N¹, N² and N¹, C¹, C², N² lies in the range 120.0(3)–121.1(3)°; the values are unexceptionably comparable to those found for the related dad complexes of early transition metals.²⁴ The M–N¹ and M–N² distances are similar to those found for NbCl₂Cp(η^4 -supine-^tBu-dad) (2.015(4) and 2.021(4) Å)²² and TaCl₂Cp*(η^4 -supine-^tPr-dad) (2.000-(4) and 2.006(4) Å).¹⁴

Alkylation of Dichloro Complexes of Niobium and Tantalum. The orientation of the dad ligand is mutable when the ligands on the tantalum, i.e., Cl or alkyl, were chosen. As shown in eq 1, the supine-dad ligand of 3a and 6 flipped to the prone form in the dimethyl complexes TaMe₂Cp*(η⁴-prone-p-MeOC₆H₄dad) (10) and TaMe₂Cp*(η^4 -prone-o-Tol-dad) (11), which were respectively derived from the reactions of **3a** and 6 with dimethylmagnesium in THF. It is not curious that reaction of the dichloro complexes 3a or 6 with 2 equiv of MeMgI led to a complicated mixture including monomethyl derivatives since such partial alkylation has already been noted for some tantalum complexes.³ The ¹H NMR spectrum of **10** and **11** displayed a singlet at δ 0.39 and 0.36, respectively, due to Ta-Me.⁴ A singlet due to $H^{2,3}$ was observed at δ 5.84 for 10 and at δ 5.50 for **11**, being higher fields compared to that (δ 6.00) of the dichloro complexes 3a and 6. Thus, the chemical shift value of H^{2,3} along with NOESY measurements indicated that 10 and 11 favored the prone orientation, which was further revealed by the X-ray analysis for 10 (vide infra).

The reactions of the dad-dichloro complexes with Mg-(CH₂Ph)₂ were then examined. The bis(benzyl) complexes of tantalum and niobium, M(CH₂Ph)₂Cp*(η^4 *prone*-dad) (**12**, M = Ta, dad = *p*-MeOC₆H₄-dad; **13**, M = Nb, dad = *p*-MeOC₆H₄-dad; **14**, M = Ta, dad = Cydad), were obtained in modest yield from the reactions of the corresponding dichloro compounds, **3a**, **4a**, and **7**, with Mg(CH₂Ph)₂ in THF. The reaction of the *o*-Toldad complex **6** with an excess of Mg(CH₂Ph)₂ in diethyl ether did not give the corresponding bis(benzyl) complex Ta(CH₂Ph)₂Cp*(η^4 -*prone-o*-Tol-dad) (**15**); however, a mono(benzyl) complex Ta(CH₂Ph)ClCp*(η^4 -*supine-o*-Toldad) (**16**) was obtained in 43% yield instead, although

we were able to prepare the dimethyl complex 11. This might be ascribed to the congestion among the osubstituted dad ligand, the Cp* ligand, and the first introduced benzyl group. Structures of 12-14 and 16 were determined by NMR spectroscopy including NOE-SY measurements and further by the crystallographic studies for 14 and 16 (vide infra), indicating interesting structural features: the dad ligands of the complexes **12–14** preferred the *prone* orientation, the same geometry as that of the dimethyl complexes, while the complex **16** was found to be the *supine* one. Notably, such a delicate balance of the substituents on the tantalum atom can direct the orientation of the dad ligand. Thus, the dialkylation caused the change of the dad ligand from the *supine* conformation to the *prone* one.

The bis(benzyl) complexes 12-14 thus isolated were thermally stable in the solid state, but in solution these complexes gradually decomposed to give the corresponding benzylidene complexes M(=CHPh)Cp*(η^4 prone-dad) (17, M = Ta, dad = p-MeOC₆H₄-dad; 18, M = Nb, dad = p-MeOC₆H₄-dad; **19**, M = Ta, dad = Cydad) with the release of toluene, monitored by the ¹H NMR spectra. These benzylidene complexes decomposed gradually during the attempted isolations, and hence these were characterized in solution by their NMR spectroscopy; the ¹H NMR spectra exhibited a characteristic α-benzylidene proton signal downfield of 7.95-8.49 ppm, suggesting the presence of a single rotamer. For the complex 19, the most stable benzylidene complex among them, NOESY measurements clearly revealed that the methyl signal of the Cp* ligand was correlated with the H^{2,3} protons of the dad ligand, the ipso protons of the two cyclohexyl groups, and the α -benzylidene proton, suggesting distinctly that the dad ligand kept the prone orientation and that the phenyl group of the benzylidene moiety pointed the direction opposite the Cp* ligand, an *anti*-rotamer. In the ¹³C NMR spectrum, the benzylidene carbon atom of 19 appeared at δ 223 with a coupling constant $J_{C-H} = 128.5$ Hz.

Crystal Structures of Alkylated Complexes 10, **14**, **and 16.** The crystal structures of complexes **10**, **14**,

⁽²³⁾ Yasuda, H.; Tatsumi, K.; Okamoto, T.; Mashima, K.; Lee, K.; Nakamura, A.; Kai, Y.; Kanehisa, N.; Kasai, N. *J. Am. Chem. Soc.* **1985**, *107*, 2410.

⁽²⁴⁾ Scholz, J.; Dietrich, A.; Schumann, H.; Thiele, K.-H. *Chem. Ber.* **1991**, *124*, 1035.

Figure 2. Molecular structure of 10 with the labeling scheme.

Figure 3. Molecular structure of 14 with the labeling scheme.

Figure 4. Molecular structure of 16 with the labeling scheme.

and **16** are given in Figures 2, 3, and 4, respectively, and selected metrical parameters are summarized in Table 2. Notable geometric features are that the complexes **10** and **14** adopt the *prone* conformation of the dad ligand as ascertained by the larger angles θ (127.3-

Table 2. Selected Bond Distances and Angles for
Complexes 10, 14, and 16

	I ² ,	,	
	10	14	16
	Bond Distan	ces (Å)	
Ta-N(1)	2.024(4)	2.047(5)	2.008(6)
Ta-N(2)	2.064(4)	2.028(5)	2.047(6)
Ta-C(1)	2.555(6)	2.472(6)	2.439(7)
Ta-C(2)	2.548(6)	2.494(6)	2.477(7)
Ta-Cl(1)			2.495(2)
Ta-C(3)	2.242(6)	2.334(6)	2.324(7)
Ta-C(4)	2.213(6)	2.279(6)	
N(1) - C(1)	1.372(7)	1.376(7)	1.388(8)
N(2) - C(2))	1.379(7)	1.380(8)	1.371(8)
C(1) - C(2)	1.391(8)	1.361(9)	1.384(10)
Ta-CCP ^a	2.153	2.196	2.131
	Bond Angles	(deg)	
N(1)-Ta-N(2)	83.2(2)	83.8(2)	82.9(2)
Cl(1)-Ta-C(3)			77.3(2)
C(3)-Ta-C(4)	75.5(2)	74.0(2)	
Ta-N(1)-C(1)	95.6(3)	90.3(4)	89.9(4)
Ta-N(2)-C(2)	93.4(3)	92.1(4)	90.7(5)
N(1)-C(1)-C(2)	117.0(5)	120.7(6)	119.3(7)
N(2)-C(2)-C(1)	120.5(5)	118.4(6)	116.9(7)
dad-fold angle ^{b}	127.3(3)	122.8(3)	118.6(3)

 a CCP = centroid of cyclopentadienyl ring. b dad-fold angle: dihedral angle between the N(1)-Ta-N(2) plane and N(1)-C(1)-C(2)-N(2) plane.

(3)° for **10** and 122.8(3)° for **14**) between the planes defined by the atoms Ta, N¹, N² and N¹, C¹, C², N² and that in the monoalkylated complex **16** the *supine*-dad conformation is retained, as confirmed by the fold angle θ (118.8°), almost the same as that of the *supine*-dad complexes such as **3a**,**b**, **4a**, **5**, and **7**. The dissymmetry on the tantalum atom of **16** resulted in the different Ta–N distances. The Ta–N distance (2.047(6) Å) *trans* to a benzyl ligand is longer than that (2.008(6) Å) *trans* to a chloro ligand, being in good accordance with the tendency that Ta–N distances (av 2.04 Å) of dialkyl complexes **10** and **14** are slightly longer than those (av 2.02 Å) of the dichloro complexes **3a**,**b**, **4a**, **5**, and **7**.

In the *prone* complexes **10** and **14**, the Ta-C(dad) distances (2.555(6) and 2.548(6) Å for **10**; 2.472(6) and 2.494(6) Å for **14**) are longer than those (2.451(7)-2.480-(4) Å) found for the *supine* complexes **3a,b, 4a, 5**, and **7**, indicating that the π -donation of the C=C bond of the *prone*-dad is weaker than that of the *supine* one. The weaker π -interaction of the *prone*-butadiene ligand rather than the *supine* one has already been argued for the tantalum-bis(1,3-butadiene) complexes.²³ The Ta-C(alkyl) distances of the dimethyl complex **10** (2.242(6) and 2.213(6) Å) are slightly shorter than those (2.334-(6) and 2.279(6) Å) of the bis(benzyl) complex **14** and that (2.324(7) Å) of the monobenzyl complex **16**.

Synthesis and Characterization of 16-Electron dad-**Butadiene Complexes.** Introduction of a 1,3butadiene ligand to the metal center led to the formation of 16-electron metalla-2,5-diazacyclopent-3-ene complexes. Treatment of **3a** with a slight excess of butadiene-magnesium adduct, which is a synthon of the diene dianion,^{25,26} in THF developed the intense red color of

^{(25) (}a) Fujita, K. Ohnuma, Y.; Yasuda, H.; Tani, H. *J. Organomet. Chem.* **1976**, *113*, 201. (b) Akutagawa, S.; Otsuka, S. *J. Am. Chem. Soc.* **1976**, *98*, 7420. (c) Yasuda, H.; Nakano, Y.; Natsukawa, K.; Tani, H. *Macromolecules* **1978**, *11*, 586. (d) Kai, Y.; Kanehisa, N.; Miki, K.; Kasai, N.; Mashima, K.; Yasuda, H.; Nakamura, A. *Chem. Lett.* **1982**, 1277.

the solution, from which a dark red mixed-ligand complex TaCp*(η^2 -N,N-p-MeOC₆H₄-dad)(η^4 -s-cis-1,3butadiene) (20a) was isolated in 52% yield. Similar treatments of 3b, 4a,b, and 5 afforded mixed-ligand complexes 20b, 21a,b, and 22, respectively. A Cy-dad derivative 23 was also obtained in the same manner as a deep purple crystalline solid.

Spectroscopic data of these complexes are straightforward; their ¹H NMR spectra exhibited one set of signals due to both butadiene and dad ligands in exact 1:1 integral ratio. The dad ligand was found to be metalla-2,5-diazacyclopent-3-ene (mode A in Chart 1); the inner H^{2,3} protons of the dad ligand were observed at much lower field (δ 6.71 for **20a**, δ 6.75 for **20b**, δ 6.67 for **21a**, δ 6.73 for **21b**, δ 6.73 for **22**, δ 6.68 for **23**) than those found for the dichloro complexes 3-7, chemical shift values indicating the absence of the interaction between the olefinic C=C bond of the dad and the metal center. The butadiene ligand adopted a supine, η^4 -s-cis conformation as judged by NMR spectroscopy; the chemical shift values of three kinds of butadiene protons were typical of the η^4 -s-cis-diene coordination, and, in addition, the *supine* conformation of the butadiene ligand was indicated by the downfieldshifted central protons of the butadiene ligand. The *supine* conformation of the diene and the metallacyclic conformation of the dad were further revealed by X-ray analysis for the complexes **20a** and **23** (vide infra).

All complexes 20-23 showed characteristic intense red or purple color due to LMCT bands (512-542 nm), where the filled $N(p\pi)$ orbital is donated to the empty Ta($d\pi^*$) orbital, in accordance with the metalla-2,5diazacyclopent-3-ene structure (mode A). The $p\pi$ -d π interaction somewhat stabilized the coordinative unsaturation around the 16-electron tantalum center of the complexes **20–23**. Such an intense color corresponds to the LMCT band of coordinatively unsaturated transition metal complexes, i.e., Cr,²⁷ Mo,^{28,29} Re,³⁰ Ru,³¹⁻⁴²

Figure 5. Molecular structure of 23 with the labeling scheme.

Os, 43,44 Ir, 45,46 and Pd, 47 in which a filled $p\pi$ orbital of a heteroatom donates some electron densities to a vacant $d\pi$ orbital of metal as theoretically pointed out for 16electron half-sandwich transition metal complexes.^{48,49}

Crystal Structure of 16-Electron Mixed-Ligand Complexes 20a and 23. Single-crystal X-ray structural studies of 20a and 23 revealed the constitution and geometry; the molecular view of 23 is shown in Figure 5, while that of **20a** has already been reported.¹² Selected metrical parameters of 20a and 23 are given in Table 3. Half-metallocene complexes 20a and 23 have

- (27) Sellmann, D.; Ludwig, W.; Huttner, G.; Zsolnai, L. J. Organomet. Chem. 1985, 294, 199.
- (28) Ashby, M. T.; Enemark, J. H. J. Am. Chem. Soc. 1986, 108, 730
- (29) Cleland, W. E. J.; Barnhart, K. M.; Yamanouchi, K.; Collison, D.; Mabbs, F. E.; Ortega, R. B.; Enemark, J. H. *Inorg. Chem.* **1987**, 26. 1017
- (30) Chang, L.; Aizawa, S.; Heeg, M. J.; Deutsch, E. Inorg. Chem. 1991, 30, 4920.
- (31) Mashima, K.; Mikami, A.; Nakamura, A. Chem. Lett. 1992, 1473
- (32) Mashima, K.; Kaneyoshi, H.; Kaneko, S.; Mikami, A.; Tani, K.; Nakamura, A. Organometallics 1997, 16, 1016.
 (33) Mashima, K.; Kaneko, S.; Tani, K.; Kaneyoshi, H.; Nakamura,
- A. J. Organomet. Chem., in press.
- (34) Campion, B. K.; Heyn, R. H.; Tilley, T. D. J. Chem. Soc., Chem. Commun. 1988, 278.
- (35) Johnson, T. J.; Folting, K.; Streib, W. E.; Martin, J. D.; Huffman, J. C.; Jackson, S. A.; Eisenstein, O.; Caulton, K. G. Inorg. Chem. 1995, 34, 488.
- (36) Catala, R.-M.; Cruz-Garritz, D.; Sosa, P.; Terreros, P.; Torrens, H.; Hills, A.; Hughes, D. L.; Richards, R. L. J. Organomet. Chem. 1989, 359, 219.
- (37) Kölle, U.; Kossakowski, J. J. Chem. Soc., Chem. Commun. 1988, 549
- (38) Koelle, U.; Kossakowski, J. J. Organomet. Chem. 1989, 362, 383.
- (39) Koelle, U.; Rietmann, C.; Englert, U. J. Organomet. Chem. 1992, 423, C20.
- (40) Loren, S. D.; Campion, B. K.; Heyn, R. H.; Tilley, T. D.; Bursten, B. E.; Luth, K. W. J. Am. Chem. Soc. 1989, 111, 4712.
 (41) Takahashi, A.; Mizobe, Y.; Matsuzaka, H.; Dev, S.; Hidai, M.
- J. Organomet. Chem. 1993, 456, 243
- (42) Kee, T. P.; Park, L. Y.; Robbins, J.; Schrock, R. R. J. Chem. Soc., Chem. Commun. 1991, 121.
- (43) Michelman, R. I.; Andersen, R. A.; Bergman, R. G. J. Am. Chem. Soc. 1991, 113, 5100.
- (44) Michelman, R. I.; Ball, G. E.; Bergman, R. G.; Andersen, R. A. Organometallics 1994, 13, 869.
- (45) Garcia, J. J.; Torrens, H.; Adams, H.; Bailey, N. A.; Maitlis, P. M. J. Chem. Soc., Chem. Commun. **1991**, 74.
- (46) Garcia, J. J.; Torrens, H.; Adams, H.; Bailey, N. A.; Scacklady, (40) Garcia, J. J.; Forrens, H.; Adams, H.; Baney, N. A.; Scacklady,
 A.; Maitlis, P. M. *J. Chem. Soc., Dalton Trans.* **1993**, 1529.
 (47) Mashima, K.; Kaneko, S.; Tani, K. *Chem. Lett.* **1997**, 347.
 (48) Hofmann, P. *Angew. Chem., Int. Ed. Engl.* **1977**, *8*, 536.
 (49) Siedle, A. R.; Newmark, R. A.; Pignolet, L. H.; Wang, D. X.;
- Albright, T. A. Organometallics 1986, 5, 38.

^{(26) (}a) Rieke, R. D. Science 1989, 246, 1260. (b) Xiong, H.; Rieke, R. D. J. Org. Chem. 1989, 54, 3247. (c) Rieke, R. D.; Xiong, H. J. Org. Chem. 1991, 56, 3109. (d) Xiong, H.; Rieke, R. D. Tetrahedron Lett. 34, 6011. (g) Sell, M. S.; Xiong, H.; Rieke, R. D. Tetrahedron Lett. 1993, 34. 6006.

Table 3. Selected Bond Distances and Angles for Complexes 202 and 23

Com	nexes sou and so	,
	20a	23
Bo	ond Distances (Å)	
Ta-N(1)	2.128(4)	2.118(8)
Ta-N(2)	2.128(4)	2.116(9)
Ta-C(3)	2.267(6)	2.26(1)
Ta-C(4)	2.402(7)	2.42(1)
Ta-C(5)	2.411(6)	2.41(1)
Ta-C(6)	2.280(6)	2.26(1)
N(1) - C(1)	1.387(7)	1.35(1)
N(2) - C(2)	1.381(7)	1.36(1)
C(1)-C(2)	1.323(8)	1.35(2)
C(3)-C(4)	1.43(1)	1.42(2)
C(5)-C(6)	1.44(1)	1.43(2)
C(4)-C(5)	1.36(1)	1.39(2)
Ta-CCP ^c	2.120	2.139
В	ond Angles (deg)	
N(1)-Ta-N(2)	75.6(2)	75.1(3)
C(3) - Ta - C(6)	74.3(3)	76.7(5)
Ta-N(1)-C(1)	110.4(4)	112.0(7)
Ta - N(2) - C(2)	110.4(4)	114.4(7)
N(1)-C(1)-C(2)	117.6(5)	117.0(10)
N(2)-C(2)-C(1)	117.8(5)	116(1)
dad-fold angle ^a	154.9(3)	155.9(3)
bd-fold angle ^b	95.8(3)	98.9(3)
~		

^a dad-fold angle: dihedral angle between the N(1)-Ta-N(2) plane and N(1) - C(1) - C(2) - N(2) plane. ^b bd-fold angle: dihedral angle between the C(3)-Ta-C(6) plane and C(3)-C(4)-C(5)-C(6) plane. ^{*c*} CCP = centroid of cyclopentadienyl ring.

one supine- η^4 -s-cis-1,3-butadiene ligand and one η^2 -N,N-endiamido²⁻ ligand (mode A); thus the dad coordination mode is distinctly different from the supineand *prone*- σ^2 , π -endiamido structure (mode B) of the dad ligand found for dichloro and dialkyl complexes (vide supra). The trigonal planar nitrogen atom is preferred to make the $p\pi$ -d π interaction with the metal center; the sums of three angles around the nitrogen atoms are $N^1=359.8^\circ$ and $N^2=360.0^\circ$ for 20a and $N^1=359.6^\circ$ and $N^2 = 358.8^\circ$ for **23**. The fold angle θ (154.9(3)° for **20a** and 155.9(3)° for **23**) between the planes defined by the atoms Ta, N^1 , N^2 and N^1 , C^1 , C^2 , N^2 is larger than that (140.8°) of $ZrCp_2(\eta^2-N, N-Ph_4-dad)$ (Ph₄-dad) = 1,2,3,4-tetraphenyl-1,4-diaza-1,3-butadiene),⁵⁰ an isoelectronic analogy to **20–23**, indicating that the fivemembered ring system is not so puckered, but is deformed away from the Cp* ligand so as to minimize the steric congestion.

The Ta-N distances (2.128(4) and 2.128(4) Å for **20a**, 2.118(8) and 2.116(9) Å for 23) are substantially longer than those of dichloro complexes 3a,b, 4a, 5, and 7 (av 2.02 Å), dialkyl complexes 10 and 14 (av 2.04 Å), and a monoalkyl complex **16** (av 2.03 Å). The N–Ta–N bite angle of the dad ligand is 75.6(2)° for 20a and 75.1(3)° for 23, being smaller than that of the dichloro complexes (av 83.0°), the dialkyl complexes (av 83.5°), and the monoalkyl complex (82.9(2)°). These findings may be attributed to a partial contribution of mode C (Chart 1), although a group 6 metal complex WCl₂(N^tBu)(^tBudad), which is a typical example of a dad complex having the mode C structure, has much longer W-N distances (2.507(7) and 2.533(7) Å), and a much narrower N–W–N bite angle $(67.0(2)^{\circ})$.⁵¹

The butadiene ligand bound to the tantalum atom usually has supine-s-cis- η^4 -coordination.²³ The shortlong-short C-C bond sequence of the butadiene moiety is also normal for the diene complexes of early transition metals having a large contribution of metallacyclopentene canonical form, being in good accordance with the obstacle hold angle (95.8(3)° for 20a, 98.9(3)° for 23) between the planes defined by the atoms Ta, C³, C⁶ and C³, C,⁴ C,⁵ C.⁶

Conclusion

In this contribution, we have synthesized and characterized various half-sandwich complexes of niobium and tantalum bearing a 1,4-diaza-1,3-butadiene ligand and have established that the coordination mode of the dad ligand in the half-metallocene complexes is mutually alterable; three modes A, B, and D (Chart 1), and additionally, for the mode B, two conformations, supine and prone, are demonstrated. The coordination mode of the dad ligand depends sensitively on the ligand environment at the metal center. Dichloro complexes, 3-7, adopt a supine- σ^2 , π -endiamido structure (supine-B), while a dichloro $({}^{1}\mathrm{Pr})_{2}\mathrm{C}_{6}\mathrm{H}_{3}$ -dad complex **9** favors the η^{2} -C,N-coordination (mode D) due to the bulky N-substituted ligand. Reactions of dichloro complexes with $MgMe_2$ and $Mg(CH_2Ph)_2$ gave dimethyl complexes **10** and 11 and dibenzyl complexes 12-14. During the reaction course, the *supine* orientation of the dad ligand bound to the metal was flipped to the *prone* one (*prone*-B). Noteworthy is that this turn of the dad ligand requires dialkylation, in sharp contrast to the steric control of preferential conformation of the dad ligand,¹⁴ since monobenzylation resulted in the formation of the supine complex 16. In 16-electron complexes 20–23, the introduction of a diene ligand resulted in the formation of the metallacyclic structure of the dad ligand (mode A), in which the metal center has no direct π -interaction with the inner two carbons of the dad ligand. The coordinative unsaturation around the metal center having the mode A dad ligand was stabilized by the donation of the filled $p\pi(N)$ orbital to the vacant $d\pi$ -(metal) orbital; their LMCT band appeared around 512– 542 nm. Thus, the adequate flexibility (hapticity and conformation) of the dad ligand may be expected to play a unique role in the catalytic process.

Experimental Section

General Procedures. All manipulations involving air- and moisture-sensitive organometallic compounds were carried using standard Schlenk techniques under argon. Complexes $MCl_4(\eta^5-C_5R_5)$ (M = Ta, R = CH₃ (**1a**); M = Ta, R = H (**1b**); M = Nb, $R = CH_3$ (2a); M = Nb, R = H (2b)) were prepared according to the literature.⁵² Hexane, THF, and toluene were dried and deoxygenated by distillation over sodium benzophenone ketyl under argon. Benzene- d_6 and THF- d_8 were distilled from Na/K alloy and thoroughly degassed by trap-to-trap distillation before use. 1,4-Diaza-1,3-butadiene ligands (N,Ndisubstituted aliphatic and aromatic diimines) were prepared according to the literature.⁵³ A low-valent tantalum complex, [TaCl₂Cp*]₂ (8), was prepared according to the literature.^{16,17}

⁽⁵⁰⁾ Scholz, J.; Dlikan, M.; Ströhl, D.; Dietrich, A.; Schumann, H.; Thiele, K.-H. Chem. Ber. 1990, 123, 2279.

⁽⁵¹⁾ Dreisch, K.; Andersson, C.; Stålhandske, C. Polyhedron 1993, 12. 1335.

⁽⁵²⁾ Cardoso, A. M.; Clark, R. J. H.; Moorhouse, S. J. Chem. Soc.,

 ⁽⁵²⁾ Cardoso, A. M., Clark, R. J. H., Mounduse, S. J. Chem. Soc., Dalton Trans. 1980, 1156.
 (53) Kliegman, J. M.; Barnes, R. K. J. Org. Chem. 1970, 35, 3140. Van Koten, G.; Vrieze, K. Adv. Organomet. Chem. 1982, 21, 151.

The ¹H (500, 400, 300, and 270 MHz) and ¹³C (125, 100, 75, and 68 MHz) NMR spectra in C₆D₆ were measured on a Varian Unity Inova-500, a JEOL JNM-AL400, a Varian Mercury-300, or a JEOL GSX-270 spectrometer. When benzene-d₆ was used as the solvent, the spectra were referenced to the residual solvent protons at δ 7.20 in the ¹H NMR spectra and to the residual solvent carbons at δ 128.0 in the ¹³C NMR spectra. When $THF-d_8$ was used as the solvent, the spectra were referenced to the residual solvent protons at δ 1.73 in the ¹H NMR spectra and to the residual solvent carbons at δ 25.2 in the ¹³C NMR spectra. Assignments for ¹H and ¹³C NMR peaks for some of the complexes were aided by 2D ¹H-¹H COSY, 2D ¹H-¹H NOESY, and 2D ¹H-¹³C HMQC spectra, respectively. Other spectra were recorded by the use of the following instruments: IR, JASCO FT/IR-230; low- and high-resolution mass spectra, JEOL SX-102; UV/vis spectra, JASCO V-570; elemental analyses, Perkin-Elmer 2400. All melting points were measured in sealed tubes under argon atmosphere and were not corrected.

Preparation of TaCl₂Cp*(p-MeOC₆H₄-dad) (3a). A solution of Li₂(MeOC₆H₄-dad)(thf)₄ (2.35 mmol) in THF (20 mL) was added to a solution of 1a (1.03 g, 2.24 mmol) in THF (20 mL) at -78 °C. The reaction mixture was allowed to warm to room temperature and then was stirred for 6 h at 25 °C. All volatiles were removed under reduced pressure to leave a residue, which was washed with eight portions of THF (2 mL), giving 3a as yellow microcrystals in 40% yield, mp 237-246 °C (dec). ¹H NMR (270 MHz, C₆D₆, 35 °C): δ 2.08 (s, 15H, C₅-Me5), 3.41 (s, 6H, OCH3), 6.00 (s, 2H, N=CH-), 6.86 (m, 4H, m-C₆H₄), 7.42 (m, 4H, o-C₆H₄). ¹³C NMR (100 MHz, C₆D₆, 35 °C): δ 12.6 (q, ${}^{1}J_{C-H} = 128$ Hz, $C_{5}Me_{5}$), 55.1 (q, ${}^{1}J_{C-H} = 143$ Hz, OCH₃), 110.8 (d, ${}^{1}J_{C-H} = 182$ Hz, N=CH-), 113.7 (d, ${}^{1}J_{C-H}$ = 159 Hz, m-C₆H₄), 121.9 (s, C_5 Me₅), 127.1 (d, ${}^{1}J_{C-H} = 161$ Hz, o-C₆H₄), 143.9 (s, *ipso*-C₆H₄), 158.3 (s, p-C₆H₄). IR (KBr): ν (CN)/cm⁻¹ 1505 (s). Anal. Calcd for C₂₆H₃₁Cl₂N₂O₂Ta: C, 47.65; H, 4.77; N, 4.27. Found: C, 47.51; H, 4.79; N, 4.60.

Similar procedures were used for the synthesis of **3b**, **4a**, and **4b**.

3b: 46% yield, mp 190–220 °C (dec). ¹H NMR (270 MHz, C₆D₆, 35 °C): δ 3.42 (s, 6H, OCH₃), 6.08 (s, 5H, C₅H₅), 6.09 (s, 2H, N=CH–), 6.88 (m, 4H, *m*-C₆H₄), 7.22 (m, 4H, *o*-C₆H₄). ¹³C NMR (100 MHz, THF-*d*₈, 35 °C): δ 55.6 (q, ¹*J*_{C-H} = 143 Hz, OCH₃), 110.8 (d, ¹*J*_{C-H} = 182 Hz, N=CH–), 111.6 (d, ¹*J*_{C-H} = 181 Hz, C₅H₅), 114.6 (d, ¹*J*_{C-H} = 159 Hz, *m*-C₆H₄), 125.4 (d, ¹*J*_{C-H} = 160 Hz, *o*-C₆H₄), 144.4 (s, *ipso*-C₆H₄), 158.8 (s, *p*-C₆H₄). IR (KBr): ν (CN)/cm⁻¹ 1511 (s). Anal. Calcd for C₂₁H₂₁Cl₂N₂O₂-Ta: C, 43.10; H, 3.62; N, 4.79. Found: C, 42.79; H, 3.84; N, 4.87.

4a: 32% yield, mp 187–191 °C (dec). ¹H NMR (400 MHz, C₆D₆, 35 °C): δ 1.95 (s, 15H, C₅Me₅), 3.40 (s, 6H, OCH₃), 6.05 (s, 2H, N=CH–), 6.84 (m, 4H, *m*-C₆H₄), 7.47 (m, 4H, *o*-C₆H₄). ¹³C NMR (100 MHz, C₆D₆, 35 °C): δ 13.3 (q, ¹J_{C-H} = 129 Hz, C₅*Me*₅), 55.2 (q, ¹J_{C-H} = 144 Hz, OCH₃), 112.8 (d, ¹J_{C-H} = 181 Hz, N=CH–), 113.7 (d, ¹J_{C-H} = 159 Hz, *m*-C₆H₄), 124.1 (s, C₅-Me₅), 126.5 (d, ¹J_{C-H} = 161 Hz, *o*-C₆H₄), 144.5 (s, *ipso*-C₆H₄), 158.5 (s, *p*-C₆H₄). IR (KBr): ν (CN)/cm⁻¹ 1504 (s). Anal. Calcd for C₂₆H₃₁Cl₂N₂O₂Nb: C, 55.04; H, 5.51; N, 4.94. Found: C, 55.01; H, 5.63; N, 5.05.

4b: 18% yield, mp 172–183 °C (dec). ¹H NMR (400 MHz, C₆D₆, 35 °C): δ 3.40 (s, 6H, OCH₃), 6.12 (s, 5H, C₅H₅), 6.19 (s, 2H, N=CH–), 6.85 (m, 4H, *m*-C₆H₄), 7.27 (m, 4H, *o*-C₆H₄). ¹³C NMR (100 MHz, C₆D₆, 35 °C): δ 55.3 (OCH₃), 111.9 (C₅H₅), 112.2 (N=CH–), 114.6 (*m*-C₆H₄), 124.8 (*o*-C₆H₄), 144.9 (*ipso*-C₆H₄), 158.8 (*p*-C₆H₄). IR (KBr): ν (CN)/cm⁻¹ 1504 (s). Anal. Calcd for C₂₁H₂₁Cl₂N₂O₂Nb: C, 50.73; H, 4.26; N, 5.63. Found: C, 50.51; H, 4.61; N, 5.93.

Preparation of TaCl₂Cp*(*p***-Tol-dad) (5).** A solution of $Li_2(p$ -Tol-dad)(thf)₄ (2.72 mmol) in THF (15 mL) was added to a solution of **1a** (1.19 g, 2.59 mmol) in THF (10 mL) at -78 °C. The reaction mixture was allowed to warm to room temperature with magnetic stirring. After the mixture was

stirred for 16 h at 25 °C, all volatiles were removed under reduced pressure to give a residue, which was washed with five portions of THF (2 mL), giving **5** as yellow microcrystals, 57% yield, mp 258–261 °C (dec). ¹H NMR (400 MHz, C₆D₆, 35 °C): δ 2.07 (s, 15H, C₅Me₅), 2.23 (s, 6H, CH₃), 6.00 (s, 2H, N= CH–), 7.07 (m, 4H, *p*-C₆H₄), 7.39 (m, 4H, *o*-C₆H₄). ¹³C NMR (100 MHz, C₆D₆, 35 °C): δ 12.8 (q, ¹J_{C-H} = 128 Hz, C₅*Me*₅), 21.0 (q, ¹J_{C-H} = 126 Hz, CH₃), 110.8 (d, ¹J_{C-H} = 182 Hz, N= CH–), 122.1 (s, *C*₅Me₅), 126.0 (d, ¹J_{C-H} = 165 Hz, *o*-C₆H₄), 129.6 (d, ¹J_{C-H} = 159 Hz, *m*-C₆H₄), 135.5 (s, *p*-C₆H₄), 148.3 (s, *ipso*-C₆H₄). IR (KBr): ν (CN)/cm⁻¹ 1505 (s). Anal. Calcd for C₂₆H₃₁Cl₂N₂Ta: C, 50.09; H, 5.01; N, 4.49. Found: C, 49.77; H, 4.99; N, 4.55.

Preparation of TaCl₂Cp*(o-Tol-dad) (6). To a solution of 1a (1.86 g, 4.05 mmol) in THF (16 mL) cooled at -78 °C was added a solution of Li2(o-Tol-dad)(thf)4 (1.05 equiv, 4.26 mmol) in THF (16 mL). The reaction mixture was allowed to warm to room temperature and was stirred for 10 h at room temperature. All volatiles were removed under reduced pressure. Complex 6 was obtained as yellow microcrystals, 74% yield, mp 155–158 °C (dec). ¹H NMR (400 MHz, C₆D₆, 35 °C): δ 1.84 (s, 6H, CH₃), 1.97 (s, 15H, C₅Me₅), 5.79 (s, 2H, N= CH-), 7.05 (d, 2H, 3-C₆H₄), 7.06 (t, 2H, 4-C₆H₄), 7.23 (t, 2H, 5-C₆H₄), 8.62 (d, 2H, 6-C₆H₄). 13 C NMR (100 MHz, C₆D₆, 35 °C): δ 12.0 (q, ${}^{1}J_{C-H} = 128$ Hz, $C_{5}Me_{5}$), 19.1 (q, ${}^{1}J_{C-H} = 127$ Hz, CH₃), 110.4 (d, ${}^{1}J_{C-H} = 183$ Hz, N=CH–), 122.2 (s, C_{5} -Me₅), 126.0 (d, ${}^{1}J_{C-H} = 163$ Hz, 6-C₆H₄), 126.4 (d, ${}^{1}J_{C-H} = 162$ Hz, 5-C₆H₄), 126.6 (d, ${}^{1}J_{C-H} = 161$ Hz, 3-C₆H₄), 130.2 (d, ${}^{1}J_{C-H}$ = 159 Hz, $4 \cdot C_6H_4$), 134.7 (s, $2 \cdot C_6H_4$), 149.3 (s, $1 \cdot C_6H_4$). IR (KBr): v(CN)/cm⁻¹ 1486 (s). Anal. Calcd for C₂₆H₃₁Cl₂N₂Ta: C, 50.09; H, 5.01; N, 4.49. Found: C, 50.00; H, 5.16; N, 4.16.

Preparation of TaCl₂Cp*(Cy-dad) (7). A solution of Li₂-(Cy-dad)(thf)₄ (0.672 mmol) in THF (8.0 mL) was added to a solution of **1a** (293 mg, 0.640 mmol) in THF (8.0 mL) at -78 °C. The reaction mixture was allowed to warm to room temperature. After the mixture was stirred for 10 h at 25 °C, all volatiles were removed under reduced pressure to leave a residue, which was washed with five portions of THF (2 mL) to give 7 as yellow microcrystals, 60% yield, mp 160-163 °C (dec). ¹H NMR (400 MHz, C₆D₆, 35 °C): δ 1.05, 1.25, 1.49, 1.56, 1.64, 1.85, 2.95, and 3.99 (m, 22H, cyclohexyl protons), 2.16 (s, 15H, C₅Me₅), 6.22 (s, 2H, N=CH-). ¹³C NMR (100 MHz, C₆D₆, 35 °C): δ 11.8 (q, ¹J_{C-H} = 128 Hz, C₅Me₅), 26.2, 26.5, 26.7, 27.6, 39.4, and 64.0 (cyclohexyl carbons), 105.1 (d, ¹*J*_{C-H} = 178 Hz, N=CH-), 120.5 (s, C_5 Me₅). IR (KBr): ν (CN)/cm⁻¹ 1453 (s). Anal. Calcd for C₂₄H₃₉Cl₂N₂Ta: C, 47.46; H, 6.47; N, 4.61. Found: C, 47.34; H, 6.43; N, 4.46.

Preparation of TaCl₂Cp*(η²-(ⁱPr)₂C₆H₃-dad) (9). Complex **8** (6.5 mg, 0.0084 mmol) and (ⁱPr)₂C₆H₃-dad (3.2 mg, 0.0084 mmol) were dissolved in 0.58 mL of C₆D₆ in a 5 mm NMR tube. After stirring at 35 °C for 12 h, the η²-imine complex **9** was formed. ¹H NMR (400 MHz, C₆D₆, 35 °C): δ 1.09 (d, 3H, CH(CH₃)(CH₃)), 1.10 (d, 3H, CH(CH₃)(CH₃)), 1.14 (d, 6H, CH(CH₃)₂), 1.24 (d, 6H, CH(CH₃)₂), 1.41 (d, 3H, CH-(CH₃)(CH₃)), 1.55 (d, 3H, CH(CH₃)(CH₃)), 2.07 (s, 15H, C₅Me₅), 2.34 (m, 1H, CH(CH₃)₂), 3.16 (m, 2H, CH(CH₃)₂), 3.67 (d, ³J_{H-H} = 7.3 Hz, 1H, N=CH- (coordinated)), 4.29 (m, 1H, CH(CH₃)₂), 7.15 (m, 6H, C₆H₃), 7.73 (d, ³J_{H-H} = 7.3 Hz, 1H, N=CH- (free)).

Preparation of TaMe₂Cp*(*p***-MeOC₆H₄-dad) (10) and TaMe₂Cp*(***o***-Tol-dad) (11). A solution of MgMe₂ (2.01 mmol) in THF (1.8 mL) was added to a solution of 3a** (881 mg, 1.34 mmol) in THF (50 mL) at -78 °C. The reaction mixture was allowed to warm to room temperature. After the mixture was stirred for 6 h at 25 °C, all volatiles were removed under reduced pressure to give a residue, from which the product was extracted into 20 portions of hexane (60 mL). Concentration of the solution to ca. 5 mL gave **10** as yellow microcrystals in 81% yield, mp 116–123 °C (dec). ¹H NMR (400 MHz, C₆D₆, 35 °C): δ 0.39 (s, 6H, Ta–CH₃), 1.84 (s, 15H, C₅Me₅), 3.42 (s, 6H, OCH₃), 5.84 (s, 2H, N=CH–), 6.90 (m, 4H, *m*-C₆H₄), 7.12

(m, 4H, o-C₆H₄). ¹³C NMR (100 MHz, C₆D₆, 35 °C): δ 11.3 (q, ¹J_{C-H} = 127 Hz, C₅Me₅), 44.2 (q, ¹J_{C-H} = 118 Hz, Ta-CH₃), 55.0 (q, ¹J_{C-H} = 143 Hz, OCH₃), 107.1 (d, ¹J_{C-H} = 174 Hz, N= CH-), 114.1 (d, ¹J_{C-H} = 157 Hz, m-C₆H₄), 114.9 (s, C₅Me₅), 124.8 (d, ¹J_{C-H} = 157 Hz, o-C6H4), 145.6 (s, *ipso*-C₆H₄), 18 (KBr): ν (CN)/cm⁻¹ 1502 (s). Anal. Calcd for C₂₈H₃₇N₂O₂Ta: C, 54.72; H, 6.07; N, 4.56. Found: C, 54.66; H, 6.26; N, 4.45.

A similar reaction afforded **11** as yellow microcrystals.

11: 76% yield, mp 147–149 °C (dec). ¹H NMR (400 MHz, C₆D₆, 35 °C): δ 0.36 (s, 6H, Ta–CH₃), 1.78 (s, 15H, C₅Me₅), 2.23 (s, 6H, CH₃), 5.50 (s, 2H, N=CH–), 7.04 (t, 2H, 4-C₆H₄), 7.08 (d, 2H, 6-C₆H₄), 7.19 (d, 2H, 3-C₆H₄), 7.22 (t, 2H, 5-C₆H₄). ¹³C NMR (100 MHz, C₆D₆, 35 °C): δ 11.1 (q, ¹*J*_{C-H} = 127 Hz, C₅*M*e₅), 19.0 (q, ¹*J*_{C-H} = 127 Hz, CH₃), 44.8 (q, ¹*J*_{C-H} = 120 Hz, Ta–CH₃), 105.2 (d, ¹*J*_{C-H} = 175 Hz, N=CH–), 114.1 (s, *C*₅Me₅), 124.4 (d, ¹*J*_{C-H} = 156 Hz, 6-C₆H₄), 124.9 (d, ¹*J*_{C-H} = 161 Hz, 4-C₆H₄), 126.0 (d, ¹*J*_{C-H} = 159 Hz, 5-C₆H₄), 131.1 (d, ¹*J*_{C-H} = 157 Hz, 3-C₆H₄), 135.8 (s, 2-C₆H₄), 151.3 (s, 1-C₆H₄). IR (KBr): ν (CN)/cm⁻¹ 1485 (s). Anal. Calcd for C₂₈H₃₇N₂Ta: C, 57.73; H, 6.40; N, 4.81. Found: C, 57.86; H, 6.07; N, 4.83.

Preparation of M(CH₂Ph)₂Cp*(p-MeOC₆H₄-dad) (12, M = Ta; 13, M = Nb) and Ta(CH₂Ph)₂Cp*(Cy-dad) (14). To a solution of 3a (1.00 g, 1.53 mmol) in THF (30 mL) cooled at -78 °C was added a solution of Mg(CH₂Ph)₂ (1.83 mmol) in THF (10 mL) via syringe. After the mixture was stirred for 3 h at 25 °C, all volatiles were removed under reduced pressure. The resulting residue was extracted with 10 portions of hexane (60 mL). Concentration of the solution gave 12 as yellow microcrystals in 91% yield, mp 57-63 °C (dec). ¹H NMR (400 MHz, C₆D₆, 35 °C): δ 1.88 (s, 15H, C₅Me₅), 1.99 (d, ²J_{H-H} = 10.7 Hz, 2H, CH₂Ph), 2.16 (d, ${}^{2}J_{H-H} = 10.7$ Hz, 2H, CH₂Ph), 3.41 (s, 6H, OCH₃), 5.78 (s, 2H, N=CH–), 6.82 (t, ${}^{3}J_{H-H} = 7.6$ Hz, 2H, *p*-C₆H₅), 6.85 (s, 8H, *o*- and *m*-C₆H₄), 6.90 (d, ${}^{3}J_{H-H} =$ 7.6 Hz, 4H, o-C₆H₅), 7.07 (t, ${}^{3}J_{H-H} = 7.6$ Hz, 4H, m-C₆H₅). ${}^{13}C$ NMR (100 MHz, C₆D₆, 35 °C): δ 12.2 (q, ${}^{1}J_{C-H} =$ 127 Hz, C_5Me_5), 55.1 (q, ${}^{1}J_{C-H} = 143$ Hz, OCH₃), 61.9 (t, ${}^{1}J_{C-H} = 122$ Hz, CH_2Ph), 110.5 (d, ${}^{1}J_{C-H} = 178$ Hz, N=CH-), 113.7 (d, ${}^{1}J_{C-H} = 158$ Hz, *m*-C₆H₄), 118.1 (s, *C*₅Me₅), 122.0 (d, ${}^{1}J_{C-H} =$ 156 Hz, *p*-C₆H₅), 124.8 (d, ${}^{1}J_{C-H} = 158$ Hz, *o*-C₆H₄), 126.9 (d, ${}^{1}J_{C-H} = 157$ Hz, m-C₆H₅), 128.9 (d, ${}^{1}J_{C-H} = 156$ Hz, o-C₆H₅), 144.5 (s, *ipso*-C₆H₄), 153.9 (s, *ipso*-C₆H₅), 156.7 (s, *p*-C₆H₄). IR (KBr): ν (CN)/cm⁻¹ 1503 (s). Anal. Calcd for C₄₀H₄₅N₂O₂Ta: C, 62.66; H, 5.92; N, 3.65. Found: C, 62.40; H, 6.31; N, 3.34.

Similar procedures were used for the synthesis of **13** and **14**.

13: red crystals in 96% yield, mp 49–52 °C (dec). ¹H NMR (400 MHz, C₆D₆, 35 °C): δ 1.81 (s, 15H, C₅Me₅), 2.12 (d, ²J_{H-H} = 10.7 Hz, 2H, CH₂Ph), 2.34 (d, ²J_{H-H} = 10.7 Hz, 2H, CH₂Ph), 3.41 (s, 6H, OCH₃), 5.79 (s, 2H, N=CH–), 6.6–7.2 (18H, aromatic protons). Anal. Calcd for C₄₀H₄₅N₂O₂Nb: C, 70.79; H, 6.68; N, 4.13. Found: C, 70.50; H, 7.04; N, 4.36.

14: yellow crystals in 83% yield, mp 146-149 °C (dec). ¹H NMR (400 MHz, C₆D₆, 35 °C): δ 1.0-1.8 (m, 20H, Cy), 1.74 (s, 15H, C₅Me₅), 2.36 (d, ${}^{2}J_{H-H} = 12.9$ Hz, 2H, CH₂Ph), 2.55 $(d_{,2}J_{H-H} = 12.9 \text{ Hz}, 2H, CH_2Ph)$, 3.86 (m, 2H, Cy), 5.61 (s, 2H, N=CH-), 6.97 (t, ${}^{3}J_{H-H} = 7.3$ Hz, 2H, p-C₆H₅), 7.21 (t, ${}^{3}J_{H-H}$ = 7.3 Hz, 4H, m-C₆H₅), 7.32 (d, ${}^{3}J_{H-H}$ = 7.3 Hz, 4H, o-C₆H₅). ¹³C NMR (100 MHz, C₆D₆, 35 °C): δ 11.7 (q, ¹*J*_{C-H} = 127 Hz, C_5Me_5), 26.3 (t, ${}^1J_{C-H} = 127$ Hz, Cy), 26.4 (t, ${}^1J_{C-H} = 128$ Hz, Cy), 26.6 (t, ${}^{1}J_{C-H} = 128$ Hz, Cy), 33.7 (t, ${}^{1}J_{C-H} = 126$ Hz, Cy), 37.1 (t, ${}^{1}J_{C-H} = 126$ Hz, Cy), 59.1 (d, ${}^{1}J_{C-H} = 136$ Hz, Cy), 65.3 (t, ${}^{1}J_{C-H} = 118$ Hz, CH₂Ph), 99.6 (d, ${}^{1}J_{C-H} = 166$ Hz, N= CH–), 114.4 (s, C_5 Me₅), 122.7 (d, ${}^{1}J_{C-H} = 156$ Hz, $p-C_6H_5$), 127.2 (d, ${}^{1}J_{C-H} = 157$ Hz, *m*-C₆H₅), 131.7 (d, ${}^{1}J_{C-H} = 155$ Hz, o-C₆H₅), 151.7 (s, *ipso*-C₆H₅). IR (KBr): v(CN)/cm⁻¹ 1447 (s). Anal. Calcd for C₃₈H₅₃N₂Ta: C, 63.50; H, 7.43; N, 3.90. Found: C, 63.67; H, 7.48; N, 3.96

Preparation of Ta(CH₂Ph)ClCp*(o-Tol-dad) (16). To a solution of **6** (172 mg, 0.276 mmol) in THF (30 mL) cooled at -78 °C was added a solution of Mg(CH₂Ph)₂ (2.2 equiv, 0.607

mmol) in diethyl ether (2.0 mL) via syringe. The reaction mixture was stirred for 8 h at 25 °C. Removal of all volatiles under reduced pressure afforded a residue, which was extracted into four portions of hexane (60 mL). Concentration of the solution gave yellow 16 as microcrystals (43% yield), mp 158–162 °C (dec). ¹H NMR (400 MHz, C₆D₆, 35 °C): δ 1.81 (s, 3H, CH₃), 1.86 (s, 3H, CH₃) 1.87 (s, 15H, C₅Me₅), 2.09 (d, ²J_{H-H} = 9.5 Hz, 1H, CH₂Ph), 2.42 (d, ${}^{2}J_{H-H}$ = 9.5 Hz, 1H, CH₂Ph), 5.11 (d, ${}^{3}J_{H-H} = 2.9$ Hz, 1H, N=CH-), 5.48 (d, ${}^{3}J_{H-H} = 2.9$ Hz, 1H, N=CH-), 6.81 (t, ${}^{3}J_{H-H} = 7.8$ Hz, 1H, p-C₆H₅), 7.03 (d, 1H, 3-C₆H₄ trans to Cl), 7.04 (d, 1H, 3-C₆H₄ trans to CH₂-Ph), 7.07 (t, 1H, 4-C₆H₄ trans to Cl), 7.08 (t, 1H, 4-C₆H₄ trans to CH₂Ph), 7.21 (t, 1H, 5-C₆H₄ trans to Cl), 7.24 (t, 1H, 5-C₆H₄ trans to CH₂Ph), 7.82 (d, 1H, 6-C₆H₄ trans to Cl), 8.55 (d, 1H, 6-C₆H₄ trans to CH₂Ph). ¹³C NMR (100 MHz, C₆D₆, 35 °C): δ 11.8 (q, ${}^{1}J_{C-H} = 128$ Hz, $C_{5}Me_{5}$), 19.4 (q, ${}^{1}J_{C-H} = 116$ Hz, CH_{3}), 19.4 (q, ${}^{1}J_{C-H} = 116$ Hz, CH₃), 61.6 (t, ${}^{1}J_{C-H} = 122$ Hz, CH₂-Ph), 109.2 (d, ${}^{1}J_{C-H} = 185$ Hz, N=CH-), 111.4 (d, ${}^{1}J_{C-H} = 180$ Hz, N=CH-), 120.0 (s, C_5Me_5), 122.2 (d, ${}^1J_{C-H} = 158$ Hz, *p*-C₆H₅), 125.3, 125.6, 125.6, 125.7, 126.0, and 126.1 (d, ¹J_{C-H} = 156–160 Hz, 3-, 5-, and 6-C₆H₄), 126.9 (d, ${}^{1}J_{C-H} = 157$ Hz, m-C₆H₅), 128.5 (d, ${}^{1}J_{C-H} = 167$ Hz, o-C₆H₅), 130.4 (d, ${}^{1}J_{C-H} =$ 154 Hz, 4-C₆H₄), 131.1 (d, ${}^{1}J_{C-H} = 156$ Hz, 4-C₆H₄), 134.0 (s, $2 - C_6H_4$), 134.2 (s, $2 - C_6H_4$), 149.2 (s, $1 - C_6H_4$), 149.9 (s, $1 - C_6H_4$), 153.9 (s, *ipso*-C₆H₅). IR (KBr): ν (CN)/cm⁻¹ 1482 (s), 1461 (s). Anal. Calcd for C₃₃H₃₈ClN₂Ta: C, 58.37; H, 5.64; N, 4.13. Found: C, 58.69; H, 5.70; N, 4.13.

Preparation of M(=CHPh)Cp*(p-MeOC₆H₄-dad) (17, M = Ta; 18, M = Nb). Complex 12 (11 mg, 0.014 mmol) was dissolved in 0.58 mL of $C_6 D_6$ in a 5 mm NMR tube. The solution was heated to 35 °C for 12 h, and ¹H NMR was measured. The spectrum showed the formation of 17 along with the signal due to toluene (protons of methyl group: δ 2.16). ¹H NMR (400 MHz, C₆D₆, 35 °C): δ 1.91 (s, 15H, C₅-Me₅), 3.32 (s, 6H, OCH₃), 5.84 (s, 2H, N=CH-), 6.7-7.2 (13H, aromatic protons), 7.95 (s, 1H, Ta=CHPh). ¹³C NMR (100 MHz, C₆D₆, 35 °C): δ 11.1 (q, ¹*J*_{C-H} = 127 Hz, C₅*Me*₅), 55.1 (q, ¹*J*_{C-H} = 143 Hz, CH₃), 102.1 (d, ${}^{1}J_{C-H}$ = 172 Hz, N=CH-), 114.2 (s, C_5 Me₅), 114.8 (d, ${}^{1}J_{C-H} = 158$ Hz, m-C₆H₄), 120.5 (d, ${}^{1}J_{C-H} =$ 158 Hz, o-C₆H₄), 122.8 (d, ${}^{1}J_{C-H} = 158$ Hz, p-C₆H₅), 127.4 (d, ${}^{1}J_{C-H} = 155$ Hz, m-C₆H₅), 129.1 (d, ${}^{1}J_{C-H} = 157$ Hz, o-C₆H₅), 141.6 (s, ipso-C₆H₄), 147.3 (s, ipso-C₆H₅), 156.2 (s, p-C₆H₄), 222.6 (d, ${}^{1}J_{C-H} = 124$ Hz, Ta=*C*HPh).

18: ¹H NMR (400 MHz, C_6D_6 , 35 °C) δ 1.88 (s, 15H, C_5Me_5), 3.37 (s, 6H, OCH₃), 6.06 (s, 2H, N=CH–), 6.7–7.2 (13H, aromatic protons), 8.49 (s, 1H, Nb=C*H*Ph); there are some impurities due to the reduction of **13**.

Preparation of Ta(=CHPh)Cp*(Cy-dad) (19). Complex 14 (10 mg, 0.016 mmol) was dissolved in 0.58 mL of C_6D_6 in a 5 mm NMR tube. The solution was heated to 40 °C for 24 h, and ¹H NMR was measured. The spectrum showed a signal of toluene which was formed by α -hydrogen elimination (protons of methyl group: δ 2.16). ¹H NMR (400 MHz, C₆D₆, 35 °C): δ 0.9-2.1 (m, 20H, Cy), 1.93 (s, 15H, C₅Me₅), 3.33 (m, 2H, Cy), 5.14 (s, 2H, N=CH-), 6.68 (t, ${}^{3}J_{H-H} = 7.3$ Hz, 1H, p-C₆H₅), 6.90 (d, ${}^{3}J_{H-H} = 7.3$ Hz, 2H, o-C₆H₅), 7.37 (t, ${}^{3}J_{H-H} = 7.3$ Hz, 2H, m-C₆H₅), 7.95 (s, 1H, Ta=CHPh). ¹³C NMR (100 MHz, C₆D₆, 35 °C): δ 11.3 (q, ¹*J*_{C-H} = 127 Hz, C₅*Me*₅), 26.2 (t, ¹*J*_{C-H} = 124 Hz, Cy), 26.3 (t, ¹*J*_{C-H} = 124 Hz, Cy), 26.4 (t, ¹*J*_{C-H} = 124 Hz, Cy), 34.6 (t, ${}^{1}J_{C-H} = 129$ Hz, Cy), 38.1 (t, ${}^{1}J_{C-H} = 125$ Hz, Cy), 62.1 (d, ${}^{1}J_{C-H} = 132$ Hz, Cy), 100.9 (d, ${}^{1}J_{C-H} = 169$ Hz, N=CH-), 113.0 (s, C_5 Me₅), 120.4 (d, ${}^{1}J_{C-H} = 158$ Hz, p-C₆H₅), 126.9 (d, ${}^{1}J_{C-H} = 154$ Hz, m-C₆H₅), 129.3 (d, ${}^{1}J_{C-H} =$ 156 Hz, o-C₆H₅), 148.6 (s, *ipso*-C₆H₅), 222.9 (d, ${}^{1}J_{C-H} = 129$ Hz, Ta=CHPh).

The formation of **19** was monitored by ¹H NMR spectroscopy. The decrease of **14** in toluene- d_8 was found to be firstorder in the temperature range between 65 and 85; the obtained thermodynamic parameters ΔG^{\dagger} , ΔH^{\dagger} , and ΔS^{\dagger} at 75 °C are 26.4 \pm 0.3 kcal/mol, 24.5 \pm 0.2 kcal/mol, and -5.4 \pm 0.6 cal/(K·mol), respectively.

Preparation of TaCp*(p-MeOC₆H₄-dad)(1,3-butadiene) (20a). To a solution of 3a (429 mg, 0.655 mmol) in THF (30 mL) cooled at -78 °C was added a suspension of [Mg(diene)- $(thf)_2]_n$ (1.2 equiv, 0.786 mmol). The reaction mixture was stirred for 8 h at 25 °C, and then all volatiles were removed to dryness. The product was extracted into three portions of THF (60 mL). Concentration of the solution to ca. 5 mL gave dark red microcrystals, which were rinsed with two portions of hexane (0.5 mL), 52% yield, mp 209-212 °C (dec). ¹H NMR (270 MHz, C₆D₆, 35 °C): δ 0.24 (m, 2H, =CH₂ (anti)), 1.66 (s, 15H, C₅Me₅), 2.26 (m, 2H, =CH₂ (syn)), 3.48 (s, 6H, OCH₃), 4.93 (m, 2H, C=CH-), 6.71 (s, 2H, N=CH-), 6.91 (m, 4H, m-C₆H₄), 7.15 (m, 4H, o-C₆H₄). ¹³C NMR (100 MHz, C₆D₆, 35 °C): δ 11.9 (q, ${}^{1}J_{C-H} = 127$ Hz, $C_{5}Me_{5}$), 53.8 (t, ${}^{1}J_{C-H} = 143$ Hz, =CH₂), 55.3 (q, ${}^{1}J_{C-H}$ = 143 Hz, OCH₃), 113.3 (d, ${}^{1}J_{C-H}$ = 156 Hz, *m*-C₆H₄), 116.7 (s, C_5 Me₅), 120.5 (d, ${}^{1}J_{C-H} = 165$ Hz, C=CH-), 125.3 (d, ${}^{1}J_{C-H} = 156$ Hz, $o-C_{6}H_{4}$), 131.2 (d, ${}^{1}J_{C-H} =$ 170 Hz, N=CH-), 148.8 (s, *ipso*-C₆H₄), 156.5 (s, *p*-C₆H₄). IR (KBr): ν (CN)/cm⁻¹ 1499 (s). FAB mass spectrum m/z = 639(M⁺). UV (toluene) $\lambda_{max} = 409$ nm ($\epsilon = 6.6 \times 10^3$) and 513 nm $(\epsilon = 7.7 \times 10^3)$. Anal. Calcd for C₃₀H₃₇N₂O₂Ta: C, 56.43; H, 5.84; N, 4.39. Found: C, 56.03; H, 5.69; N, 4.31.

Complexes **20b**, **21a**, and **21b** were prepared in similar manner.

20b: 56% yield, mp 112–125 °C (dec). ¹H NMR (270 MHz, C₆D₆, 35 °C): δ 0.42 (m, 2H, =CH₂ (*anti*)), 2.34 (m, 2H, =CH₂ (*syn*)), 3.48 (s, 6H, OCH₃), 4.91 (m, 2H, C=CH–), 5.62 (s, 5H, C₅H₅), 6.75 (s, 2H, N=CH–), 6.91 (m, 4H, *m*-C₆H₄), 7.11 (m, 4H, *o*-C₆H₄). ¹³C NMR (100 MHz, C₆D₆, 35 °C): δ 49.3 (t, ¹*J*_{C-H} = 149 Hz, =CH₂), 55.2 (q, ¹*J*_{C-H} = 143 Hz, OCH₃), 105.5 (d, ¹*J*_{C-H} = 176 Hz, C₅H₅), 114.0 (d, ¹*J*_{C-H} = 160 Hz, *m*-C₆H₄), 120.7 (d, ¹*J*_{C-H} = 163 Hz, C=*C*H–), 123.2 (d, ¹*J*_{C-H} = 152 Hz, *o*-C₆H₄), 130.3 (d, ¹*J*_{C-H} = 170 Hz, N=CH–), 149.0 (s, *ipso* C₆H₄), 156.5 (s, *p*-C₆H₄). IR (KBr): ν (CN)/cm⁻¹ 1499 (s). FAB mass spectrum *m*/*z* = 568 (M⁺). UV (toluene) λ_{max} = 421 nm (ϵ = 3.0 × 10³), 512 nm (ϵ = 2.9 × 10³). Anal. Calcd for C₂₅H₂₇N₂O₂Ta: C, 52.82; H, 4.79; N, 4.93. Found: C, 52.60; H, 4.78; N, 4.95.

21a: 76% yield, mp 195–198 °C (dec). ¹H NMR (400 MHz, C₆D₆, 35 °C): δ 0.52 (m, 2H, =CH₂ (*anti*)), 1.60 (s, 15H, C₅-Me₅), 2.61 (m, 2H, =CH₂ (*syn*)), 3.47 (s, 6H, OCH₃), 4.71 (m, 2H, C=CH–), 6.67 (s, 2H, N=CH–), 6.90 (m, 4H, *m*-C₆H₄), 7.19 (m, 4H, *o*-C₆H₄). ¹³C NMR (100 MHz, C₆D₆, 35 °C): δ 12.0 (q, ¹J_{C-H} = 127 Hz, C₅*Me*₅), 55.2 (q, ¹J_{C-H} = 143 Hz, OCH₃), 57.4 (t, ¹J_{C-H} = 144 Hz, =CH₂), 113.4 (d, ¹J_{C-H} = 157 Hz, *m*-C₆H₄), 116.3 (s, *C*₅Me₅), 119.1 (d, ¹J_{C-H} = 159 Hz, C=CH–), 124.7 (d, ¹J_{C-H} = 157 Hz, *o*-C₆H₄), 132.4 (d, ¹J_{C-H} = 168 Hz, N=CH–), 149.0 (s, *ipso*-C₆H₄), 156.9 (s, *p*-C₆H₄). UV (toluene) $\lambda_{max} = 441$ nm ($\epsilon = 2.4 \times 10^3$), 546 nm ($\epsilon = 2.5 \times 10^3$). IR (KBr): ν (CN)/cm⁻¹ 1503 (s). Anal. Calcd for C₃₀H₃₇N₂O₂-Nb: C, 65.45; H, 6.77; N, 5.09. Found: C, 65.50; H, 6.78; N, 4.95.

21b: 48% yield, mp 87–93 °C (dec). ¹H NMR (270 MHz, C₆D₆, 35 °C): δ 0.76 (m, 2H, =CH₂ (*anti*)), 2.66 (m, 2H, =CH₂ (*syn*)), 3.47 (s, 6H, OCH₃), 4.63 (m, 2H, C=CH–), 5.60 (s, 5H, C₅H₅), 6.73 (s, 2H, N=CH–), 6.85 (m, 4H, *m*-C₆H₄), 7.17 (m, 4H, *o*-C₆H₄). ¹³C NMR (100 MHz, C₆D₆, 35 °C): δ 52.2 (t, ¹J_{C-H} = 151 Hz, =CH₂), 55.2 (q, ¹J_{C-H} = 143 Hz, OCH₃), 105.1 (d, ¹J_{C-H} = 174 Hz, C₅H₅), 114.0 (d, ¹J_{C-H} = 158 Hz, *m*-C₆H₄), 119.3 (d, ¹J_{C-H} = 164 Hz, C=*C*H–), 122.7 (d, ¹J_{C-H} = 157 Hz, *o*-C₆H₄), 131.6 (d, ¹J_{C-H} = 169 Hz, N=CH–), 149.3 (s, *ipso*-C₆H₄), 156.9 (s, *p*-C₆H₄). UV (toluene) λ_{max} = 456 nm (ϵ = 1.2 × 10³), 542 nm (ϵ = 1.2 × 10³). IR (KBr): ν (CN)/cm⁻¹ 1498 (s). Anal. Calcd for C₂₅H₂₇N₂O₂Nb: C, 62.50; H, 5.66; N, 5.83. Found: C, 62.21; H, 6.04; N, 6.10.

Preparation of TaCp*(*p***-Tol-dad)(1,3-butadiene) (22).** To a solution of **5** (418 mg, 0.671 mmol) in THF (30 mL) cooled at -78 °C was added a suspension of [Mg(diene)(thf)₂]_n (1.2 equiv, 0.805 mmol). The reaction mixture was stirred for 5 h at 25 °C, and then all volatiles were removed to dryness. The product was extracted into three portions of hexane (60 mL). Concentration of the solution to ca. 1 mL gave dark red microcrystals, which were rinsed with two portions of hexane (0.5 mL), 60% yield, mp 180-187 °C (dec). ¹H NMR (400 MHz, C_6D_6 , 35 °C): δ 0.24 (m, 2H, =CH₂ (anti)), 1.67 (s, 15H, C₅-Me₅), 2.23 (m, 2H, =CH₂ (syn)), 2.32 (s, 6H, CH₃), 4.93 (m, 2H, C=CH-), 6.73 (s, 2H, N=CH-), 7.10 (m, 4H, C₆H₄), 7.14 (m, 4H, C₆H₄). ¹³C NMR (100 MHz, C₆D₆, 35 °C): δ 11.9 (q, ${}^{1}J_{C-H} = 127$ Hz, C₅Me₅), 20.9 (q, ${}^{1}J_{C-H} = 127$ Hz, CH₃), 54.2 (t, ${}^{1}J_{C-H} = 144$ Hz, =CH₂), 117.0 (s, $C_{5}Me_{5}$), 120.6 (d, ${}^{1}J_{C-H} =$ 165 Hz, C=CH-), 124.4 (d, ${}^{1}J_{C-H}$ = 158 Hz, o-C₆H₄), 129.3 (d, ${}^{1}J_{C-H} = 158$ Hz, m-C₆H₄), 131.1 (d, ${}^{1}J_{C-H} = 170$ Hz, N=CH-), 132.0 (s, *p*-C₆H₄), 152.8 (s, *ipso*-C₆H₄). FAB mass spectrum *m*/*z* $= 606 \text{ (M}^+), 552 \text{ (M} - C_4H_6)^+$. UV (toluene) $\lambda_{\text{max}} = 402 \text{ nm}$ (ϵ = 3.6 \times 10³) and 517 nm (ϵ = 3.3 \times 10³). IR (KBr): ν (CN)/ cm⁻¹ 1502 (s). Anal. Calcd for C₃₀H₃₇N₂Ta: C, 59.40; H, 6.15; N, 4.62. Found: C, 59.60; H, 6.30; N, 4.49.

Preparation of TaCp*(Cy-dad)(1,3-butadiene) (23). To a solution of 7 (232 mg, 0.381 mmol) in THF (20 mL) cooled -78 °C was added a suspension of [Mg(diene)(thf)₂]_n (1.0 equiv, 0.381 mmol). The reaction mixture was stirred for 1 h at 25 °C. Then the mixture was evaporated to dryness, and the product was extracted into two portions of THF (60 mL). Concentration of the solution to ca. 1 mL gave 23 as deep purple microcrystals, 59% yield, mp 207-210 °C (dec). ¹H NMR (400 MHz, C₆D₆, 35 °C): δ -0.27 (m, 2H, =CH₂ (anti)), 1.15, 1.29, 1.38, 1.58, 1.63, 1.78, 1.87, and 2.01 (m, 22H, cyclohexyl protons), 1.94 (s, 15H, C₅Me₅), 3.41 (m, 2H, =CH₂ (syn)), 4.61 (m, 2H, C=CH-), 6.68 (s, 2H, N=CH-). ¹³C NMR (100 MHz, C₆D₆, 35 °C): δ 11.4 (q, ¹J_{C-H} = 127 Hz, C₅Me₅), 26.0 (t, ¹J_{C-H} = 121 Hz, cyclohexyl carbons), 27.0 (t, ${}^{1}J_{C-H}$ = 123 Hz, cyclohexyl carbons), 27.7 (t, ${}^{1}J_{C-H} = 126$ Hz, cyclohexyl carbons), 32.4 (t, ${}^{1}J_{C-H} = 124$ Hz, cyclohexyl carbons), 38.2 (t, ${}^{1}J_{C-H} = 127$ Hz, cyclohexyl carbons), 46.9 (t, ${}^{1}J_{C-H} = 144$ Hz, =CH₂), 65.1 (d, ${}^{1}J_{C-H}$ = 129 Hz, cyclohexyl carbons), 114.6 (s, C_5 Me₅), 118.2 (d, ${}^{1}J_{C-H} = 161.1$ Hz, C=CH-), 126.4 (d, ${}^{1}J_{C-H}$ = 165 Hz, N=CH–). UV (toluene) $\lambda_{\text{max}} = 529$ nm ($\epsilon = 4.1 \times$ 10³). IR (KBr): ν (CN)/cm⁻¹ 1447 (s). Anal. Calcd for C₂₈H₄₅N₂. Ta: C, 56.94; H, 7.68; N, 4.74. Found: C, 57.27; H, 7.77; N, 4.65.

Crystallographic Data Collections and Structure Determination of 3a, 4a, 5, 7, 10, 14, 16, and 23. Data Collection. The crystals of 3a, 4a, 5, 7, 10, 14, 16, and 23 suitable for X-ray diffraction studies were sealed in glass capillaries under an argon atmosphere, and then a crystal of each complex was mounted on a Rigaku AFC-7R four-circle diffractometer for data collection using Mo Ka (graphitemonochromated, $\lambda = 0.710$ 69) radiation. Relevant crystal and data statistics are summarized in Table 4. The unit cell parameters and the orientation matrix at 23 °C were determined by a least-squares fit to 2θ values of 25 strong higher reflections for all complexes. Three standard reflections were chosen and monitored every 150 reflections. For all of the complexes except for 10, an empirical absorption correction was applied on the basis of azimuthal scans. The data for all complexes were corrected for Lorentz and polarization effects.

Structural Determinations and Refinements. The structures of complexes **5**, **14**, **16**, and **23** were solved by a direct method (SHELXS 86)⁵⁴ and refined by the full-matrix least-squares method. The structures of complexes **3a**, **4a**, **7**, and **10** were solved by a heavy-atom Patterson method (PATTY 92)⁵⁵ and refined by the full-matrix least-squares method. Measured nonequivalent reflections were used for the structure determination. In the subsequent refinement the function $\sum \omega (|F_{\rm o}| - |F_{\rm c}|)^2$ was minimized, where $|F_{\rm o}|$ and $|F_{\rm c}|$ are the

⁽⁵⁴⁾ Sheldrick, G. M. In *Crystallographic Computing 3*; Sheldrick, G. M., Krüger, C., Goddard, R., Eds.; Oxford University Press: Oxford, 1985; p 179.

⁽⁵⁵⁾ Beurskens, P. T.; Admiraal, G.; Beurskens, G.; Boeman, W. P.; Garcia-Granda, S.; Gould, R. O.; Smits, J. M. M.; Smykalla, C. *The DIRDIF program system*, Technical Report of the Crystallography Laboratory; University of Nijmegen, The Netherland, 1992.

Table 4. Crystal Data and Data Collection Parameters of 3a, 4a, 5, 7, 10, 14, 16, and 23

	3a	4a	5	7
formula	C26H31Cl2N2O2Ta	C26H31Cl2N2O2Nb	C26H31Cl2N2Ta	C24H30N2Cl2Ta
fw	655.40	567.36	623.40	607.44
cryst syst	monoclinic	monoclinic	monoclinic	monoclinic
space group	C^{2}/c (No. 15)	$P2_1/c$ (No. 14)	$P2_1/n$ (No. 14)	P_{21}/c (No. 14)
a Å	24 97(1)	9 474(3)	15 354(5)	12,447(2)
h Å	9 882(6)	9 102(4)	22 258(6)	13403(4)
c Å	23434(7)	30 182(7)	15 929(5)	16 915(3)
a dea	20.101(1)	50.102(1)	10.020(0)	10.010(0)
β deg	102 10(3)	92 21(2)	111 70(2)	91 09(1)
ρ , deg	102.10(3)	52.21(2)	111.70(2)	51.05(1)
V Å ³	5653(4)	2600(1)	5058(2)	2821 5(10)
7, A	8	2000(1) A	9000(<i>L</i>)	A
D d/cm^{-3}	1 540	1 1 1 0	1 637	4 1 / 30
$D_{\text{calcd}}, g/\text{cm}$	2502 00	1168 00	2464 00	1916 00
$\mu [M_0 K_{cl}] cm^{-1}$	40.05	6 02	45 66	1210.00
μ [Mo Ku], cm ⁻²	40.55	0.93	45.00	40.50
I, C	23	23	23	23
cryst size, min	$0.2 \times 0.2 \times 0.2$	$0.3 \times 0.2 \times 0.2$	$0.3 \times 0.2 \times 0.2$	$0.3 \times 0.3 \times 0.2$
scan type	$\omega - 2\theta$	<i>ω</i> 29	$\omega - 2\theta$	$\omega - 2\theta$
scan speed, deg/min	10	32	10	10
scan width, deg	$1.00 + 0.30 \tan \theta$	$0.73 \pm 0.30 \tan \theta$	$0.89 \pm 0.30 \tan \theta$	$1.21 \pm 0.30 \tan \theta$
$2\theta_{\min}, 2\theta_{\max}, \deg$	0.0, 55.0	5.0, 55.0	5.0, 55.0 11,089 (0.055)	5.0, 55.0 6700 (0.005)
unique data (R _{int})	6855 (0.104)	6350 (0.039)	11 923 (0.055)	6738 (0.025)
no. of observations	6468	5964	11 612	6399
no. of variables	299	298	560	262
RI, wR2 (all data)	0.228, 0.178	0.091, 0.091	0.082, 0.082	0.077, 0.112
$R, R_{\rm W}$	$0.065, 0.080 (I > 3.0\sigma(I))$	$0.037, 0.038 (I > 3.0\sigma(I))$	$0.040, 0.041 \ (I > 3.0\sigma(I))$	$0.038, 0.046 (I > 3.0\sigma(I))$
$GOF on F^{z}$	1.54	1.07	1.41	1.43
Δ , e A ⁻³	3.89, -3.75	0.98, -1.44	2.17, -2.01	2.15, -1.33
	10	14	16	23
formula	10 C ₂₈ H ₃₇ N ₂ O ₂ Ta	14 C ₃₈ H ₅₃ N ₂ Ta	16 C ₃₃ H ₃₈ ClN ₂ Ta	23 C ₂₈ H ₄₅ N ₂ Ta
formula fw	10 C ₂₈ H ₃₇ N ₂ O ₂ Ta 614.56	14 C ₃₈ H ₅₃ N ₂ Ta 718.80	16 C ₃₃ H ₃₈ ClN ₂ Ta 679.08	23 C ₂₈ H ₄₅ N ₂ Ta 590.62
formula fw cryst syst	10 C ₂₈ H ₃₇ N ₂ O ₂ Ta 614.56 triclinic	14 C ₃₈ H ₅₃ N ₂ Ta 718.80 monoclinic	16 C ₃₃ H ₃₈ ClN ₂ Ta 679.08 monoclinic	23 C ₂₈ H ₄₅ N ₂ Ta 590.62 monoclinic
formula fw cryst syst space group	10 C ₂₈ H ₃₇ N ₂ O ₂ Ta 614.56 triclinic <i>P</i> I (No. 2)	14 C ₃₈ H ₅₃ N ₂ Ta 718.80 monoclinic <i>P</i> 2 ₁ / <i>c</i> (No. 14)	16 C ₃₃ H ₃₈ ClN ₂ Ta 679.08 monoclinic <i>P</i> 2 ₁ / <i>n</i> (No. 14)	23 C ₂₈ H ₄₅ N ₂ Ta 590.62 monoclinic <i>P</i> 2 ₁ / <i>c</i> (No. 14)
formula fw cryst syst space group <i>a</i> , Å	10 C ₂₈ H ₃₇ N ₂ O ₂ Ta 614.56 triclinic <i>P</i> 1̄ (No. 2) 10.056(2)	14 C ₃₈ H ₅₃ N ₂ Ta 718.80 monoclinic P2 ₁ /c (No. 14) 12.093(4)	16 C ₃₃ H ₃₈ ClN ₂ Ta 679.08 monoclinic <i>P</i> 2 ₁ / <i>n</i> (No. 14) 9.751(3)	23 C ₂₈ H ₄₅ N ₂ Ta 590.62 monoclinic <i>P</i> 2 ₁ / <i>c</i> (No. 14) 18.271(6)
formula fw cryst syst space group a, Å b, Å	$\begin{array}{c} 10 \\ \hline C_{28}H_{37}N_2O_2Ta \\ 614.56 \\ triclinic \\ P\bar{1} \ (No. \ 2) \\ 10.056(2) \\ 16.387(4) \end{array}$	$\begin{array}{c} \textbf{14} \\ \hline C_{38}H_{53}N_2Ta \\ \textbf{718.80} \\ \textbf{monoclinic} \\ P2_1/c \ (No. \ 14) \\ 12.093(4) \\ 16.015(6) \end{array}$	16 C ₃₃ H ₃₈ ClN ₂ Ta 679.08 monoclinic <i>P</i> 2 ₁ / <i>n</i> (No. 14) 9.751(3) 22.491(4)	$\begin{array}{c} \textbf{23} \\ \hline C_{28}H_{45}N_2Ta \\ 590.62 \\ monoclinic \\ P2_1/c \ (No. \ 14) \\ 18.271(6) \\ 16.161(6) \end{array}$
formula fw cryst syst space group <i>a</i> , Å <i>b</i> , Å <i>c</i> , Å	$\begin{array}{c} 10 \\ \hline C_{28}H_{37}N_2O_2Ta \\ 614.56 \\ triclinic \\ P\bar{1} (No. 2) \\ 10.056(2) \\ 16.387(4) \\ 8.386(3) \end{array}$	$\begin{array}{c} \textbf{14} \\ \hline C_{38}H_{53}N_2Ta \\ \textbf{718.80} \\ \textbf{monoclinic} \\ P2_1/c \ (No. \ 14) \\ 12.093(4) \\ 16.015(6) \\ 16.873(7) \end{array}$	16 C ₃₃ H ₃₈ ClN ₂ Ta 679.08 monoclinic <i>P</i> 2 ₁ / <i>n</i> (No. 14) 9.751(3) 22.491(4) 15.180(4)	$\begin{array}{c} \textbf{23} \\ \hline C_{28}H_{45}N_2Ta \\ 590.62 \\ monoclinic \\ P2_1/c \ (No. 14) \\ 18.271(6) \\ 16.161(6) \\ 26.449(10) \end{array}$
formula fw cryst syst space group <i>a</i> , Å <i>b</i> , Å <i>c</i> , Å <i>c</i> , Å <i>a</i> , deg	$\begin{array}{c} 10 \\ \hline C_{28}H_{37}N_2O_2Ta \\ 614.56 \\ triclinic \\ PI (No. 2) \\ 10.056(2) \\ 16.387(4) \\ 8.386(3) \\ 102.89(3) \end{array}$	$\begin{array}{c} \textbf{14} \\ \textbf{C}_{38}\textbf{H}_{53}\textbf{N}_{2}\textbf{Ta} \\ \textbf{718.80} \\ \textbf{monoclinic} \\ \textbf{P2}_{1}/c \text{ (No. 14)} \\ \textbf{12.093(4)} \\ \textbf{16.015(6)} \\ \textbf{16.873(7)} \end{array}$	$\begin{array}{c} \textbf{16} \\ \textbf{C}_{33}\textbf{H}_{38}\textbf{C}\textbf{IN}_2\textbf{Ta} \\ \textbf{679.08} \\ \textbf{monoclinic} \\ P2_1/n \text{ (No. 14)} \\ 9.751(3) \\ 22.491(4) \\ 15.180(4) \end{array}$	$\begin{array}{c} \textbf{23} \\ \hline C_{28}H_{45}N_2Ta \\ 590.62 \\ monoclinic \\ P2_1/c \text{ (No. 14)} \\ 18.271(6) \\ 16.161(6) \\ 26.449(10) \end{array}$
formula fw cryst syst space group a, Å b, Å c, Å a, deg β, deg	$\begin{array}{c} 10 \\ \hline C_{28}H_{37}N_2O_2Ta \\ 614.56 \\ triclinic \\ P\overline{1} \ (No.\ 2) \\ 10.056(2) \\ 16.387(4) \\ 8.386(3) \\ 102.89(3) \\ 95.32(2) \end{array}$	$\begin{array}{c} \textbf{14} \\ \hline C_{38}H_{53}N_2Ta \\ 718.80 \\ monoclinic \\ P2_{1/c} (No. 14) \\ 12.093(4) \\ 16.015(6) \\ 16.873(7) \\ 95.79(3) \end{array}$	16 C ₃₃ H ₃₈ ClN ₂ Ta 679.08 monoclinic P2 ₁ /n (No. 14) 9.751(3) 22.491(4) 15.180(4) 107.15(2)	$\begin{array}{c} \textbf{23} \\ \hline C_{28}H_{45}N_2Ta \\ 590.62 \\ monoclinic \\ P2_{1/c} (No. 14) \\ 18.271(6) \\ 16.161(6) \\ 26.449(10) \\ 91.78(3) \end{array}$
formula fw cryst syst space group a, Å b, Å c, Å α, \deg β, \deg γ, \deg	$\begin{array}{c} 10 \\ \hline C_{28}H_{37}N_2O_2Ta \\ 614.56 \\ triclinic \\ P\overline{1} \ (No. \ 2) \\ 10.056(2) \\ 16.387(4) \\ 8.386(3) \\ 102.89(3) \\ 95.32(2) \\ 100.27(2) \end{array}$	14 C ₃₈ H ₅₃ N ₂ Ta 718.80 monoclinic P2 ₁ /c (No. 14) 12.093(4) 16.015(6) 16.873(7) 95.79(3)	16 C ₃₃ H ₃₈ ClN ₂ Ta 679.08 monoclinic P2 ₁ /n (No. 14) 9.751(3) 22.491(4) 15.180(4) 107.15(2)	$\begin{array}{c} \textbf{23} \\ \hline C_{28}H_{45}N_2Ta \\ 590.62 \\ monoclinic \\ P2_1/c \text{ (No. 14)} \\ 18.271(6) \\ 16.161(6) \\ 26.449(10) \\ 91.78(3) \end{array}$
formula fw cryst syst space group a, Å b, Å c, Å α, deg β, deg γ, deg γ, deg $V, Å^3$	$\begin{array}{c} 10 \\ \hline C_{28}H_{37}N_2O_2Ta \\ 614.56 \\ triclinic \\ P\overline{1} (No. 2) \\ 10.056(2) \\ 16.387(4) \\ 8.386(3) \\ 102.89(3) \\ 95.32(2) \\ 100.27(2) \\ 1312.7(7) \end{array}$	14 C ₃₈ H ₅₃ N ₂ Ta 718.80 monoclinic <i>P</i> 2 ₁ /c (No. 14) 12.093(4) 16.015(6) 16.873(7) 95.79(3) 3251(1)	16 C ₃₃ H ₃₈ ClN ₂ Ta 679.08 monoclinic <i>P</i> 2 ₁ / <i>n</i> (No. 14) 9.751(3) 22.491(4) 15.180(4) 107.15(2) 3181(1)	$\begin{array}{c} \textbf{23} \\ \hline C_{28}H_{45}N_2Ta \\ 590.62 \\ monoclinic \\ P2_1/c \text{ (No. 14)} \\ 18.271(6) \\ 16.161(6) \\ 26.449(10) \\ 91.78(3) \\ 7805(3) \end{array}$
formula fw cryst syst space group a, Å b, Å c, Å α, deg β, deg γ, deg γ, deg $V, Å^3$ Z	$\begin{array}{c} 10 \\ \hline C_{28}H_{37}N_2O_2Ta \\ 614.56 \\ triclinic \\ P\bar{1} (No. 2) \\ 10.056(2) \\ 16.387(4) \\ 8.386(3) \\ 102.89(3) \\ 95.32(2) \\ 100.27(2) \\ 1312.7(7) \\ 2 \end{array}$	$\begin{array}{c} \textbf{14} \\ \hline C_{38}H_{53}N_2Ta \\ \textbf{718.80} \\ \textbf{monoclinic} \\ P2_1/c \ (No. \ 14) \\ 12.093(4) \\ 16.015(6) \\ 16.873(7) \\ \textbf{95.79(3)} \\ \textbf{3251(1)} \\ \textbf{4} \end{array}$	16 C ₃₃ H ₃₈ ClN ₂ Ta 679.08 monoclinic P2 ₁ /n (No. 14) 9.751(3) 22.491(4) 15.180(4) 107.15(2) 3181(1) 4	$\begin{array}{c} \textbf{23} \\ \hline C_{28}H_{45}N_2Ta \\ 590.62 \\ monoclinic \\ P2_1/c \ (No. \ 14) \\ 18.271 \ (6) \\ 16.161 \ (6) \\ 26.449 \ (10) \\ 91.78 \ (3) \\ 7805 \ (3) \\ 12 \end{array}$
formula fw cryst syst space group a, \mathring{A} b, \mathring{A} c, \mathring{A} α, \deg β, \deg γ, \deg γ, \deg γ, \deg Z $D_{calcd,} g/cm^{-3}$	$\begin{array}{c} 10\\ \hline C_{28}H_{37}N_2O_2Ta\\ 614.56\\ triclinic\\ P\bar{1}\ (No.\ 2)\\ 10.056(2)\\ 16.387(4)\\ 8.386(3)\\ 102.89(3)\\ 95.32(2)\\ 100.27(2)\\ 1312.7(7)\\ 2\\ 1.555\\ \end{array}$	$\begin{array}{c} \textbf{14} \\ \hline C_{38}H_{53}N_2Ta \\ \textbf{718.80} \\ \textbf{monoclinic} \\ P2_1/c \ (No. \ 14) \\ 12.093(4) \\ 16.015(6) \\ 16.873(7) \\ \textbf{95.79(3)} \\ \textbf{3251(1)} \\ \textbf{4} \\ \textbf{1.468} \end{array}$	16 $C_{33}H_{38}CIN_2Ta$ 679.08 monoclinic $P2_1/n$ (No. 14) $9.751(3)$ $22.491(4)$ $15.180(4)$ $107.15(2)$ $3181(1)$ 4 1.418	$\begin{array}{c} \textbf{23} \\ \hline C_{28}H_{45}N_2Ta \\ 590.62 \\ monoclinic \\ P2_1/c \ (No. 14) \\ 18.271 (6) \\ 16.161 (6) \\ 26.449 (10) \\ 91.78 (3) \\ \hline 7805 (3) \\ 12 \\ 1.508 \\ \end{array}$
formula fw cryst syst space group a, Å b, Å c, Å α, deg β, deg γ, deg γ, deg $V, Å^3$ Z $D_{calcd}, g/cm^{-3}$ F(000)	$\begin{array}{c} 10\\ \hline C_{28}H_{37}N_2O_2Ta\\ 614.56\\ triclinic\\ P\bar{1}\ (No.\ 2)\\ 10.056(2)\\ 16.387(4)\\ 8.386(3)\\ 102.89(3)\\ 95.32(2)\\ 100.27(2)\\ 1312.7(7)\\ 2\\ 1.555\\ 616.00\\ \end{array}$	$\begin{array}{c} 14 \\ \hline C_{38}H_{53}N_2Ta \\ 718.80 \\ monoclinic \\ P2_1/c \ (No. \ 14) \\ 12.093(4) \\ 16.015(6) \\ 16.873(7) \\ 95.79(3) \\ 3251(1) \\ 4 \\ 1.468 \\ 1472.00 \\ \end{array}$	16 C ₃₃ H ₃₈ CIN ₂ Ta 679.08 monoclinic P2 ₁ /n (No. 14) 9.751(3) 22.491(4) 15.180(4) 107.15(2) 3181(1) 4 1.418 1360.00	$\begin{array}{c} \textbf{23} \\ \hline C_{28}H_{45}N_2Ta \\ 590.62 \\ monoclinic \\ P2_1/c \text{ (No. 14)} \\ 18.271(6) \\ 16.161(6) \\ 26.449(10) \\ 91.78(3) \\ \hline 7805(3) \\ 12 \\ 1.508 \\ 3600.00 \\ \end{array}$
formula fw cryst syst space group a, Å b, Å c, Å α, deg β, deg γ, deg γ, deg $V, Å^3$ Z $D_{calcd,} g/cm^{-3}$ F(000) μ [Mo K α]. cm ⁻¹	$\begin{array}{c} 10 \\ \hline C_{28}H_{37}N_2O_2Ta \\ 614.56 \\ triclinic \\ P\bar{1} (No. 2) \\ 10.056(2) \\ 16.387(4) \\ 8.386(3) \\ 102.89(3) \\ 95.32(2) \\ 100.27(2) \\ 1312.7(7) \\ 2 \\ 1.555 \\ 616.00 \\ 42.06 \end{array}$	$\begin{array}{c} \textbf{14} \\ \hline C_{38}H_{53}N_2Ta \\ \textbf{718.80} \\ \textbf{monoclinic} \\ P2_1/c \ (No. 14) \\ 12.093(4) \\ 16.015(6) \\ 16.873(7) \\ \textbf{95.79(3)} \\ \textbf{3251(1)} \\ \textbf{4} \\ 1.468 \\ 1472.00 \\ \textbf{34.04} \end{array}$	16 $C_{33}H_{38}CIN_2Ta$ 679.08 monoclinic $P2_1/n$ (No. 14) $9.751(3)$ $22.491(4)$ $15.180(4)$ $107.15(2)$ $3181(1)$ 4 1.418 1360.00 35.56	$\begin{array}{c} \textbf{23} \\ \hline C_{28}H_{45}N_2Ta \\ 590.62 \\ monoclinic \\ P2_1/c \ (No. 14) \\ 18.271(6) \\ 16.161(6) \\ 26.449(10) \\ 91.78(3) \\ \hline 7805(3) \\ 12 \\ 1.508 \\ 3600.00 \\ 42.35 \\ \end{array}$
formula fw cryst syst space group a, Å b, Å c, Å α, \deg β, \deg γ, \deg γ, \deg $V, Å^3$ Z $D_{calcd}, g/cm^{-3}$ F(000) μ [Mo K α], cm ⁻¹ T, °C	$\begin{array}{c} 10 \\ \hline C_{28}H_{37}N_2O_2Ta \\ 614.56 \\ triclinic \\ P\bar{1} (No. 2) \\ 10.056(2) \\ 16.387(4) \\ 8.386(3) \\ 102.89(3) \\ 95.32(2) \\ 100.27(2) \\ 1312.7(7) \\ 2 \\ 1.555 \\ 616.00 \\ 42.06 \\ 23 \end{array}$	$\begin{array}{c} 14 \\ \hline C_{38}H_{53}N_2Ta \\ 718.80 \\ monoclinic \\ P2_1/c \ (No. 14) \\ 12.093(4) \\ 16.015(6) \\ 16.873(7) \\ 95.79(3) \\ 3251(1) \\ 4 \\ 1.468 \\ 1472.00 \\ 34.04 \\ 23 \\ \end{array}$	16 $C_{33}H_{38}CIN_2Ta$ 679.08 monoclinic $P2_1/n$ (No. 14) $9.751(3)$ $22.491(4)$ $15.180(4)$ $107.15(2)$ $3181(1)$ 4 1.418 1360.00 35.56 23	$\begin{array}{c} \textbf{23} \\ \hline C_{28}H_{45}N_2Ta \\ 590.62 \\ monoclinic \\ P2_1/c \ (No. 14) \\ 18.271 \ (6) \\ 16.161 \ (6) \\ 26.449 \ (10) \\ 91.78 \ (3) \\ \hline \textbf{7805} \ (3) \\ 12 \\ 1.508 \\ 3600.00 \\ 42.35 \\ 23 \\ \end{array}$
formula fw cryst syst space group a, Å b, Å c,	$\begin{array}{c} 10\\ \hline C_{28}H_{37}N_2O_2Ta\\ 614.56\\ triclinic\\ PI (No. 2)\\ 10.056(2)\\ 16.387(4)\\ 8.386(3)\\ 102.89(3)\\ 95.32(2)\\ 100.27(2)\\ 1312.7(7)\\ 2\\ 1.555\\ 616.00\\ 42.06\\ 23\\ 0.3 \times 0.2 \times 0.1 \end{array}$	$\begin{array}{c} 14 \\ \hline C_{38}H_{53}N_2Ta \\ 718.80 \\ monoclinic \\ P2_1/c \ (No. 14) \\ 12.093(4) \\ 16.015(6) \\ 16.873(7) \\ 95.79(3) \\ 3251(1) \\ 4 \\ 1.468 \\ 1472.00 \\ 34.04 \\ 23 \\ 0.5 \times 0.3 \times 0.2 \\ \end{array}$	16 $C_{33}H_{38}CIN_2Ta$ 679.08 monoclinic $P2_1/n$ (No. 14) $9.751(3)$ $22.491(4)$ $15.180(4)$ $107.15(2)$ $3181(1)$ 4 1.418 1360.00 35.56 23 $0.4 \times 0.2 \times 0.1$	$\begin{array}{c} \textbf{23} \\ \hline C_{28}H_{45}N_2Ta \\ 590.62 \\ monoclinic \\ P2_{1/c} (No. 14) \\ 18.271(6) \\ 16.161(6) \\ 26.449(10) \\ 91.78(3) \\ \hline 7805(3) \\ 12 \\ 1.508 \\ 3600.00 \\ 42.35 \\ 23 \\ 0.2 \times 0.2 \times 0.1 \\ \end{array}$
formula fw cryst syst space group a, Å b, Å c, Å α , deg β , deg γ , deg γ , deg V, Å ³ Z D_{calcd} , g/cm ⁻³ F(000) μ [Mo K α], cm ⁻¹ T, °C cryst size, mm scan type	$\begin{array}{c} 10\\ \hline C_{28}H_{37}N_2O_2Ta\\ 614.56\\ triclinic\\ P\bar{1}\ (No.\ 2)\\ 10.056(2)\\ 16.387(4)\\ 8.386(3)\\ 102.89(3)\\ 95.32(2)\\ 100.27(2)\\ 1312.7(7)\\ 2\\ 1.555\\ 616.00\\ 42.06\\ 23\\ 0.3\times0.2\times0.1\\ \omega-2\theta \end{array}$	$\begin{array}{c} 14 \\ \hline C_{38}H_{53}N_2Ta \\ 718.80 \\ monoclinic \\ P2_{1/c} (No. 14) \\ 12.093(4) \\ 16.015(6) \\ 16.873(7) \\ 95.79(3) \\ 3251(1) \\ 4 \\ 1.468 \\ 1472.00 \\ 34.04 \\ 23 \\ 0.5 \times 0.3 \times 0.2 \\ \omega - 2\theta \end{array}$	16 $C_{33}H_{38}CIN_2Ta$ 679.08 monoclinic $P2_1/n$ (No. 14) 9.751(3) 22.491(4) 15.180(4) 107.15(2) 3181(1) 4 1.418 1360.00 35.56 23 0.4 × 0.2 × 0.1 $w = 2\theta$	$\begin{array}{c} \textbf{23} \\ \hline C_{28}H_{45}N_2Ta \\ 590.62 \\ monoclinic \\ P2_{1/c} (No. 14) \\ 18.271(6) \\ 16.161(6) \\ 26.449(10) \\ 91.78(3) \\ \hline 7805(3) \\ 12 \\ 1.508 \\ 3600.00 \\ 42.35 \\ 23 \\ 0.2 \times 0.2 \times 0.1 \\ \varpi \end{array}$
formula fw cryst syst space group a, Å b, Å c, Å α , deg β , deg γ , deg γ , deg V, Å ³ Z D_{calcd} , g/cm ⁻³ F(000) μ [Mo K α], cm ⁻¹ T, °C cryst size, mm scan type scan speed, deg/min	$\begin{array}{c} 10\\ \hline C_{28}H_{37}N_2O_2Ta\\ 614.56\\ triclinic\\ P\bar{1}\ (No.\ 2)\\ 10.056(2)\\ 16.387(4)\\ 8.386(3)\\ 102.89(3)\\ 95.32(2)\\ 100.27(2)\\ 1312.7(7)\\ 2\\ 1.555\\ 616.00\\ 42.06\\ 23\\ 0.3\times 0.2\times 0.1\\ \omega-2\theta\\ 32\\ \end{array}$	$\begin{array}{c} 14 \\ \hline C_{38}H_{53}N_2Ta \\ 718.80 \\ monoclinic \\ P2_1/c \ (No. \ 14) \\ 12.093(4) \\ 16.015(6) \\ 16.873(7) \\ 95.79(3) \\ 3251(1) \\ 4 \\ 1.468 \\ 1472.00 \\ 34.04 \\ 23 \\ 0.5 \times 0.3 \times 0.2 \\ \omega-2\theta \\ 16 \\ \end{array}$	16 $C_{33}H_{38}CIN_2Ta$ 679.08 monoclinic $P2_1/n$ (No. 14) $9.751(3)$ $22.491(4)$ $15.180(4)$ $107.15(2)$ $3181(1)$ 4 1.418 1360.00 35.56 23 $0.4 \times 0.2 \times 0.1$ $\omega - 2\theta$ 16	$\begin{array}{c} \textbf{23} \\ \hline C_{28}H_{45}N_2Ta \\ 590.62 \\ monoclinic \\ P2_1/c \ (No. \ 14) \\ 18.271 \ (6) \\ 16.161 \ (6) \\ 26.449 \ (10) \\ 91.78 \ (3) \\ \hline 7805 \ (3) \\ 12 \\ 1.508 \\ 3600.00 \\ 42.35 \\ 23 \\ 0.2 \times 0.2 \times 0.1 \\ \omega \\ 16 \\ \end{array}$
formula fw cryst syst space group a, Å b, Å c, Å α, \deg β, \deg γ, \deg γ, \deg γ, \deg Z $D_{calcd}, g/cm^{-3}$ F(000) μ [Mo K α], cm ⁻¹ T, °C cryst size, mm scan type scan speed, deg/min scan width, deg	$\begin{array}{c} 10\\ \hline C_{28}H_{37}N_2O_2Ta\\ 614.56\\ triclinic\\ P\bar{1}\ (No.\ 2)\\ 10.056(2)\\ 16.387(4)\\ 8.386(3)\\ 102.89(3)\\ 95.32(2)\\ 100.27(2)\\ 1312.7(7)\\ 2\\ 1.555\\ 616.00\\ 42.06\\ 23\\ 0.3\times 0.2\times 0.1\\ \omega-2\theta\\ 32\\ 1.94+0.30\ tan\ \theta \end{array}$	14 $C_{38}H_{53}N_2Ta$ 718.80 monoclinic $P2_1/c$ (No. 14) 12.093(4) 16.015(6) 16.873(7) 95.79(3) 3251(1) 4 1.468 1472.00 34.04 23 0.5 × 0.3 × 0.2 $\omega - 2\theta$ 16 0.94 + 0.30 tan θ	16 $C_{33}H_{38}CIN_2Ta$ 679.08 monoclinic $P2_1/n$ (No. 14) $9.751(3)$ $22.491(4)$ $15.180(4)$ $107.15(2)$ $3181(1)$ 4 1.418 1360.00 35.56 23 $0.4 \times 0.2 \times 0.1$ $\omega - 2\theta$ 16 $1.21 + 0.30 \tan \theta$	$\begin{array}{c} \textbf{23} \\ \hline C_{28}H_{45}N_2Ta \\ 590.62 \\ monoclinic \\ P2_1/c \ (No. \ 14) \\ 18.271 \ (6) \\ 16.161 \ (6) \\ 26.449 \ (10) \\ \hline 91.78 \ (3) \\ \hline 7805 \ (3) \\ 12 \\ 1.508 \\ 3600.00 \\ 42.35 \\ 23 \\ 0.2 \times 0.2 \times 0.1 \\ \omega \\ 16 \\ 1.05 + 0.30 \ tan \ \theta \end{array}$
formula fw cryst syst space group a, Å b, Å c, Å α , deg β , deg γ , γ , γ γ γ γ γ γ γ γ	$\begin{array}{c} 10\\ \hline C_{28}H_{37}N_2O_2Ta\\ 614.56\\ triclinic\\ P\bar{1}\ (No.\ 2)\\ 10.056(2)\\ 16.387(4)\\ 8.386(3)\\ 102.89(3)\\ 95.32(2)\\ 100.27(2)\\ 1312.7(7)\\ 2\\ 1.555\\ 616.00\\ 42.06\\ 23\\ 0.3\times0.2\times0.1\\ \omega-2\theta\\ 32\\ 1.94+0.30\ tan\ \theta\\ 5.0\ 55.0\\ \end{array}$	$\begin{array}{c} 14 \\ \hline C_{38}H_{53}N_2Ta \\ 718.80 \\ monoclinic \\ P2_1/c \ (No. \ 14) \\ 12.093(4) \\ 16.015(6) \\ 16.873(7) \\ 95.79(3) \\ 3251(1) \\ 4 \\ 1.468 \\ 1472.00 \\ 34.04 \\ 23 \\ 0.5 \times 0.3 \times 0.2 \\ \omega - 2\theta \\ 16 \\ 0.94 + 0.30 \tan \theta \\ 5.0, \ 55.0 \\ \end{array}$	16 $C_{33}H_{38}CIN_2Ta$ 679.08 monoclinic $P2_1/n$ (No. 14) $9.751(3)$ $22.491(4)$ $15.180(4)$ $107.15(2)$ $3181(1)$ 4 1.418 1360.00 35.56 23 $0.4 \times 0.2 \times 0.1$ $\omega - 2\theta$ 16 $1.21 + 0.30 \tan \theta$ $5.0, 55.0$	$\begin{array}{c} \textbf{23} \\ \hline C_{28}H_{45}N_2Ta \\ 590.62 \\ monoclinic \\ P2_1/c \ (No. 14) \\ 18.271 \ (6) \\ 16.161 \ (6) \\ 26.449 \ (10) \\ \hline 91.78 \ (3) \\ \hline 7805 \ (3) \\ 12 \\ 1.508 \\ 3600.00 \\ 42.35 \\ 23 \\ 0.2 \times 0.2 \times 0.1 \\ \hline \omega \\ 16 \\ 1.05 + 0.30 \ tan \ \theta \\ 5.0, 55.9 \\ \hline \end{array}$
formula fw cryst syst space group a, Å b, Å c, Å a, deg β , deg γ , deg μ [Mo K α], cm ⁻¹ <i>T</i> , °C cryst size, mm scan type scan speed, deg/min scan width, deg $2\theta_{min}$, $2\theta_{max}$, deg unique data (R_{ret})	$\begin{array}{c} 10\\ \hline C_{28}H_{37}N_2O_2Ta\\ 614.56\\ triclinic\\ P\bar{1}\ (No.\ 2)\\ 10.056(2)\\ 16.387(4)\\ 8.386(3)\\ 102.89(3)\\ 95.32(2)\\ 100.27(2)\\ 1312.7(7)\\ 2\\ 1.555\\ 616.00\\ 42.06\\ 23\\ 0.3\times0.2\times0.1\\ \omega-2\theta\\ 32\\ 1.94+0.30\ tan\ \theta\\ 5.0,\ 55.0\\ 5193\ (0.038)\\ \end{array}$	14 $C_{38}H_{53}N_2Ta$ 718.80 monoclinic $P2_1/c$ (No. 14) 12.093(4) 16.015(6) 16.873(7) 95.79(3) 3251(1) 4 1.468 1472.00 34.04 23 0.5 × 0.3 × 0.2 $\omega - 2\theta$ 16 0.94 + 0.30 tan θ 5.0, 55.0 6795 (0.041)	16 $C_{33}H_{38}CIN_2Ta$ 679.08 monoclinic $P2_1/n$ (No. 14) $9.751(3)$ $22.491(4)$ $15.180(4)$ $107.15(2)$ $3181(1)$ 4 1.418 1360.00 35.56 23 $0.4 \times 0.2 \times 0.1$ $\omega - 2\theta$ 16 $1.21 + 0.30 \tan \theta$ $5.0, 55.0$ 7501 (0.032)	$\begin{array}{c} \textbf{23} \\ \hline C_{28}H_{45}N_2Ta \\ 590.62 \\ monoclinic \\ P2_1/c \ (No. 14) \\ 18.271\ (6) \\ 16.161\ (6) \\ 26.449\ (10) \\ \hline 91.78\ (3) \\ \hline 7805\ (3) \\ 12 \\ 1.508 \\ 3600.00 \\ 42.35 \\ 23 \\ 0.2 \times 0.2 \times 0.1 \\ \hline \omega \\ 16 \\ 1.05 + 0.30 \ tan \ \theta \\ 5.0, \ 55.9 \\ 18 \ 569\ (0.075) \\ \hline \end{array}$
formula fw cryst syst space group a, Å b, Å c, Å α, \deg β, \deg γ, \deg γ, \deg γ, \deg $V, Å^3$ Z $D_{calcd,} g/cm^{-3}$ F(000) μ [Mo K α], cm ⁻¹ T, °C cryst size, mm scan type scan speed, deg/min scan width, deg $2\theta_{min}, 2\theta_{max}, \deg$ unique data (R_{int}) no, of observations	$\begin{array}{c} 10\\ \hline C_{28}H_{37}N_2O_2Ta\\ 614.56\\ triclinic\\ P\bar{1}\ (No.\ 2)\\ 10.056(2)\\ 16.387(4)\\ 8.386(3)\\ 102.89(3)\\ 95.32(2)\\ 100.27(2)\\ 1312.7(7)\\ 2\\ 1.555\\ 616.00\\ 42.06\\ 23\\ 0.3\times0.2\times0.1\\ \omega-2\theta\\ 32\\ 1.94+0.30\ tan\ \theta\\ 5.0,\ 55.0\\ 5193\ (0.038)\\ 5125\\ \end{array}$	14 $C_{38}H_{53}N_2Ta$ 718.80 monoclinic $P2_1/c$ (No. 14) 12.093(4) 16.015(6) 16.873(7) 95.79(3) 3251(1) 4 1.468 1472.00 34.04 23 0.5 × 0.3 × 0.2 $\omega - 2\theta$ 16 0.94 + 0.30 tan θ 5.0, 55.0 6795 (0.041) 6547	16 $C_{33}H_{38}CIN_2Ta$ 679.08 monoclinic $P2_1/n$ (No. 14) $9.751(3)$ $22.491(4)$ $15.180(4)$ $107.15(2)$ $3181(1)$ 4 1.418 1360.00 35.56 23 $0.4 \times 0.2 \times 0.1$ $\omega - 2\theta$ 16 $1.21 + 0.30 \tan \theta$ $5.0, 55.0$ 7501 (0.032) 7241	$\begin{array}{c} \textbf{23} \\ \hline C_{28}H_{45}N_2Ta \\ 590.62 \\ monoclinic \\ P2_{1/c} (No. 14) \\ 18.271(6) \\ 16.161(6) \\ 26.449(10) \\ 91.78(3) \\ \hline 7805(3) \\ 12 \\ 1.508 \\ 3600.00 \\ 42.35 \\ 23 \\ 0.2 \times 0.2 \times 0.1 \\ \hline \omega \\ 16 \\ 1.05 + 0.30 \tan \theta \\ 5.0, 55.9 \\ 18 569 (0.075) \\ 17 913 \\ \end{array}$
formula fw cryst syst space group a, Å b, Å c, Å c, Å c, Å c, Å c, Å deg β , deg γ , deg V, Å ³ Z D_{calcd} , g/cm ⁻³ F(000) μ [Mo K α], cm ⁻¹ T, °C cryst size, mm scan type scan speed, deg/min scan width, deg $2\theta_{min}$, $2\theta_{max}$, deg unique data (R_{int}) no. of observations no. of variables	10 $C_{28}H_{37}N_2O_2Ta$ 614.56 triclinic $P\bar{1}$ (No. 2) 10.056(2) 16.387(4) 8.386(3) 102.89(3) 95.32(2) 100.27(2) 1312.7(7) 2 1.555 616.00 42.06 23 0.3 × 0.2 × 0.1 $ω-2θ$ 32 1.94 + 0.30 tan θ 5.0, 55.0 5193 (0.038) 5125 298	14 $C_{38}H_{53}N_2Ta$ 718.80 monoclinic $P2_1/c$ (No. 14) 12.093(4) 16.015(6) 16.873(7) 95.79(3) 3251(1) 4 1.468 1472.00 34.04 23 0.5 × 0.3 × 0.2 $\omega - 2\theta$ 16 0.94 + 0.30 tan θ 5.0, 55.0 6795 (0.041) 6547 371	16 $C_{33}H_{38}CIN_2Ta$ 679.08 monoclinic $P2_1/n$ (No. 14) $9.751(3)$ $22.491(4)$ $15.180(4)$ $107.15(2)$ $3181(1)$ 4 1.418 1360.00 35.56 23 $0.4 \times 0.2 \times 0.1$ $\omega - 2\theta$ 16 $1.21 + 0.30 \tan \theta$ $5.0, 55.0$ 7501 (0.032) 7241 334	$\begin{array}{c} \textbf{23} \\ \hline C_{28} H_{45} N_2 Ta \\ 590.62 \\ monoclinic \\ P2_1/c \ (No. 14) \\ 18.271 \ (6) \\ 16.161 \ (6) \\ 26.449 \ (10) \\ \hline 91.78 \ (3) \\ \hline 7805 \ (3) \\ 12 \\ 1.508 \\ 3600.00 \\ 42.35 \\ 23 \\ 0.2 \times 0.2 \times 0.1 \\ \omega \\ 16 \\ 1.05 + 0.30 \ tan \ \theta \\ 5.0, 55.9 \\ 18 \ 569 \ (0.075) \\ 17 \ 913 \\ 839 \\ \hline \end{array}$
formula fw cryst syst space group a, Å b, Å c, C cryst size, mm scan type scan speed, deg/min scan width, deg c θ_{min} , $2\theta_{max}$, deg unique data (R_{int}) no. of observations no. of variables R1, wR2 (all data)	10 $C_{28}H_{37}N_2O_2Ta$ 614.56 triclinic $P\overline{1}$ (No. 2) $10.056(2)$ $16.387(4)$ $8.386(3)$ $102.89(3)$ $95.32(2)$ $100.27(2)$ $1312.7(7)$ 2 1.555 616.00 42.06 23 $0.3 \times 0.2 \times 0.1$ $ω - 2θ$ 32 $1.94 + 0.30 \tan \theta$ $5.0, 55.0$ 5193 (0.038) 5125 298 $0.057, 0.065$	14 $C_{38}H_{53}N_2Ta$ 718.80 monoclinic $P2_1/c$ (No. 14) 12.093(4) 16.015(6) 16.873(7) 95.79(3) 3251(1) 4 1.468 1472.00 34.04 23 0.5 × 0.3 × 0.2 $\omega - 2\theta$ 16 0.94 + 0.30 tan θ 5.0, 55.0 6795 (0.041) 6547 371 0.084, 0.084	16 $C_{33}H_{38}CIN_2Ta$ 679.08 monoclinic $P2_1/n$ (No. 14) $9.751(3)$ $22.491(4)$ $15.180(4)$ $107.15(2)$ $3181(1)$ 4 1.418 1360.00 35.56 23 $0.4 \times 0.2 \times 0.1$ $\omega - 2\theta$ 16 $1.21 + 0.30 \tan \theta$ $5.0, 55.0$ $7501 (0.032)$ 7241 334 $0.085, 0.086$	$\begin{array}{c} \textbf{23} \\ \hline C_{28}H_{45}N_2Ta \\ 590.62 \\ monoclinic \\ P2_1/c \ (No. 14) \\ 18.271 \ (6) \\ 16.161 \ (6) \\ 26.449 \ (10) \\ \hline 91.78 \ (3) \\ \hline 7805 \ (3) \\ 12 \\ 1.508 \\ 3600.00 \\ 42.35 \\ 23 \\ 0.2 \times 0.2 \times 0.1 \\ \omega \\ 16 \\ 1.05 + 0.30 \ tan \ \theta \\ 5.0, \ 55.9 \\ 18 \ 569 \ (0.075) \\ 17 \ 913 \\ 839 \\ 0.132 \ 0.133 \\ \end{array}$
formula fw cryst syst space group a, Å b, Å c, ° c,	10 $C_{28}H_{37}N_2O_2Ta$ 614.56 triclinic $P\bar{1}$ (No. 2) $10.056(2)$ $16.387(4)$ $8.386(3)$ $102.89(3)$ $95.32(2)$ $100.27(2)$ $1312.7(7)$ 2 1.555 616.00 42.06 23 $0.3 \times 0.2 \times 0.1$ $\omega - 2\theta$ 32 $1.94 + 0.30 \tan \theta$ $5.0, 55.0$ 5193 (0.038) 5125 298 $0.057, 0.065$ $0.035, 0.036$ ($I > 1.5\sigma(\Lambda)$	14 $C_{38}H_{53}N_2Ta$ 718.80 monoclinic $P2_1/c$ (No. 14) 12.093(4) 16.015(6) 16.873(7) 95.79(3) 3251(1) 4 1.468 1472.00 34.04 23 0.5 × 0.3 × 0.2 $\omega - 2\theta$ 16 0.94 + 0.30 tan θ 5.0, 55.0 6795 (0.041) 6547 371 0.084, 0.084 0.037, 0.038 ($I \ge 3.0\sigma(D)$	16 $C_{33}H_{38}CIN_2Ta$ 679.08 monoclinic $P2_1/n$ (No. 14) $9.751(3)$ 22.491(4) 15.180(4) 107.15(2) 3181(1) 4 1.418 1360.00 35.56 23 $0.4 \times 0.2 \times 0.1$ $\omega - 2\theta$ 16 1.21 + 0.30 tan θ 5.0, 55.0 7501 (0.032) 7241 334 $0.085, 0.086$ $0.040, 0.041$ ($I > 3.0\sigma(h)$)	23 $C_{28}H_{45}N_2Ta$ 590.62 monoclinic $P2_1/c$ (No. 14) 18.271(6) 16.161(6) 26.449(10) 91.78(3) 7805(3) 12 1.508 3600.00 42.35 23 0.2 × 0.2 × 0.1 ω 16 1.05 + 0.30 tan θ 5.0, 55.9 18 569 (0.075) 17 913 839 0.132, 0.133 0.048, 0.049 ($I > 1.5\sigma(\Lambda)$
formula fw cryst syst space group a, Å b, Å c, C cryst size, mm scan type scan speed, deg/min scan vidth, deg 2 θ_{min} , $2\theta_{max}$, deg unique data (R_{int}) no. of observations no. of variables R1, wR2 (all data) <i>R</i> , R_w	$\begin{array}{c} 10\\ \hline C_{28}H_{37}N_2O_2Ta\\ 614.56\\ triclinic\\ P\bar{1}\ (No.\ 2)\\ 10.056(2)\\ 16.387(4)\\ 8.386(3)\\ 102.89(3)\\ 95.32(2)\\ 100.27(2)\\ 1312.7(7)\\ 2\\ 1.555\\ 616.00\\ 42.06\\ 23\\ 0.3\times0.2\times0.1\\ \omega-2\theta\\ 32\\ 1.94+0.30\ tan\ \theta\\ 5.0,\ 55.0\\ 5193\ (0.038)\\ 5125\\ 298\\ 0.057,\ 0.065\\ 0.035,\ 0.036\ (I>1.5\sigma(J))\\ 1.99\\ \end{array}$	$\begin{array}{c} \textbf{14} \\ \hline C_{38}H_{53}N_2Ta \\ 718.80 \\ monoclinic \\ P2_1/c \ (No. \ 14) \\ 12.093(4) \\ 16.015(6) \\ 16.873(7) \\ 95.79(3) \\ 3251(1) \\ 4 \\ 1.468 \\ 1472.00 \\ 34.04 \\ 23 \\ 0.5 \times 0.3 \times 0.2 \\ \omega - 2\theta \\ 16 \\ 0.94 + 0.30 \tan \theta \\ 5.0, \ 55.0 \\ 6795 \ (0.041) \\ 6547 \\ 371 \\ 0.084, \ 0.084 \\ 0.037, \ 0.038 \ (I > 3.0\sigma(I)) \\ 1.20 \end{array}$	16 $C_{33}H_{38}CIN_2Ta$ 679.08 monoclinic $P2_1/n$ (No. 14) $9.751(3)$ 22.491(4) 15.180(4) 107.15(2) 3181(1) 4 1.418 1360.00 35.56 23 $0.4 \times 0.2 \times 0.1$ $\omega - 2\theta$ 16 1.21 + 0.30 tan θ 5.0, 55.0 7501 (0.032) 7241 334 $0.085, 0.086$ $0.040, 0.041$ ($I > 3.0\sigma(I)$) 1.75 $\omega - (I)$	$\begin{array}{c} \textbf{23} \\ \hline C_{28}H_{45}N_2Ta \\ 590.62 \\ monoclinic \\ P2_1/c \ (No. 14) \\ 18.271 \ (6) \\ 16.161 \ (6) \\ 26.449 \ (10) \\ \hline 91.78 \ (3) \\ \hline 7805 \ (3) \\ 12 \\ 1.508 \\ 3600.00 \\ 42.35 \\ 23 \\ 0.2 \times 0.2 \times 0.1 \\ \omega \\ 16 \\ 1.05 + 0.30 \ tan \ \theta \\ 5.0, 55.9 \\ 18 \ 569 \ (0.075) \\ 17 \ 913 \\ 839 \\ 0.132, \ 0.133 \\ 0.048, \ 0.049 \ (I > 1.5\sigma(I)) \\ 1.08 \\ \end{array}$

observed and calculated structure factor amplitudes, respectively. The agreement indices are defined as $R1 = \sum (||F_0| - |F_c||)/\sum |F_0|$ and w $R2 = [\sum \omega (F_0^2 - F_c^2)^2/\sum (\omega F_0^4)]^{1/2}$. The positions of all non-hydrogen atoms for all complexes were found from a difference Fourier electron density map and refined anisotropically. All hydrogen atoms were placed in calculated positions (C-H = 0.95 Å) and kept fixed. All calculations were performed using the TEXSAN crystallographic software package, and illustrations were drawn with ORTEP. Refinements by using the agreement index wR2 were also applied to complexes **3b** and **20a**, although these have already been refined and reported.¹²

Acknowledgment. This work was financially supported by a Grant-in-Aid for Scientific Research on

Priority Area (No. 283, "Innovative Synthetic Reactions") from the Ministry of Education, Science and Culture, Japanese government. K.M. appreciates the partial financial support from the Yamada Science Foundation. Y.M. is a research fellow of the Japan Society for the Promotion of Science, 1998–2000.

Supporting Information Available: Final positional parameters, final thermal parameters, bond distances, angles, and best planes for all complexes crystallographically characterized; ¹H NMR spectra of complexes **9**, **17**, **18**, and **19**; UV spectra of **20a** and **23**. This material is available free of charge via the Internet at http://pubs.acs.org.

OM981003B