Constrained Geometry Organolanthanide Catalysts. Synthesis, Structural Characterization, and Enhanced Aminoalkene Hydroamination/Cyclization Activity

Shun Tian, Victor M. Arredondo, Charlotte L. Stern, and Tobin J. Marks*

Department of Chemistry, Northwestern University, 2145 Sheridan Road,

Evanston, Illinois, 60208-3113 Received March 1, 1999

Summary: The synthesis and characterization of a series of Me2Si[(η5-C5Me4)(t BuN)]LnE(TMS)2 complexes is de $scribed$ for $Ln = Sm$, Nd , Yb , Lu ; $E = CH$, N . As *precatalysts for aminoalkene hydroamination/cyclization, they are significantly more active than the corresponding (C5Me5)2LnE(TMS)2 complexes.*

Research activity in organo-rare earth catalysis has grown exponentially, and lanthanocenes¹ have been shown to exhibit unique characteristics as catalysts in hydrogenation,² oligomerization,³ polymerization,⁴ hydroamination,⁵ hydrosilylation,⁶ silanolytic chain transfer,⁷ and hydroboration.⁸ Organolanthanides combine facile ligand exchange and high electrophilicity with thermochemically understandable reaction pathways, while the lanthanide series offers tunable reactivity via variation of metal ionic radius and ancillary ligation.¹ Regarding the latter, the development of sterically less encumbered ancillary ligation which retains thermal stability and solubility is of great current interest.

Intramolecular hydroamination/cyclization of aminoalkenes, $5c, h, i$ aminoalkynes, $5c, e-h$ and aminoallenes $5a, b$

(2) (a) Jeske, G.; Lauke, H.; Schumann, H.; Swepston, P. N.; Schumann, H.; Marks, T. J. *J. Am. Chem. Soc.* **1985**, *107*, 8091. (b)
Molander, G. A.; Hoberg, J. O. *J. Org. Chem.* **1992**, 57, 3266. (c) Roesky,
P. W.; Denninger, U.; Stern, C. L.; Marks, T. J. *Organometallics* **1997** *16*, 4486.

(3) (a) Piers, W. E.; Bercaw, J. E. *J. Am. Chem. Soc.* **1990**, *112*, 9406. (b) den Hann, K. H.; Wielstra, Y.; Teuben, J. H. *Organometallics* **1987**, *6*, 2053. (c) Schock, L. E.; Jeske, G.; Swepston, P. N.; Schumann, H.; Marks, T. J. *J. Am. Chem. Soc.* **1985**, *107*, 8103.

(4) (a) Watson, P. L.; Parshall, G. W. *Acc. Chem. Res.* **1985**, *18*, 51. (b) Jeske, G.; Lauke, H.; Mauermann, H.; Schumann, H.; Marks, T. J. *J. Am. Chem. Soc.* **1985**, *107*, 8111. (c) Giardello, M. A.; Yamamoto, Y.; Brard, L.; Marks, T. J. *J. Am. Chem. Soc.* **1995**, *117*, 3276. (d) Yasuda, H.; Hamamoto, H.; Yokota, K.; Miyake, S.; Nakamura, A. *J. Am. Chem. Soc.* **1994**, *114,* 4908. (e) Yang, X.; Seyam, A. M.; Fu, P.- F.; Marks, T. J. *Macromolecules* **1994**, *27*, 4625.

(5) (a) Arredondo, V. M.; McDonald, F. E.; Marks, T. J. *Organome-tallics*, in press. (b) Arredondo, V. M.; McDonald, F. E.; Marks, T. J. *J. Am. Chem. Soc.* **1998**, *120*, 4871. (c) Li, Y.; Marks, T. J. *J. Am. Chem. Soc.* **1998**, *120*, 1757. (d) Molander, G. A.; Dowdy, E. D. *J. Org. Chem.* **1998**, *63*, 8983. (e) Li, Y.; Marks, T. J. *J. Am. Chem. Soc.* **1996**, *118*, 9295. (f) Li, Y.; Marks, T. J. *Organometallics* **1996**, *15,* 3770. (g) Li,
Y.; Marks, T. J. *J. Am. Chem. Soc.* **1996,** *118,* 707. (h) Giardello, M.
A.; Conticello, V. P.; Brard, L.; Gagné, M. R.; Marks, T. J. *J. Am. C* Soc. **1994**, *116*, 10241. (i) Gagné, M. R.; Stern, C. L.; Marks, T. J. *J.* Am. Chem. Soc. **1992**, *114*, 275.
(6) (a) Fu, P.-F.; Brard, L.; Li, Y.; Marks, T. J. *J. Am. Chem. Soc.*

1995, *117*, 7157. (b) Molander, G. A.; Retsch, W. H. *J. Am. Chem. Soc.* **1997**, *119*, 8817.

(7) (a) Fu, P.-F.; Marks, T. J. *J. Am. Chem. Soc.* **1995**, *117*, 10747.

can be mediated by a number of catalyst systems,⁹ with lanthanocenes being some of the most efficient and selective discovered to date.⁵ Mechanistically, amino alkene hydroamination/cyclization involves turnoverlimiting insertion of the olefinic functionality into an $Ln-N$ bond followed by rapid $Ln-C$ protonolysis.⁵ The rate is influenced by factors including substrate structure, metal ionic radius, and ancillary ligand "openess". The rate law is usually first-order in [catalyst] and zeroorder in [substrate], with the ring-size cyclization rate dependence for aminoalkenes⁵ⁱ and -alkynes^{5f} being 5 $> 6 \gg 7$. These observations raise the intriguing question of whether less sterically/electronically saturated catalysts would effect more rapid hydroamination and conversion of more demanding substrates. In this regard, the silyl-linked amido cyclopentadienyl ligand [Me₂Si($\eta^5\text{-C}_5$ Me₄)(^tBuN)]^{2–}, originally developed for Sc,10 has recently attracted attention, in group 4, where "constrained geometry catalysts" (e.g., **I**) exhibit impressive olefin polymerization characteristics.¹¹ We

report here a new series of constrained geometry organolanthanide [Me₂Si(C₅Me₄)(^tBuN)]LnE(TMS)₂ catalysts ($E = N$ or CH; $R = {tBu}$) and their significantly
enhanced activity for aminoalkene hydroamination enhanced activity for aminoalkene hydroamination/ cyclization.

 $[Me₂Si(C₅Me₄)(^tBuN)]LnN(TMS)₂ and [Me₂Si(C₅Me₄)-$ (t BuN)]LnCH(TMS)2 complexes were synthesized by reaction of the corresponding homoleptic amides or alkyls with Me₂Si(C₅Me₄H)(^tBuNH).¹² Unlike salt elimination reactions, the amine and alkane elimination

⁽¹⁾ For recent organolanthanide reviews, see: (a) Molander, G. A. *Chemtracts*: *Org. Chem.* **1998**, *11*, 237. (b) Anwander, R. In *Applied Homogeneous Catalysis with Organometallic Compounds*; Cornils, B., Herrmann, W. A., Eds.; VCH Publishers: New York, 1996; Vol. 2, Section 3.2.5, p 866.

⁽b) Koo, K.; Fu, P.-F.; Marks, T. J. *Macromolecules* **1999**, *32*, 981. (8) (a) Harrison, K. N.; Marks, T. J. *J. Am. Chem. Soc.* **1992**, *114*, 3904. (b) Bijpost, E. A.; Duchateau, R.; Teuben, J. H. *J. Mol. Catal.* **1995**, *95*, 121.

⁽⁹⁾ For a recent review of catalytic alkene and alkyne hydroamina-
tion, see: Müller, T. E.; Beller, M. *Chem. Rev.* **1998**, *98*, 675.
(10) Shapiro, P. J.; Cotter, M. D.; Schaefer, W. P.; Labinger, J. A.;
Bercaw, J. E. J.; Eberle, T. In *Metallocenes*; Togni, A., Halterman, R. A., Eds.; Wiley-VCH: New York, 1998; Vol. 1, Chapter 7.

⁽¹²⁾ See Supporting Information for synthetic and characterization details.

reactions proceed cleanly in hydrocarbon solvents, affording salt- and solvent-free products. However, amine elimination does not lie completely to the right and must be driven to completion by $HN(TMS)_2$ removal (eq 1).¹² When $Ln = Sm$, the bis-chelated complex $[Me₂Si(η^5 C_5Me_4$ ^{(t}BuN)]Sm[Me₂Si(η^5 -C₅Me₄)(^tBuNH)] (2) is also isolated in small quantities (eq 2). The separation of **1** from **2** is achieved by recrystallization, while complex **4** is purified by recystallization and complex **3** by vacuum sublimation.

In contrast to amine elimination, alkane elimination is a more efficient synthetic route. The reaction is likely more exothermic,¹³ and Ln-C bonds are protonolytically more reactive.¹ In situ NMR reveals that $Ln[CH (TMS)_2$]₃ complexes first undergo reaction with the N-H functionality of $Me₂Si(C₅Me₄H)(^tBuNH)$ to release 1.0 equiv of $CH_2(TMS)_2$, and heating is necessary to subsequently activate the tetramethylcyclopentadiene C-^H group. Complexes **5** and **6** are readily synthesized via this route (eq 3).¹² However, thermal instability of the early lanthanide trialkyls has precluded synthesis of the Nd and Sm analogues.

Complexes **¹**-**⁶** were characterized by NMR, elemental analysis, and mass spectroscopy,¹² and **1**, **2**, and **5**

Figure 1. Molecular structure of complex **1**. Selected bond lengths (Å) and angles (deg): Sm-N(1), 2.320(4); Sm-N(2), 2.257(4); Sm-C(1), 2.600(5); Sm-C(2), 2.642(5); Sm-C(3), 2.697(5); Sm-Cent, 2.371; Sm \cdots C(10), 3.308; Sm \cdots C(15), 3.045. Sm-C(4), 2.709(5); Sm-C(5), 2.641(5). N(2)-Sm-N(1), 126.4(2); C(1)-Si-N(2), 97.1(2) [Cent is the centroid of Cp $C(1)-C(5)$].

by X-ray diffraction (Figures 1, 2).¹² Despite the lower formal coordination numbers, the $Sm-N(TMS)_2$ bond distance of 2.320(4) Å in complex **1** is significantly ($>3\sigma$) *longer* than those found in other samarocene bis-(trimethylsilyl) amides, e.g., $(C_5Me_5)_2Sm-N(TMS)_2$ $(2.301(3)$ Å),¹⁴ (*S*)-[Me₂Si(C₅Me₅)((+)-neomenthylCp)]- $Sm-N(TMS)_2$ (2.300(5) Å),¹⁵ (*S*)-[Me₂Si(C₅Me₅)((-)menthylCp)]Sm-N(TMS)₂ (2.302(9) Å).¹⁵ However, the Sm-cent(Cp) distance (2.371 Å) is substantially *shorter* than in $(C_5Me_5)_2Sm-N(TMS)_2$ (Sm-cent(Cp1) = 2.479 Å, Sm–cent(Cp2) = 2.470 Å).¹⁵ In **1**, the Sm–N(^tBu)
bond distance (2.257(4) Å) is shorter than the Sm– bond distance $(2.257(4)$ Å) is shorter than the Sm- $N(TMS)_2$ bond distance (2.320(4) Å), presumably a consequence of the chelate structure. A close Ln-CH3- Si contact of 2.657(5) Å is also observed in **5**. This "multicenter" Ln…Me-Si interaction¹⁶ has been observed in numerous organolanthanide $-CH(TMS)_2$ complexes, e.g., $(C_5Me_5)Y(OAr)CH(TMS)_2$,^{16a} $(C_5Me_5)La [CH(TMS)_2]_2$ ¹⁵ $(C_5Me_5)_2$ LnCH(TMS)₂ (Ln = Ce,¹⁷ Nd^{2d}),
 $[Me_2Si(C_2-H_2)(C_2Me_2)]$ LuCH(TMS)₂ ¹⁸ (*R*/S-IMegSi(Cz-[Me2Si(C5H5)(C5Me4)]LuCH(TMS)2, ¹⁸ (*R*/*S*)-[Me2Si(C5- Me₄)((+)-neomenthylCp)]–YCH(TMS)₂,¹⁵ and (*R*)-[Me₂-
Si(C-Me₄)((–)-menthylCn)lYCH–(TMS)₀¹⁵ $Si(C_5Me_4)((-)$ -menthylCp)]YCH-(TMS)₂.¹⁵
Complexes 1.2.5 and 6 are significantly

Complexes **1**, **3**, **5**, and **6** are significantly more active for aminoalkene hydroamination/cyclization than conventional $(C_5Me_5)_2LnR$ catalysts. Tables 1, 2 summarize results for $CH_2=CHCH_2C(CH_3)_2CH_2NH_2$ (7) and $CH_2=$

(20) At longer conversions, some deviation is observed in the cases of the larger ionic radius lanthanides. This type of behavior has been observed before.
 $^{\rm 5h}$

(21) Arredondo, V. M.; Tian, S.; McDonald, F. E.; Marks, T. J. *J. A m. Chem. Soc.* **1999**, *121*, 3633.

⁽¹³⁾ Bond enthalpies from: (a) Nolan, S. P.; Stern, D.; Hedden, D.; Marks, T. J. *ACS Symp. Ser.* **1990**, *428*, 159. (b) Nolan, S. P.; Stern, D.; Marks, T. J. *J. Am. Chem. Soc.* **1989**, *111*, 7844.

⁽¹⁴⁾ Evans, W. J.; Keyer, R. A.; Ziller, J. W. *Organometallics* **1993**, *12*, 2618.

⁽¹⁵⁾ Giardello, M. A.; Conticello, V. P.; Brard, L.; Sabat, M.; Rheingold, A. L.; Stern, C. L.; Marks, T. J. *J. Am. Chem. Soc.* **1994**, *116*, 10212.

⁽¹⁶⁾ For recent studies see: (a) Klooster, W. T.; Brammer, L.; Schaverien, C. J.; Budzelaar, P. H. M. *J. Am. Chem. Soc.* **1999**, *121*, 1381. (b) Di Bella, S.; Lanza, G.; Fragalà, I. L.; Marks, T. J. *Organometallics* **1996**, *15*, 205. (c) Di Bella, S.; Gulino, A.; Lanza, G.; Fragala`, I. L.; Stern, D.; Marks, T. J. *Organometallics* **1994**, *13*, 3810. (17) Heeres, H. J.; Renkema, J.; Booij, M.; Meetsma, A.; Teuben, J.

H. *Organometallics* **1988**, *7*, 2495. (18) Stern, D.; Sabat, M.; Marks, T. J. *J. Am. Chem. Soc.* **1990**, *112*,

^{9558.}

⁽¹⁹⁾ Estimated from activation parameters in ref 5i.

Figure 2. Molecular structure of complex **5**. Selected bond lengths (Å) and angles (deg): Yb-N, 2.164(4); Yb-C(16), 2.378(1); Yb-C(15), 2.657(5); Yb-C(1), 2.482(4); Yb-C(2), 2.528(4); Yb-C(3), 2.629(4); Yb-C(4), 2.625(4); Yb-C(5), 2.544(4); Yb-Cent, 2.254. N-Yb-C(12), 129.6(1); C(15)- Yb-C(16), 73.7(2) [Cent is the centroid of Cp C(1)–C(5)].

Me₂Si(C₅Me₄)₂LuCH(TMS)₂

a Conditions: [substrate]/[catalyst] = $50-300/1$; [catalyst] = $0.70-2.0$ mM in toluene- d_8 . *b* NMR integration less accurate due to paramagnetism. *^c* From ref 5k. *^d* Estimated from activation parameters in ref 5k.

 $< 0.03~(25 °C)^d$
75 (80 °C)^c

CHCH2CH2CH(CH3)NH2 (**9**). Comparison of turnover frequencies $(N_t; h^{-1})$ under the same reaction conditions demonstrates the far greater activity of the $[Me₂Si(C₅-$ Me₄)('BuN)]LnE(TMS)₂ catalysts. For example, in the cyclization of **7**, complex **1** mediates the transformation with $N_t = 181$ h⁻¹ at 25 °C vs $N_t = 48$ h⁻¹ at 60 °C and *N*_t ∼ 4.8 h⁻¹ at 25 °C²⁰ for $(C_5Me_5)_2$ SmCH(TMS)₂.⁵ⁱ Furthermore, complex **6** ($N_t = 90$ h⁻¹, at 25 °C) is dramatically more active than (C5Me5)2LuCH(TMS)2 (*N*^t ≤ 1 h⁻¹, 80 °C;. 0.03 h⁻¹ at 25 °C²⁵).⁵ⁱ For cyclization of **9**, complex **1** is more active than $(C_5Me_5)_2SmN(TMS)_2$ $(N_t = 24$ h⁻¹ vs 9.1 h⁻¹ at 25 °C), and complex **6** is moreactive than $(C_5Me_5)_2LuCH(TMS)_2$ ($N_t = 28$ h⁻¹ vs 0.5 h⁻¹ at 25 °C). Regarding mechanism, the rate law for the $[Me₂Si(C₅Me₄)(^tBuN)]Ln-mediated hydroamina$ tion/cyclizations examined is 20 zero-order in substrate concentration, suggesting turnover-limiting olefin insertion, and in accord with analogous lanthanocene-medi-

a Conditions: [substrate]/[catalyst] $= 40-130$; [catalyst] $= 0.70-$ 2.0 mM in toluene-*d*8. *^b* From ref 5k.

Scheme 1. Organolanthanide-Catalyzed Aminoallene Cyclization Processes, from Ref 21

ated processes. Finally, **1** has been successfully employed in the total synthesis of the alkaloid natural product (3*S*,5*R*,8*S*)-3-heptyl-5-methylpyrrolizidine [(+) xenovenine] (Scheme 1).²¹ A crucial transformation is catalytic stereoselective tandem $A \rightarrow B$ bicyclization. While conventional catalysts yield only monocyclic product $(A \rightarrow C)$, **1** mediates rapid and regioselective bicyclization.

Acknowledgment. Support by the NSF (CHE-9618589) is gratefully acknowledged. V.M.A. thanks Shell Oil Co. and Wyeth-Ayerst for graduate fellowships, the latter administered by the Organic Chemistry Division of the ACS. S.T. thanks Amoco Chemicals for a postdoctoral fellowship and Mr. K. Miyamoto for helpful discussions.

Supporting Information Available: Details describing synthesis and characterization of complexes **¹**-**⁶** and details of structure determinations, including final coordinates, thermal parameters, bond distances and bond angles; figures giving representative kinetics plot. This material is available free of charge via the Internet at http://pubs.acs.org.

OM990146A