# Unusual Reactivity of a Cr<sub>2</sub>P<sub>2</sub> Tetrahedral Complex toward Superhydride; Formation of [{CpCr(CO)<sub>2</sub>}<sub>2</sub>(μ-PH<sub>2</sub>)<sub>x</sub>(μ-H)<sub>2-x</sub>] (x = 1 and 2) and [{{CpCr(CO)<sub>2</sub>}<sub>2</sub>(μ-PH)}{(CpCr)<sub>2</sub>(μ,η<sup>1</sup>:η<sup>5</sup>:η<sup>5</sup>-P<sub>5</sub>)}]<sup>†</sup>

Perumal Sekar,<sup>‡</sup> Manfred Scheer,<sup>\*,‡</sup> Andreas Voigt,<sup>§</sup> and Reinhard Kirmse<sup>§</sup>

Institut für Anorganische Chemie, Universität Karlsruhe, D-76128 Karlsruhe, Germany, and Institut für Anorganische Chemie, Universität Leipzig, Talstrasse 35, D-04103 Leipzig, Germany

Received February 16, 1999

Reaction of  $[\{CpCr(CO)_2\}_2(\mu,\eta^2-P_2)]$  (1) with LiBEt<sub>3</sub>H in THF at -78 °C affords the new phosphanido complexes  $[\{CpCr(CO)_2\}_2(\mu-PH_2)(\mu-H)]$  (2),  $[\{CpCr(CO)_2\}_2(\mu-PH_2)_2]$  (3), and  $[\langle \{CpCr(CO)_2\}_2(\mu-PH)\rangle \{(CpCr)_2(\mu,\eta^1:\eta^1:\eta^5:\eta^5-P_5)\}]$  (4), which have been characterized by single-crystal X-ray diffraction methods. The structure of **4** reveals a triple-decker sandwich complex with a distorted cyclo-P<sub>5</sub> middle deck. The EPR spectrum of the paramagnetic (S' = 1/2) complex **4** (T = 130 K) is interpreted with a rhombic-symmetric spin Hamiltonian. A noticeable hyperfine interaction with two <sup>31</sup>P nuclei is observed.

### Introduction

The research area of complexes with "naked"  $E_n$  ligands (E = P, As, Sb, Bi) has undergone a dynamic and exciting development.<sup>1</sup> Although the isolobal relationship between the fragments E and CH exists, the  $E_n$  units possess additional lone pairs in comparison to (CH)<sub>n</sub>-ligands, which lead to many more structural manifolds of the formed coordination polyhedrons. The majority of publications in this area deals with the synthesis and structural features of such  $E_n$ -containing complexes. However, only during the past few years has the investigation of their reaction behaviors, especially those of  $P_n$  ligand complexes, been started by our group<sup>2</sup> and by the groups of M. Di Vaira,<sup>3</sup> O. J. Scherer,<sup>4</sup> and M. Mays.<sup>5</sup>

In one of our projects in this field, we are interested in synthesizing transition metal linked oligomers and polymers from  $P_n$  ligand complexes. For this purpose it

 $^{\dagger}$  Dedicated to Professor R. Schmutzler on the occasion of his 65th birthday.

 Reviews: (a) Scheer, M.; Herrmann, E. Z. Chem. 1990, 29, 41.
 Scherer, O. J. Angew. Chem., Int. Ed. Engl. 1990, 29, 1104. (c) Di Vaira, M.; Stoppioni, P. Coord. Chem. Rev. 1992, 120, 259.
 (2) (a) Scheer, M.; Dargatz, M.; Jones, P. G. J. Organomet. Chem.

(2) (a) Scheer, M.; Dargatz, M.; Jones, P. G. *J. Organomet. Chem.* **1993**, *447*, 259. (b) Scheer, M.; Becker, U. *Phosphorus, Sulfur Silicon Relat. Elem.* **1994**, *93–94*, 257.

(3) (a) Di Vaira, M.; Stoppioni, P.; Peruzzini, M., *J. Chem. Soc., Dalton Trans.* **1990**, 109. (b) Di Vaira, M.; Rovai, D.; Stoppioni, P. *Polyhedron* **1990**, *20*, 2477. (c) Di Vaira, M.; Stoppioni, P.; Laschi, F.; Zanello, P. *Polyhedron* **1991**, *10*, 2123.

(4) (a) Scherer, O. J.; Berg, G.; Wolmershäuser, G. Chem. Ber. 1995, 128, 635. (b) Detzel, M.; Mohr, T.; Scherer, O. J.; Wolmershäuser, G. Angew. Chem., Int. Ed. Engl. 1994, 33, 110. (c) Detzel, M.; Friedrich, G.; Scherer, O. J.; Wolmershäuser, G. Angew. Chem., Int. Ed. Engl. 1995, 34, 1321. (d) Scherer, O. J.; Weigel, S.; Wolmershäuser, G. Chem. Eur. J. 1998, 4, 1910.

(5) (a) Davies, J. E.; Mays, M. J.; Raitby, P. R.; Shields, G. P.; Tompkin, P. K. *J. Chem. Soc. Chem. Commun.* **1997**, 361. (b) Davies, J. E.; Kerr, L. C.; Mays, M. J.; Raithby, P. R.; Tompkin, P. K.; Woods, A. D. *Angew. Chem., Int. Ed. Engl.* **1998**, *37*, 1428. (c) Davies, J. E.; Klunduk, M. C.; Mays, M. J.; Raithby, P. R.; Shields, G. P.; Tompkin, P. K. *J. Chem. Soc., Dalton Trans.* **1997**, 715. is necessary to have (i) suitable starting materials that are (ii) obtainable in good yields. The latter is a general problem in this synthetic field.<sup>1</sup> The synthesis of the complex [{CpCr(CO)<sub>2</sub>}<sub>2</sub>( $\mu,\eta^2$ -P<sub>2</sub>)] (1), obtained in 53% yield, was reported by Goh et al.<sup>6</sup> Starting from this complex, we tried first to cleave its P–P bond by using superhydride to generate a dianionic complex according to eq 1. Although this reaction pattern is known for



disulfur complexes (e.g.,  $[Fe_2(CO)_6(\mu-S_2)])$ ,<sup>7</sup> complex **1** undergoes unexpected transformation pathways. The results are reported herein.

#### **Results and Discussion**

The reaction of **1** with 2 equiv<sup>8</sup> of LiBEt<sub>3</sub>H at -78 °C results in the isolation of the novel PH-containing complexes **2**-**4** (eq 2). Separation of the products by column chromatography leads to pure **2** as the main product of the reaction, whereas **3** and **4** were obtained only as a mixture, from which they crystallized sideby-side. They are green (**2**), orange (**3**), and dark brown (**4**) air-sensitive complexes, which are slightly soluble in hexane but readily soluble in toluene, CH<sub>2</sub>Cl<sub>2</sub>, and THF. Although they are stable in the solid state and complex **2** is stable in solution under an inert atmo-

<sup>&</sup>lt;sup>‡</sup> Universität Karlsruhe.

<sup>§</sup> Universität Leipzig.

<sup>(6)</sup> Goh, L. Y.; Chu, C. K.; Wong, R. C. S.; Hambley, T. W. J. Chem. Soc., Dalton Trans. **1989**, 1951.

<sup>(7)</sup> Seyferth, D.; Henderson, R. S.; Song, Li.-C. Organometallics 1982, 1, 125.

<sup>(8)</sup> The use of a further excess of LiBEt<sub>3</sub>H results in a quantitative yield of **2**. The source of the H atoms in the products is uncertain. The protolysis is completed by the column chromatography using deactivated Silcagel.



sphere, **3** and **4** slowly decompose in solutions of THF and  $CH_2Cl_2$ . All products reveal molecular ion peaks in the mass spectra with the exception of **4**, for which the highest fragment is  $[M^+ - 2CO]$ .

The infrared spectrum of 2 displays a CO stretching pattern similar to that of the recently reported compound  $[Mo_2Cp_2(CO)_4(\mu-PH_2)(\mu-H)]$ , obtained from the reaction of  $[Mo_2Cp_2(CO)_4(\mu,\eta^2-P_2)]$  with M<sup>I</sup>OH (M<sup>I</sup> = Na, K) and subsequent HBF<sub>4</sub> addition.<sup>5a</sup> The <sup>1</sup>H NMR spectrum of **2** shows a doublet of doublet centered at  $\delta$ 5.1 for the PH<sub>2</sub> protons, revealing the couplings with the phosphorus atom and the bridging hydrogen atoms  $({}^{1}J_{\rm HP} = 337, {}^{3}J_{\rm HH} = 1.5$  Hz). The signal for the hydride bridging the Cr atoms occurs at  $\delta$  –14.4 as a doublet  $(^{2}J_{\rm PH} = 75$  Hz). The <sup>31</sup>P NMR spectrum of **2** exhibits a doublet of triplet at  $\delta$  110.5 (<sup>1</sup> $J_{PH} = 337$ , <sup>2</sup> $J_{PH} = 75$  Hz), revealing the coupling with both protons attached to it, as well as to the hydrogen atom bridging the Cr atoms. The <sup>31</sup>P NMR spectrum of **3** shows a triplet of triplet centered at  $\delta$  –147.2 due to the coupling of the P atoms to the protons in different ways ( ${}^{1}J_{PH} = 177$ ,  ${}^{3}J_{PH} = 117$ Hz). The chemical shift appears upfield with respect to the complexes 1 and 2. For the paramagnetic complex 4, no NMR resonances could be detected.

The structures of 2-4 were established by singlecrystal X-ray diffraction. The structure of 2 (Figure 1) consists of a planar Cr<sub>2</sub>HP fragment, which is similar to Mays's molybdenum analogue.<sup>5a</sup> However, only by comparison of their unit cell dimensions is it revealed that they are not isostructural. The crystal structure of 3 reveals three independent molecules, in which each of the two chromium atoms are bridged by two PH<sub>2</sub> groups in a symmetrical fashion. The bond parameters are similar, and they differ only in the folding angle of the butterfly Cr<sub>2</sub>P<sub>2</sub> framework [molecule A: 152.92(9)°; B: 149.77(5)°; C: 157.94(4)°]. Figure 2 shows the molecular structure of molecule A. Although the Cr-Cr distance in 2 can be assigned as a slightly elongated single bond (3.104(1) Å) in comparison to those of **1** (3.011(1) Å) and  $[(CO)_4 CrP(CH_3)_2]_2$  (2.950 Å),<sup>9</sup> the distance in **3** (3.881 Å) falls beyond the range of a bond. The average Cr-P bond distance in 2 (2.269 Å) is slightly shorter than the average bond distances in 3 (2.381 Å, average distances of three independent molecules), **1** (2.409 Å),<sup>6</sup> [Cp<sub>2</sub>Cr<sub>2</sub>(CO)<sub>4</sub>( $\mu$ , $\eta^2$ -P<sub>2</sub>){Cr(CO)<sub>5</sub>}]



**Figure 1.** Molecular structure of **2** (ellipsoids drawn at of 50% probability level, H atoms of the Cp ligands are omitted for clarity). Selected bond lengths [Å] and angles [deg]: Cr-Cr(A) 3.104(1), Cr-P 2.2657(10), Cr(A)-P 2.2714-(10), Cr-P-Cr(A) 86.34(3), P-Cr-Cr(A) 46.94(3), P-Cr-(A)-Cr 46.79(3).



**Figure 2.** Molecular structure of **3** (molecule A; ellipsoids drawn at of 50% probability level, H atoms of the Cp ligands are omitted for clarity). Selected bond lengths [Å] and angles [deg]: Cr(1)-P(1) 2.383(2), Cr(1)-P(2) 2.384-(2), Cr(2)-P(1) 2.382(2), Cr(2)-P(2) 2.377(2), Cr(2)-P(1)-Cr(1) 108.82(6), Cr(2)-P(2)-Cr(1) 108.98(6), P(1)-Cr(1)-P(2) 66.32(5), P(2)-Cr(2)-P(1) 66.43(5).

(2.405 Å),<sup>10</sup> [Cp<sub>2</sub>Cr<sub>2</sub>(CO)<sub>4</sub>( $\mu$ , $\eta^2$ -P<sub>2</sub>){Cr(CO)<sub>5</sub>}<sub>2</sub>] (2.411 Å)<sup>11</sup> and in [(CO)<sub>4</sub>CrP(CH<sub>3</sub>)<sub>2</sub>]<sub>2</sub> (2.318 Å).<sup>9</sup> Each chromium atom in **2** and **3** achieves the 18-electron configuration.

The molecular structure of **4** (Figure 3) displays a triple-decker sandwich with a pseudo-cyclo-P<sub>5</sub> middle deck, from which two of the P atoms coordinate to the Cr centers of the [{CpCr(CO)<sub>2</sub>}<sub>2</sub>( $\mu$ -PH)] moiety. The P–P distances in the P<sub>5</sub> middle deck vary between 2.103(5) and 2.315(5) Å for the shorter and between 2.455(5) and 2.490(6) Å for the longer ones, suggesting a partitioning of the P<sub>5</sub> ring in an allylic P<sub>3</sub><sup>12</sup> and a P<sub>2</sub> subunit (Figure 4). While the P–P single bond distance is 2.21 Å<sup>13</sup> the longest so far still considered a P–P bond is 2.4616(22) Å in [(R<sub>3</sub>P)<sub>2</sub>Rh( $\eta^2$ -P<sub>4</sub>)Cl].<sup>14</sup> This kind of distortion is unusual for the cyclo-P<sub>5</sub> middle deck in the triple-decker complexes [(Cp\*Cr)<sub>2</sub>( $\mu$ , $\eta^{5:5}$ -P<sub>5</sub>)]<sup>15</sup> and [(Cp\*Cr)<sub>2</sub>( $\mu$ , $\eta^{5:5}$ -

<sup>(9)</sup> Vahrenkamp, H. Chem. Ber. 1978, 111, 3472.

<sup>(10)</sup> Goh, L. Y.; Wong, R. C. S.; Mak, T. C.W. J. Organomet. Chem. 1989, 373, 71.

<sup>(11)</sup> Goh, L. Y.; Wong, R. C. S.; Mak, T. C. W. *J. Organomet. Chem.* **1989**, *364*, 363.

<sup>(12)</sup> exactly considered the P-P bond distances revealing a localized P-P double bond between atoms P3 and P4, while between P3 and P2 an elongated P-P single bond is determined.

<sup>(13)</sup> Simon, A.; Borrmann, H.; Horakh, J. *Chem. Ber./Recueil* **1997**, *130*, 1235.

<sup>(14)</sup> Ginsberg, P.; Lindsell, W. E.; McCullough, K. J.; Sprinkle, C.
R.; Welch, A. J. *J. Am. Chem. Soc.* **1986**, *108*, 403.
(15) Scherer, O. J.; Schwalb, J.; Wolmershäuser, G.; Kaim, W.;

<sup>(15)</sup> Scherer, O. J.; Schwalb, J.; Wolmershauser, G.; Kaim, W.; Gross, R. Angew. Chem., Int. Ed. Engl. **1986**, *4*, 363.



**Figure 3.** Molecular structure of **4** (ellipsoids drawn at of 50% probability level, H atoms of the Cp ligands are omitted for clarity). Selected bond lengths [Å] and angles [deg]: Cr(3)–P(1) 2.404(4), Cr(3)–P(6) 2.437(5), Cr(4)–P(2) 2.328(4), Cr(4)–P(6) 2.462(4), P(1)–P(2) 2.455(5), P(1)–P(5) 2.103(5), P(2)–P(3) 2.315(5), P(3)–P(4) 2.146(6), P(4)–P(5) 2.490(6), Cr(3)–P(6)–Cr(4) 132.7(2), P(1)–Cr(3)–P(6) 76.77-(14), P(2)–Cr(4)–P(6) 76.53(13), Cr(3)–P(1)–P(2) 112.8-(2), Cr(4)–P(2)–P(1) 118.1(2).



**Figure 4.** Details of the distortion of the cyclo- $E_5$  middle decks in **4** (above) and in [(CpMo)<sub>2</sub>( $\mu$ , $\eta$ <sup>5</sup>-As<sub>5</sub>)] (below).

 $P_{5}$ ]<sup>+ 16</sup> but was found in [(CpMo)<sub>2</sub>( $\mu$ , $\eta$ <sup>4:4:1:1</sup>-As<sub>5</sub>)]<sup>17</sup> (Figure 4). These compounds are 27 VE complexes according to the triple-decker formalism.<sup>18</sup> By applying the polyhedral skeletal electron pair theory<sup>19</sup> for a closo-deltahedron containing five main groups and two transition metal vertexes, 50 skeletal electrons are needed, whereas in 4 a total of 47 electrons are found. Independent theoretical calculations of these systems reveal<sup>20</sup> that the distortion of the As<sub>5</sub> ring of the latter complex is the result of the first- and second-order Jahn-Teller distortion of the degenerate HOMOs, combined with a shortening of the metal-metal distance. In accordance with this, 4 reveals a Cr-Cr bond of 2.663(3) Å, significantly shortened in comparison to those found for  $[(CpCr)_2(\eta^{5:5}-P_5)]$  (2.738(1) Å)<sup>27</sup> and  $[(Cp^*Cr)_2(\eta^{5:5}-P_5)]^+$ (3.185(1) Å).<sup>16</sup> Furthermore, a slight increase in the P–P bond lengths is found if the P atoms of the cyclo-P5 ring additionally coordinate to one or two metal fragments.



**Figure 5.** Experimental (a) and simulated (b) X-band EPR spectrum of **4** in toluene at T = 130 K.

Table 1. EPR<sup>a</sup> Parameters of 4

|                | g     |                                   | $A^{\mathrm{P}}$ |
|----------------|-------|-----------------------------------|------------------|
| $\mathbf{g}_1$ | 1.998 | $A_1^{\mathrm{P}}$                | 15.5             |
| $\mathbf{g}_2$ | 2.019 | $A_2^P$                           | 21.7             |
| $\tilde{g}_3$  | 2.063 | $A_3^{\mathrm{P}}$                | 23.6             |
| $g_{av}{}^b$   | 2.027 | $A_{\mathrm{av}}^{\mathrm{P}\ b}$ | 20.3             |

<sup>*a*</sup> Experimental error:  $g_i \pm 0.003$ ;  $A_i^P \pm 1.0$ . Hyperfine couplings are given in  $10^{-4}$  cm<sup>-1</sup>. <sup>*b*</sup>  $g_{av} = (g_1 + g_2 + g_3)/3$ ;  $A_{av}^P = (A_1^P + A_2^P + A_3^P)/3$ .

Such examples are found in [{Cp\*Fe}( $\mu,\eta^{5:2}$ -P<sub>5</sub>){Ir(CO)-Cp\*}]<sup>4c</sup> and [{Cp\*Fe}( $\mu,\eta^{5:2:2:1}$ -P<sub>5</sub>){Co(CO)Cp"}{Co<sub>2</sub>Cp"-( $\mu$ -CO)}]<sup>4d</sup> (Cp\* =  $\eta^{5}$ -C<sub>5</sub>Me<sub>4</sub>Et; Cp" =  $\eta^{5}$ -C<sub>5</sub>Ha<sub>4</sub>Bu<sub>2</sub>-1,3) where the corresponding elongated P–P bonds are 2.36 and 2.35 Å, respectively.

The experimental EPR spectrum of a frozen toluene solution of **4** is shown in Figure 5a. It can be described by a rhombic-symmetric spin Hamiltonian (eq 3) with

$$\boldsymbol{H}_{sp} = \boldsymbol{\mu}_{B} \cdot \boldsymbol{g} \cdot \boldsymbol{B}_{0} \cdot \boldsymbol{S} + \sum_{i=1}^{2} \boldsymbol{S} \cdot \boldsymbol{A}^{P_{i}} \cdot \boldsymbol{I}^{P_{i}}$$
(3)

an effective electron spin S = 1/2 and a hyperfine interaction with two magnetically equivalent <sup>31</sup>P nuclei (second term in eq 3); all symbols have their usual meaning. Due to the small g anisotropy, the signals belonging to the three g tensor regions are considerably overlapped.

A satisfying simulation of the spectrum could be reached with the principal values of the tensors g and  $A^{\rm p}$  (two <sup>31</sup>P nuclei) given in Table 1 and is shown in Figure 5b for comparison.

Hyperfine interactions with other <sup>31</sup>P nuclei of the compound are smaller than  $4 \times 10^{-4}$  cm<sup>-1</sup> and are not observed as a result of the experimental line widths. Their presence, however, is indicated by the small splittings seen on the low-field line of the  $g_2$  region at 331 mT, which has the smallest line width of the spectrum. Also, <sup>53</sup>Cr hyperfine satellites (<sup>53</sup>Cr: nuclear spin I<sup>Cr</sup> = 3/2) were not observed. Considering the small natural abundance of <sup>53</sup>Cr (only 9.50%), the detection of the small satellites requires a very good signal/noise ratio, which could not be reached by our investigations.

The <sup>31</sup>P hyperfine parameters can be used to estimate the spin density on these nuclei.<sup>22,23</sup> For this, the

<sup>(16)</sup> Hughes, A. K.; Murphy, V. J.; O'Hare, D. J. Chem. Soc., Chem. Commun. 1994, 163.

<sup>(17)</sup> Rheingold, A. L.; Foley, M. J.; Sullivan, P. J. *J. Am. Chem. Soc.* **1982**, *104*, 4727.
(18) Lauer, J. W.; Elian, M.; Summerville, R. H.: Hoffmann, R. *J.*

Am. Chem. Soc. 1976, 98, 3219.
 (19) (a) Mingos, D. M. P. Acc. Chem. Res. 1984, 17, 311. (b) Wade,

<sup>(13) (</sup>a) Milligus, D. M. F. Act. Chem. Res. 1997, 17, 511. (b) Wale, K. Adv. Inorg. Chem. Radiochem. 1976, 18, 1. (20) (a) Tremel, W.; Hoffmann, R.; Kertesz, M. J. Am. Chem. Soc.

**<sup>1989</sup>**, 111, 2030. (b) Jemmis, E. D.; Reddy, A. C. Organometallics **1988**, 7, 1561.

<sup>(21)</sup> Goh, L. Y.; Wong, R. C. S.; Chu, C. K.; Hambley, T. W. J. Chem. Soc., Dalton Trans. 1990, 977.

<sup>(22)</sup> Kirmse, R.; Stach, J. *ESR–Spektroskopie-Anwendungen in der Chemie*; Akademie-Verlag: Berlin, 1985; p 86–95.

Table 2. Crystallographic Data for 2-4

|                                                                                                                                                                                                                                                                   | 2                                 | 3                                     | <b>4</b> •C <sub>7</sub> H <sub>8</sub> |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------|-----------------------------------------|--|--|
| formula                                                                                                                                                                                                                                                           | $C_{14}H_{13}Cr_2O_4P$            | $C_{14}H_{14}Cr_{2}O_{4}P_{2}$        | $C_{31}H_{29}Cr_4O_4P_6$                |  |  |
| formula wt                                                                                                                                                                                                                                                        | 380.21                            | 412.18                                | 859.36                                  |  |  |
| cryst size, mm                                                                                                                                                                                                                                                    | 0.75	imes 0.27	imes 0.15          | $0.19 \times 0.11 \times 0.08$        | 0.08 	imes 0.02 	imes 0.02              |  |  |
| T, K                                                                                                                                                                                                                                                              | 200(2)                            | 200(2)                                | 200(1)                                  |  |  |
| space group                                                                                                                                                                                                                                                       | orthorhombic                      | monoclinic                            | monoclinic                              |  |  |
| cryst syst                                                                                                                                                                                                                                                        | Pccn                              | $P2_{1}/n$                            | $P2_1/n$                                |  |  |
| a, Å                                                                                                                                                                                                                                                              | 7.252(2)                          | 14.156(3)                             | 10.077(2)                               |  |  |
| b, Å                                                                                                                                                                                                                                                              | 16.144(3)                         | 23.050(5)                             | 14.895(3)                               |  |  |
| <i>c</i> , Å                                                                                                                                                                                                                                                      | 12.733(3)                         | 15.818(3)                             | 22.571(5)                               |  |  |
| $\beta$ , deg                                                                                                                                                                                                                                                     | 90.0                              | 109.54(3)                             | 97.68(3)                                |  |  |
| <i>V</i> , Å <sup>3</sup>                                                                                                                                                                                                                                         | 1490.7(5)                         | 4864(2)                               | 3357.4(12)                              |  |  |
| Ζ                                                                                                                                                                                                                                                                 | 4                                 | 12                                    | 4                                       |  |  |
| $d_{\rm c}$ , g/cm <sup>3</sup>                                                                                                                                                                                                                                   | 1.694                             | 1.689                                 | 1.700                                   |  |  |
| $\mu_{\rm c},{\rm cm}^{-1}$                                                                                                                                                                                                                                       | 1.575                             | 1.549                                 | 1.583                                   |  |  |
| F(000)                                                                                                                                                                                                                                                            | 768                               | 2496                                  | 1732                                    |  |  |
| radiation (λ, Å)                                                                                                                                                                                                                                                  | 0.710 73                          | 0.710 73                              | 0.710 73                                |  |  |
| diffractometer                                                                                                                                                                                                                                                    | STOE STADI IV                     | STOE IPDS                             | STOE IPDS                               |  |  |
| $2\theta$ range, deg                                                                                                                                                                                                                                              | $5.04 \le 2	heta \le 55.0$        | $4.46 \le 2\theta \le 52.02$          | $4.56 \le 2\theta \le 41.64$            |  |  |
| hkl range                                                                                                                                                                                                                                                         | $0 \le h \le 9, -20 \le k \le 0,$ | $-17 \le h \le 12, -27 \le k \le 28,$ | $-10 \le h \le 8, -14 \le k \le 14,$    |  |  |
|                                                                                                                                                                                                                                                                   | $-16 \leq I \leq 16$              | $-17 \le l \le 19$                    | $-20 \le l \le 22$                      |  |  |
| reflections collected                                                                                                                                                                                                                                             | 3290                              | 19 339                                | 7920                                    |  |  |
| independent reflections with $I > 2\sigma(I)$                                                                                                                                                                                                                     | 1507 ( $R_{\rm int} = 0.0292$ )   | $6291 \ (R_{\rm int} = 0.0557)$       | 1672 ( $R_{\rm int} = 0.1303$ )         |  |  |
| data/restraints/parameters                                                                                                                                                                                                                                        | 1721/0/102                        | 9291/0/673                            | 3374/0/408                              |  |  |
| goodness-of-fit on F <sup>2</sup>                                                                                                                                                                                                                                 | 1.102                             | 1.033                                 | 0.853                                   |  |  |
| $R_1,^a W R_2^b (I > 2\sigma(I))$                                                                                                                                                                                                                                 | 0.0313, 0.0785                    | 0.0536, 0.1294                        | 0.0524, 0.0685                          |  |  |
| $R_1$ , <sup><i>a</i></sup> $wR_2^b$ (all data)                                                                                                                                                                                                                   | 0.0398, 0.0908                    | 0.0873, 0.1500                        | 0.1397, 0.0879                          |  |  |
| largest diff peak, hole, e/Å <sup>3</sup>                                                                                                                                                                                                                         | 0.314, -0.595                     | 0.501, -0.564                         | 0.537, -0.393                           |  |  |
| ${}^{a}R = \sum  F_{0}  -  F_{c}   / \sum  F_{0} . \ {}^{b}WR_{2} = [\sum \omega (F_{0}^{2} - F_{c}^{2})^{2}] / [\sum (F_{0}^{2})^{2}]^{1/2}. \ {}^{c}\omega^{-1} = \sigma^{2}(F_{0}^{2}) + (\mathbf{a}P)^{2} + \mathbf{b}P; \ P = [F_{0}^{2} + 2F_{c}^{2}] / 3.$ |                                   |                                       |                                         |  |  |

isotropicpart  $A_{\rm av}^{\rm P}$  and the dipolar part  $b^{\rm P}$  of the <sup>31</sup>P coupling are needed. Because the <sup>31</sup>P hyperfine tensor is nearly axial-symmetric,  $A_2^{\rm P}$  and  $A_3^{\rm P}$  can be averaged to  $A_{\perp}^{\rm P} = 22.6 \times 10^{-4} \rm \, cm^{-1}$ . With the relation  $b = A_{\perp}^{\rm P} - A_{\rm av}^{\rm P}$ , the dipolar part is estimated to be  $b = 2.4 \times 10^{-4} \rm \, cm^{-1}$ . The spin densities  $(c^{\rm P}_{\rm s,p})^2$  can then be obtained by using eqs 4a and 4b where s and p represent the

$$(c_{\rm s}^{\rm P})^2 = A_{\rm av}^{\rm P}, \, _{\rm exp}/A_{\rm av}^{\rm P},_{\rm th}$$
 (4a)

$$(c_{\rm p}^{\rm P})^2 = b^{\rm P}_{\rm exp}/b^{\rm P}_{\rm th}$$
 (4b)

atomic orbitals. Using the values  $A_{\rm av}{}^{\rm P}{}_{,\rm th} = 4438.4 \times 10^{-4}$  cm<sup>-1</sup> and  $b^{\rm P}{}_{\rm th} = 122.3 \times 10^{-4}$  cm<sup>-1</sup> calculated by Morton and Preston<sup>23</sup> and eqs 4a and 4b, the following spin densities per <sup>31</sup>P nucleus are calculated:  $(c_{\rm s}{}^{\rm P})^2 = 0.5\%$  and  $(c_{\rm p}{}^{\rm P})^2 = 2.0\%$ , yielding a complete spin density  $\alpha^2 = (c_{\rm s}{}^{\rm P})^2 + (c_{\rm p}{}^{\rm P})^2 = 2.5\%$  per P atom. Thus 5.0% of the overall spin density is located on the two P atoms observed in the spectra. Because no <sup>31</sup>P coupling is resolved for the other P nuclei of the complex, the main part of the spin density can be assumed to be localized in the central Cr<sub>4</sub>P<sub>2</sub> unit.

#### Conclusions

The reaction of  $[\{CpCr(CO)_2\}_2(\mu,\eta^2-P_2)]$  (1) with superhydride yields novel PH<sub>2</sub>-containing products. Although the initial aim of synthesizing a dianionic starting material to generate novel metal-bridged oligomers and polymers was not achieved, reaction products **2** and **3** can be used themselves as starting materials for those purposes. These investigations are in progress. The formation of the complex **4**, which consists of a distorted cyclo-P<sub>5</sub> middle deck, reveals the strong tendency of Cr complexes to form triple-decker sandwich complexes with P<sub>n</sub> ligands.

#### **Experimental Section**

**General.** All reactions and manipulations were performed under an atmosphere of dry argon using standard Schlenk techniques. Solvents were dried and distilled under an argon atmosphere prior to use: toluene and THF over Na/benzophenone, hexane over LiAlH<sub>4</sub>, and dichloromethane over P<sub>2</sub>O<sub>5</sub>. [{CpCr(CO)<sub>2</sub>}<sub>2</sub>( $\mu$ , $\eta$ <sup>2</sup>-P<sub>2</sub>)] was prepared according to a modified literature method.<sup>6</sup> NMR spectra were recorded on a Bruker AC 250 (<sup>1</sup>H, 250.133 MHz; <sup>13</sup>C, 62.896 MHz; <sup>31</sup>P, 101.256 MHz; standard <sup>1</sup>H and <sup>13</sup>C, Me<sub>4</sub>Si, <sup>31</sup>P, 85% H<sub>3</sub>PO<sub>4</sub>). IR spectra were measured on a Bruker IFS 28 FT-IR spectrometer, and mass spectra were obtained on a Finnigan MAT 711 spectrometer at 70 eV. Satisfactory elemental analyses were obtained for **2–4**, which were performed on a Elementar Vario EL of the Institute of Inorganic Chemistry of the University of Karlsruhe.

**Reaction of** [{CpCr(CO)<sub>2</sub>}<sub>2</sub>( $\mu$ , $\eta^2$ -P<sub>2</sub>)] with LiBEt<sub>3</sub>H. A solution of  $[{CpCr(CO)_2}_2(\mu,\eta^2-P_2)]$  (1) (0.5 g, 1.22 mmol) in THF at -78 °C was treated with 2 equiv of LiBEt<sub>3</sub>H (2.5 mL, 2.4 mmol). After the mixture was stirred for 20 min at -78°C, the solution color changed from magenta to reddish brown. The reaction mixture was warmed slowly to room temperature, and it was stirred for a further 3 h. The solvent was removed in vacuo. Chromatographic separation on a silica gel column (35 cm  $\times$  2.5 cm) with *n*-hexane/CH<sub>2</sub>Cl<sub>2</sub> (2:1) gives a green fraction of [{CpCr(CO)<sub>2</sub>}<sub>2</sub>(µ-PH<sub>2</sub>)(µ-H)] (2) (0.15 g, 32% isolated yield after recrystallization from toluene) followed by a small magenta-colored fraction containing unreacted [{CpCr(CO)<sub>2</sub>}<sub>2</sub>- $(\mu, \eta^2 - P_2)$ ] (1). With *n*-hexane/CH<sub>2</sub>Cl<sub>2</sub> (1:1) an orange band is eluted, from which crystallized a mixture of orange [{CpCr- $(CO)_{2}_{2}(\mu - PH_{2})_{2}$  (3) (major amount) and a dark brown [(CPCr- $(CO)_{2}_{2}(\mu-PH) \{ (CpCr)_{2}(\mu,\eta^{5}-P_{5}) \}$  (4) (minor amount, 0.1 g total). The crystals were selected under a microscope in a glovebox.

**Data for 2.** IR [toluene,  $\nu$ (CO)/cm<sup>-1</sup>]: 1935 vs, 1881 s. <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta$  4.03 (s, 10 H, C<sub>5</sub>H<sub>5</sub>), 5.07 (dd, 2 H, <sup>1</sup>*J*<sub>HP</sub> 337 Hz, PH<sub>2</sub>), -14.4 (d, 1 H, <sup>2</sup>*J*<sub>HP</sub> 75 Hz, CrHCr). <sup>13</sup>C NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta$  87.9 (C<sub>5</sub>H<sub>5</sub>), 233.1 (s, CO), 246.7 (d, <sup>2</sup>*J*<sub>CP</sub> 74 Hz, CO); <sup>31</sup>P-{<sup>1</sup>H} NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta$  109.7 (s, PH<sub>2</sub>). <sup>31</sup>P NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta$  110.5 (dt, <sup>1</sup>*J*<sub>PH</sub> = 337, <sup>2</sup>*J*<sub>PH</sub> = 75 Hz, PH<sub>2</sub>). EI-MS (70 eV, 50 °C): 380 (15) [M<sup>+</sup>]; 352 (1) [M<sup>+</sup> - CO]; 324 (6) [M<sup>+</sup> - 2CO]; 296

<sup>(23)</sup> Morton, J. R.; Preston, K. F. J. Magn. Reson. 1978, 30, 577.

(23)  $[M^+ - 3CO]$ ; 266 (61)  $[Cp_2Cr_2PH]$ ; 182 (100)  $[Cp_2Cr]$ ; 117 (18) [CpCr]. **Data for 3.** IR [toluene,  $\nu(CO)/cm^{-1}]$ : 1932 vs, 1874 s.  ${}^{31}P{}^{1}H$  NMR ( $C_6D_6$ ):  $\delta -147.2$  (s, PH<sub>2</sub>).  ${}^{31}P$  NMR ( $C_6D_6$ ):  $\delta -147.2$  (m,  ${}^{1}J_{PH} = 177$ ,  ${}^{3}J_{PH} = 117$  Hz, PH<sub>2</sub>). EI-MS (70 eV, 180 °C): 413 (5) [M + 1]; 356 (3)  $[M^+ - 2CO]$ ; 328 (1)  $[M^+ - 3CO]$ ; 296 (1.5)  $[Cp_2Cr_2P_2]$ ; 267 (5)  $[Cp_2Cr_2PH_2]$ ; 182 (15)  $[Cp_2Cr]$ ; 117 (10) [CpCr]. **Data for 4.** EI-MS (70 eV, 180 °C): (%): 709 (2)  $[M^+ - 2CO-H]$ ; 683 (2)  $[M^+ - 3CO]$ ; 389 (5)  $[Cp_2Cr_2P_5]$ ; 327 (2)  $[Cp_2Cr_2P_3]$ ; 182 (15)  $[Cp_2Cr]$ ; 117 (10) [CpCr].

**X-ray Structure Determination and Details of Refinement.** Data were collected on a STOE STADI IV (2,  $\omega$ -scan mode) and a STOE IPDS (3 and 4) using Mo K $\alpha$  ( $\lambda$  = 0.710 69 Å) radiation with empirical absorption corrections for 2  $\psi$ scans. Machine parameters, crystal data, and data collection parameters are summarized in Table 2. The structures were solved by direct methods using SHELXS-86,<sup>24a</sup> full-matrix least-squares refinement on  $F^2$  in SHELXL-93<sup>24b</sup> with anisotropic displacement for non-H atoms, hydrogen atoms placed in idealized positions, and refined isotropically according to the riding model. The hydrogen atoms of the PH<sub>n</sub> groups in 2–4, as well as the bridging H atom of 2, could be freely refined. For 3, three independent molecules in the unit cell were refined and were distinguished from each other by different folding angles of the  $Cr_2P_2$  framework. The crystal quality of the toluene solvent of **4** was not very good. Every selected crystal displayed poor reflection at angles greater than  $2\theta$ ; therefore, the maximum  $2\theta$  limit of  $42^\circ$  were taken for the final refinements.

**EPR Measurements.** EPR spectra were recorded in the X-band ( $\nu \approx 9.5$  GHz) on a BRUKER spectrometer of the type ESP 300E in the temperature range 295 K  $\geq T \geq 130$  K using about  $10^{-3}$  M solutions of **4**. The EPR parameters were obtained using a modified version of the computer program written by White and Belford.<sup>25,26</sup>

**Acknowledgment.** The authors thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support.

**Supporting Information Available:** Complete tables of atomic coordinates, H-atom parameters, bond distances, and anisotropic displacement parameters and fully labeled figures for **2**–**4**. This material is available free of charge via the Internet at http://pubs.acs.org.

## OM990098U

<sup>(24) (</sup>a) Sheldrick, G. M. SHELXS-86; University of Göttingen, 1986.
(b) Sheldrick, G. M. SHELXL-93, University of Göttingen, 1993.

<sup>(25)</sup> White, L. K.; Belford, R. L. J. Am. Chem. Soc. 1976, 98, 4428.
(26) White, L. K. Dissertation, Urbana, IL, 1975; revised version written by K. Köhler and R. Böttcher, University of Leipzig, 1990.