Constrained Geometry Organolanthanide Catalysts. Synthesis, Structural Characterization, and Enhanced Aminoalkene Hydroamination/Cyclization Activity

Shun Tian, Victor M. Arredondo, Charlotte L. Stern, and Tobin J. Marks*

Department of Chemistry, Northwestern University, 2145 Sheridan Road,

Evanston, Illinois, 60208-3113

Received March 1, 1999

Summary: The synthesis and characterization of a series of $Me_2Si[(\eta^5-C_5Me_4)(^BuN)]LnE(TMS)_2$ complexes is described for Ln = Sm, Nd, Yb, Lu; E = CH, N. As precatalysts for aminoalkene hydroamination/cyclization, they are significantly more active than the corresponding $(C_5Me_5)_2LnE(TMS)_2$ complexes.

Research activity in organo-rare earth catalysis has grown exponentially, and lanthanocenes¹ have been shown to exhibit unique characteristics as catalysts in hydrogenation,² oligomerization,³ polymerization,⁴ hydroamination,⁵ hydrosilylation,⁶ silanolytic chain transfer,⁷ and hydroboration.⁸ Organolanthanides combine facile ligand exchange and high electrophilicity with thermochemically understandable reaction pathways, while the lanthanide series offers tunable reactivity via variation of metal ionic radius and ancillary ligation.¹ Regarding the latter, the development of sterically less encumbered ancillary ligation which retains thermal stability and solubility is of great current interest.

Intramolecular hydroamination/cyclization of aminoalkenes,^{5c,h,i} aminoalkynes,^{5c,e-h} and aminoallenes^{5a,b}

(2) (a) Jeske, G.; Lauke, H.; Schumann, H.; Swepston, P. N.; Schumann, H.; Marks, T. J. J. Am. Chem. Soc. 1985, 107, 8091. (b) Molander, G. A.; Hoberg, J. O. J. Org. Chem. 1992, 57, 3266. (c) Roesky, P. W.; Denninger, U.; Stern, C. L.; Marks, T. J. Organometallics 1997, 16, 4486.

(3) (a) Piers, W. E.; Bercaw, J. E. J. Am. Chem. Soc. 1990, 112, 9406. (b) den Hann, K. H.; Wielstra, Y.; Teuben, J. H. Organometallics 1987, 6, 2053. (c) Schock, L. E.; Jeske, G.; Swepston, P. N.; Schumann, H.; Marks, T. J. J. Am. Chem. Soc. 1985, 107, 8103.

(4) (a) Watson, P. L.; Parshall, G. W. Acc. Chem. Res. 1985, 18, 51. (b) Jeske, G.; Lauke, H.; Mauermann, H.; Schumann, H.; Marks, T. J. *J. Am. Chem. Soc.* **1985**, *107*, 8111. (c) Giardello, M. A.; Yamamoto, Y.; Brard, L.; Marks, T. J. J. Am. Chem. Soc. **1995**, *117*, 3276. (d) Yasuda, H.; Hamamoto, H.; Yokota, K.; Miyake, S.; Nakamura, A. J. Am. Chem. Soc. **1994**, *114*, 4908. (e) Yang, X.; Seyam, A. M.; Fu, P.-F.; Marks, T. J. Macromolecules **1994**, *27*, 4625.

(5) (a) Arredondo, V. M.; McDonald, F. E.; Marks, T. J. Organome-*Lallics*, in press. (b) Arredondo, V. M.; McDonald, F. E.; Marks, T. J. *J. Am. Chem. Soc.* **1998**, *120*, 4871. (c) Li, Y.; Marks, T. J. *J. Am. Chem. Soc.* **1998**, *120*, 1757. (d) Molander, G. A.; Dowdy, E. D. *J. Org. Chem.*

(6) (a) Fu, P.-F.; Brard, L.; Li, Y.; Marks, T. J. J. Am. Chem. Soc. 1995, 117, 7157. (b) Molander, G. A.; Retsch, W. H. J. Am. Chem. Soc. 1997, 119, 8817.

(7) (a) Fu, P.-F.; Marks, T. J. J. Am. Chem. Soc. 1995, 117, 10747. (b) Koo, K.; Fu, P.-F.; Marks, T. J. *Macromolecules* 1999, *32*, 981.
 (8) (a) Harrison, K. N.; Marks, T. J. J. Am. Chem. Soc. 1992, 114,

3904. (b) Bijpost, E. A.; Duchateau, R.; Teuben, J. H. J. Mol. Catal. 1995, 95, 121.

can be mediated by a number of catalyst systems,⁹ with lanthanocenes being some of the most efficient and selective discovered to date.⁵ Mechanistically, amino alkene hydroamination/cyclization involves turnoverlimiting insertion of the olefinic functionality into an Ln-N bond followed by rapid Ln-C protonolysis.⁵ The rate is influenced by factors including substrate structure, metal ionic radius, and ancillary ligand "openess". The rate law is usually first-order in [catalyst] and zeroorder in [substrate], with the ring-size cyclization rate dependence for aminoalkenes⁵ⁱ and -alkynes^{5f} being 5 $> 6 \gg 7$. These observations raise the intriguing question of whether less sterically/electronically saturated catalysts would effect more rapid hydroamination and conversion of more demanding substrates. In this regard, the silyl-linked amido cyclopentadienyl ligand $[Me_2Si(\eta^5-C_5Me_4)(^tBuN)]^{2-}$, originally developed for Sc,¹⁰ has recently attracted attention, in group 4, where "constrained geometry catalysts" (e.g., I) exhibit impressive olefin polymerization characteristics.¹¹ We

report here a new series of constrained geometry organolanthanide $[Me_2Si(C_5Me_4)(^tBuN)]LnE(TMS)_2$ catalysts (E = N or CH; $R = {}^{t}Bu$) and their significantly enhanced activity for aminoalkene hydroamination/ cyclization.

[Me₂Si(C₅Me₄)(^tBuN)]LnN(TMS)₂ and [Me₂Si(C₅Me₄)-(^tBuN)]LnCH(TMS)₂ complexes were synthesized by reaction of the corresponding homoleptic amides or alkyls with Me₂Si(C₅Me₄H)(^tBuNH).¹² Unlike salt elimination reactions, the amine and alkane elimination

(12) See Supporting Information for synthetic and characterization details.

⁽¹⁾ For recent organolanthanide reviews, see: (a) Molander, G. A. Chemtracts: Org. Chem. **1998**, *11*, 237. (b) Anwander, R. In Applied Homogeneous Catalysis with Organometallic Compounds; Cornils, B., Herrmann, W. A., Eds.; VCH Publishers: New York, 1996; Vol. 2, Section 3.2.5, p 866.

⁽⁹⁾ For a recent review of catalytic alkene and alkyne hydroamination, see: Müller, T. E.; Beller, M. Chem. Rev. 1998, 98, 675.

<sup>tion, see: Muller, T. E.; Beller, M. Chem. Rev. 1998, 98, 675.
(10) Shapiro, P. J.; Cotter, M. D.; Schaefer, W. P.; Labinger, J. A.;
Bercaw, J. E. J. Am. Chem. Soc. 1994, 116, 4623.
(11) (a) Canich, J. M.; Hlatky, G. G.; Turner, H. W. W. PCT Appl.
WO 92-00333, 1992. Canich, J. M. Eur. Patent Appl. EP 420 436-A1, 1991. (b) Stevens, J. C.; Timmers, F. J.; Wilson, D. R.; Schmidt, G. F.;
Nickias, P. N.; Rosen, R. K.; Knight, G. W.; Lai, S. Eur. Patent Appl.
EP 416 815-A2, 1991. (c) Chen, Y.-X.; Marks, T. J. Organometallics
1997, 16, 3649. (d) For a general review of such ligands, see: Okuda, J.; Eberle, T. In Metallocenes. Togni A.: Halterman, R. A.: Eds.: Wilay-</sup>J.; Eberle, T. In *Metallocenes*; Togni, A., Halterman, R. A., Eds.; Wiley-VCH: New York, 1998; Vol. 1, Chapter 7.

reactions proceed cleanly in hydrocarbon solvents, affording salt- and solvent-free products. However, amine elimination does not lie completely to the right and must be driven to completion by HN(TMS)₂ removal (eq 1).¹² When Ln = Sm, the bis-chelated complex [Me₂Si(η^{5} -C₅Me₄)(^tBuN)]Sm[Me₂Si(η^{5} -C₅Me₄)(^tBuNH)] (**2**) is also isolated in small quantities (eq 2). The separation of **1** from **2** is achieved by recrystallization, while complex **4** is purified by recystallization and complex **3** by vacuum sublimation.

In contrast to amine elimination, alkane elimination is a more efficient synthetic route. The reaction is likely more exothermic,¹³ and Ln–C bonds are protonolytically more reactive.¹ In situ NMR reveals that Ln[CH-(TMS)₂]₃ complexes first undergo reaction with the N–H functionality of Me₂Si(C₅Me₄H)(^tBuNH) to release 1.0 equiv of CH₂(TMS)₂, and heating is necessary to subsequently activate the tetramethylcyclopentadiene C–H group. Complexes **5** and **6** are readily synthesized via this route (eq 3).¹² However, thermal instability of the early lanthanide trialkyls has precluded synthesis of the Nd and Sm analogues.

Complexes **1–6** were characterized by NMR, elemental analysis, and mass spectroscopy,¹² and **1**, **2**, and **5**

Figure 1. Molecular structure of complex **1**. Selected bond lengths (Å) and angles (deg): Sm–N(1), 2.320(4); Sm–N(2), 2.257(4); Sm–C(1), 2.600(5); Sm–C(2), 2.642(5); Sm–C(3), 2.697(5); Sm–Cent, 2.371; Sm···C(10), 3.308; Sm···C(15), 3.045. Sm–C(4), 2.709(5); Sm–C(5), 2.641(5). N(2)–Sm–N(1), 126.4(2); C(1)–Si–N(2), 97.1(2) [Cent is the centroid of Cp C(1)–C(5)].

by X-ray diffraction (Figures 1, 2).¹² Despite the lower formal coordination numbers, the Sm-N(TMS)₂ bond distance of 2.320(4) Å in complex **1** is significantly $(>3\sigma)$ longer than those found in other samarocene bis-(trimethylsilyl) amides, e.g., (C₅Me₅)₂Sm-N(TMS)₂ (2.301(3) Å),¹⁴ (S)-[Me₂Si(C₅Me₅)((+)-neomenthylCp)]- $Sm-N(TMS)_2$ (2.300(5) Å),¹⁵ (S)-[Me₂Si(C₅Me₅)((-)menthylCp)]Sm-N(TMS)₂ (2.302(9) Å).¹⁵ However, the Sm-cent(Cp) distance (2.371 Å) is substantially shorter than in $(C_5Me_5)_2Sm-N(TMS)_2$ (Sm-cent(Cp1) = 2.479)Å, Sm-cent(Cp2) = 2.470 Å).¹⁵ In **1**, the Sm-N(^tBu) bond distance (2.257(4) Å) is shorter than the Sm- $N(TMS)_2$ bond distance (2.320(4) Å), presumably a consequence of the chelate structure. A close Ln-CH₃-Si contact of 2.657(5) Å is also observed in 5. This "multicenter" Ln…Me-Si interaction¹⁶ has been observed in numerous organolanthanide-CH(TMS)₂ complexes, e.g., (C5Me5)Y(OAr)CH(TMS)2,16a (C5Me5)La- $[CH(TMS)_2]_2$,¹⁵ (C₅Me₅)₂LnCH(TMS)₂ (Ln = Ce,¹⁷ Nd^{2d}), [Me₂Si(C₅H₅)(C₅Me₄)]LuCH(TMS)₂,¹⁸ (*R/S*)-[Me₂Si(C₅-Me₄)((+)-neomenthylCp)]-YCH(TMS)₂,¹⁵ and (*R*)-[Me₂-Si(C₅Me₄)((–)-menthylCp)]YCH–(TMS)₂.¹⁵

Complexes **1**, **3**, **5**, and **6** are significantly more active for aminoalkene hydroamination/cyclization than conventional $(C_5Me_5)_2LnR$ catalysts. Tables 1, 2 summarize results for CH_2 =CHCH₂C(CH₃)₂CH₂NH₂ (**7**) and CH₂=

(20) At longer conversions, some deviation is observed in the cases of the larger ionic radius lanthanides. This type of behavior has been observed before. $^{\rm 5h}$

(21) Arredondo, V. M.; Tian, S.; McDonald, F. E.; Marks, T. J. J. A. m. Chem. Soc. **1999**, *121*, 3633.

⁽¹³⁾ Bond enthalpies from: (a) Nolan, S. P.; Stern, D.; Hedden, D.; Marks, T. J. *ACS Symp. Ser.* **1990**, *428*, 159. (b) Nolan, S. P.; Stern, D.; Marks, T. J. *J. Am. Chem. Soc.* **1989**, *111*, 7844.

⁽¹⁴⁾ Evans, W. J.; Keyer, R. A.; Ziller, J. W. Organometallics 1993, 12, 2618.

⁽¹⁵⁾ Giardello, M. A.; Conticello, V. P.; Brard, L.; Sabat, M.; Rheingold, A. L.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc. **1994**, *116*, 10212.

⁽¹⁶⁾ For recent studies see: (a) Klooster, W. T.; Brammer, L.;
Schaverien, C. J.; Budzelaar, P. H. M. J. Am. Chem. Soc. 1999, 121,
1381. (b) Di Bella, S.; Lanza, G.; Fragalà, I. L.; Marks, T. J.
Organometallics 1996, 15, 205. (c) Di Bella, S.; Gulino, A.; Lanza, G.;
Fragalà, I. L.; Stern, D.; Marks, T. J. Organometallics 1994, 13, 3810.
(17) Heeres, H. J.; Renkema, J.; Booij, M.; Meetsma, A.; Teuben, J.

H. Organometallics 1988, 7, 2495. (18) Stern, D.; Sabat, M.; Marks, T. J. J. Am. Chem. Soc. 1990, 112,

⁽¹⁶⁾ Stern, D., Sabat, W., Marks, T. J. J. Ant. Chem. Soc. **1990**, 112 9558.

⁽¹⁹⁾ Estimated from activation parameters in ref 5i.

Figure 2. Molecular structure of complex **5**. Selected bond lengths (Å) and angles (deg): Yb–N, 2.164(4); Yb–C(16), 2.378(1); Yb–C(15), 2.657(5); Yb–C(1), 2.482(4); Yb–C(2), 2.528(4); Yb–C(3), 2.629(4); Yb–C(4), 2.625(4); Yb–C(5), 2.544(4); Yb–Cent, 2.254. N–Yb–C(12), 129.6(1); C(15)–Yb–C(16), 73.7(2) [Cent is the centroid of Cp C(1)–C(5)].

Me₂Si(C₅Me₄)₂LuCH(TMS)₂

^{*a*} Conditions: [substrate]/[catalyst] = 50-300/1; [catalyst] = 0.70-2.0 mM in toluene- d_8 . ^{*b*} NMR integration less accurate due to paramagnetism. ^{*c*} From ref 5k. ^{*d*} Estimated from activation parameters in ref 5k.

< 0.03 (25 °C)d

75 (80 °C)^c

CHCH₂CH₂CH(CH₃)NH₂ (9). Comparison of turnover frequencies $(N_t; h^{-1})$ under the same reaction conditions demonstrates the far greater activity of the [Me₂Si(C₅-Me₄)(^tBuN)]LnE(TMS)₂ catalysts. For example, in the cyclization of 7, complex 1 mediates the transformation with $N_{\rm t} = 181 \ {\rm h}^{-1}$ at 25 °C vs $N_{\rm t} = 48 \ {\rm h}^{-1}$ at 60 °C and $N_{\rm t} \sim 4.8 \ h^{-1}$ at 25 °C^{20} for (C_5Me_5)_2SmCH(TMS)_2.5i Furthermore, complex **6** ($N_{\rm t}$ = 90 h⁻¹, at 25 °C) is dramatically more active than (C₅Me₅)₂LuCH(TMS)₂ (N_t < 1 h⁻¹, 80 °C;. 0.03 h⁻¹ at 25 °C²⁵).⁵ⁱ For cyclization of 9, complex 1 is more active than $(C_5Me_5)_2SmN(TMS)_2$ $(N_{\rm t} = 24 \ {\rm h^{-1}} \ {\rm vs} \ 9.1 \ {\rm h^{-1}} \ {\rm at} \ 25 \ {\rm ^{\circ}C})$, and complex **6** is moreactive than $(C_5Me_5)_2LuCH(TMS)_2$ ($N_t = 28 h^{-1} vs$ 0.5 h^{-1} at 25 °C). Regarding mechanism, the rate law for the [Me₂Si(C₅Me₄)(^tBuN)]Ln-mediated hydroamination/cyclizations examined is²⁰ zero-order in substrate concentration, suggesting turnover-limiting olefin insertion, and in accord with analogous lanthanocene-medi-

catalyst	$N_{ m t}$ (h ⁻¹), °C	product <i>trans/cis</i> ratio
[Me ₂ Si(C ₅ Me ₄)(^t BuN)]SmN(TMS) ₂ (1)	24 (25 °C)	10
$[Me_2Si(C_5Me_4)(^{t}BuN)]NdN(TMS)_2$ (3)	24 (25 °C)	10
$[Me_2Si(C_5Me_4)(^{t}BuN)]YbCH(TMS)_2$ (5)	34 (25 °C)	21
$[Me_2Si(C_5Me_4)(^{t}BuN)]LuCH(TMS)_2$ (6)	28 (25 °C)	17
(C ₅ Me ₅) ₂ LaCH(TMS) ₂	45 (25 °C) ^b	5^b
$(C_5Me_5)_2SmN(TMS)_2$	9.1 (25 °C)	
(C ₅ Me ₅) ₂ LuCH(TMS) ₂	0.5 (25 °C)	

^{*a*} Conditions: [substrate]/[catalyst] = 40-130; [catalyst] = 0.70-2.0 mM in toluene- d_8 . ^{*b*} From ref 5k.

Scheme 1. Organolanthanide-Catalyzed Aminoallene Cyclization Processes, from Ref 21

ated processes. Finally, **1** has been successfully employed in the total synthesis of the alkaloid natural product (3.5, 5.7, 8.5)-3-heptyl-5-methylpyrrolizidine [(+)-xenovenine] (Scheme 1).²¹ A crucial transformation is catalytic stereoselective tandem $\mathbf{A} \rightarrow \mathbf{B}$ bicyclization. While conventional catalysts yield only monocyclic product ($\mathbf{A} \rightarrow \mathbf{C}$), **1** mediates rapid and regioselective bicyclization.

Acknowledgment. Support by the NSF (CHE-9618589) is gratefully acknowledged. V.M.A. thanks Shell Oil Co. and Wyeth-Ayerst for graduate fellowships, the latter administered by the Organic Chemistry Division of the ACS. S.T. thanks Amoco Chemicals for a postdoctoral fellowship and Mr. K. Miyamoto for helpful discussions.

Supporting Information Available: Details describing synthesis and characterization of complexes **1–6** and details of structure determinations, including final coordinates, thermal parameters, bond distances and bond angles; figures giving representative kinetics plot. This material is available free of charge via the Internet at http://pubs.acs.org.

OM990146A