Unique Bis- η^5/η^1 Bonding in a Dianionic Germole. Synthesis and Structural Characterization of the **Dilithium Salt of the 2,3,4,5-Tetraethyl Germole Dianion**

Seok-Bong Choi, Philip Boudjouk,* and Jang-Hwan Hong

Center for Main Group Chemistry, Department of Chemistry, North Dakota State University, Fargo, North Dakota 58105

Received April 6, 1999

Summary: Reaction of 1,1-dichloro-TEGeCp (TEGeCp = 2,3,4,5-tetraethyl-1-germacyclopentadiene) with excess Li in tetrahydrofuran (THF) at room temperature gave [TEGeCp²⁻]·2[Li⁺] quantitatively. X-ray structure determination of this germole dianion shows three lithium cations around one germole ring in η^1 , η^5 , and η^5 sites to give the composition $[\eta^5$ -Li•TMEDA] $[\eta^5$ -Li]_{1/2} $[\eta^1$ -Li]_{1/2} $[Et_4C_4Ge]$ (TMEDA = N,N,N,N -tetramethylethylenediamine). Nearly equal C-C bond distances in the Et_4C_4Ge ring indicate a delocalized π -system. Reactions of this germole dianion with trimethylchlorosilane provided 1,1bis(trimethylsilyl)-TEGeCp, in high yields.

Introduction

The initial report of the synthesis and trapping of the tetraphenylsilole dianion, Ph₄C₄Si²⁻, by Joo and coworkers¹ spurred a number of investigations, experimental and theoretical, of silole dianions and related systems because of their novel structural and electronic properites.²⁻⁶ Hong and Boudjouk provided NMR evidence for significant delocalization in the dilithium salts of $Ph_4C_4E^{2-}$ (E = Si, Ge).² Aromaticity in $Ph_4C_4E^{2-}$ (E = Si, Ge) dianions with η^1 , η^5 and η^5 , η^5 type lithium metal-ring coordination was confirmed by West et al.^{3,4} Similarly, Tilley reported the η^5 , η^5 coordination pattern with the dipotassium salts of $Me_4C_4E^{2-}$ (E = Si, Ge).^{5,6} Recently we discovered that the 1-silaindene system can be converted to a dianionic salt in which the silicon containing ring forms an aromatic silole dianion with lithium ions coordinated η^1 , η^5 to the silole portion and the six-membered ring changes from a benzene structure to that of a cyclohexadiene.⁷

Until now, only two types of metal coordination to silole and germole dianions have been characterized by experimental or theoretical methods: η^5 , η^5 (**a**) and η^1 , $\eta^{5}(\mathbf{b}).^{4-8}$

⁽¹⁾ Joo, W.-C.; Hong, J.-H.; Choi, S.-B.; Son, H.-E. J. Organomet.

Herein we report that the reaction of excess lithium and 1,1-dichloro-2,3,4,5-tetraethylgermole (1) produces the novel structure c of the dilithium salt of the tetraethylgermole dianion, $Et_4C_4Ge^{2-}$ (2) (eq 1). Related

$$\begin{array}{c} & \overbrace{\mathsf{Ge}}^{\mathsf{Et}_4} & \underbrace{\mathsf{xs \ Li}}_{\mathsf{THF}^+} & \left[\swarrow_{\mathsf{Ge}}^{\mathsf{Et}_4} \right] & \underbrace{\mathsf{Me}_3\mathsf{SiCl}}_{\mathsf{Ge}} & \overbrace{\mathsf{Ge}}^{\mathsf{Et}_4} \\ & \overbrace{\mathsf{Li}^+ \ \mathsf{Li}^+}^{\mathsf{He}_3\mathsf{SiCl}} & \underbrace{\mathsf{Me}_3\mathsf{SiMe}_3}_{\mathsf{SiMe}_3} \\ & 1 & 2 & 3 \end{array} \tag{1}$$

to this work, we have reported the novel lithocenophane derivative of a trisgermole diamion, ${[Li^+] \cdot [(2,3,4,5$ tetraethylgermolyl)2](2,3,4,5-tetraethylgermole)}+{[Li+]-(TMEDA)(THF)}, which showed well-resolved lithium ions in the solid state (X-ray) and in solution (NMR).9

Result and Discussion

Stirring of 1 with excess Li in THF for 2 h gives a dark red brown solution of 2. After removing the unreacted metal by filtration, addition of this solution to an excess of trimethylchlorosilane produces 1,1-bis-(trimethylsilyl)-TEGeCp ($\mathbf{3}$; TEGeCp = 2,3,4,5-tetraethyl-1-germacyclopentadiene) in 95% yield. Compound 2, which is stable for at least 1 year at room temperature under argon, could be isolated as colorless crystals from a saturated red THF/TMEDA solution.

The X-ray structure of 2 shown in Figure 1, and the selected bond lengths and bond angles are listed in Table 1. Analysis of the X-ray data for **2** shows two η^5 coordinated lithium ions and one η^1 -coordinated lithium ion around the C₄Ge ring. Therefore, the composition of this germole dianion is $[\eta^5-\text{Li}\cdot\text{TMEDA}][\eta^5-\text{Li}]_{1/2}[\eta^1 Li]_{1/2}[Et_4C_4Ge].$

One lithium ion (Li1) is η^5 -coordinated to the C₄Ge ring and to TMEDA while the other (Li2) is η^5 -coordinated to the C₄Ge ring fragment and also η^1 -coordinated

 ⁽¹⁾ Juo, W.-C., Listo, Chem. 1990, 391, 27.
 (2) (a) Hong, J.-H.; Boudjouk, P.; Castellino, S. Organometallics
 (a) GOOT (b) Hong, I.-H.; Boudjouk, P. Bull. Chem. Soc. Fr. 1995, 132. 495.

⁽³⁾ West, R.; Sohn, H.; Bankwitz, U.; Calabress, J.; Apelog, Y.; Mueller, T. J. Am. Chem. Soc. 1995, 117, 11608.

⁽⁴⁾ West, R.; Sohn, H.; Bankwitz, U.; Powell, D. R.; Mueller, T.; (4) west, R.; Sonn, H.; Bankwitz, U.; Powell, D. R.; Mueller, T.;
Apeloig, Y. Angew. Chem., Int. Ed. Engl. 1996, 35, 1002.
(5) Freeman, W. P.; Tilley, T. D.; Yap, G. P. A.; Rheingold, A. L. Angew. Chem., Int. Ed. Engl. 1996, 35, 882.
(6) Freeman, W. P.; Tilley, T. D.; Liable-Sands, L. M.; Rheingold, A. L. J. Am. Chem. Soc. 1996, 118, 10457.
(7) Choi, S.-B.; Boudjouk, P.; Wei, P. J. Am. Chem. Soc. 1998, 120, 5814

^{5814.}

^{(8) (}a) Goldfuss, B.; Schleyer, P. v. R.; Hampel, F. Organomettalics **1996**, *15*, 1755. (b) Goldfuss, B.; Schleyer, P. v. R. *Organomettalics* **1997**, *16*, 1543.

⁽⁹⁾ Hong, J.-H.; Pan, Y.; Boudjouk, P. *Angew. Chem., Int. Ed. Engl.* **1996**, *35*, 186. The trisgermole dianion was generated from the same reaction in the presence of TMEDA (TMEDA = tetramethylethylenediamine) as a mixed solvent.

Figure 1. Structure of **2** in the solid state. All hydrogens are omitted for clarity. Symmetry transformations used to generate equivalent atoms: $x_1 - y + \frac{3}{2}, z + \frac{1}{2}$.

Table 1. Selected Bond Distances (Å) and BondAngles (deg) for 2

	U ·	U [,]	
Ge(1)-C(1)	1.959(4)	Ge(1)-C(4)	1.967(4)
Ge(1)-Li(2)A	2.583(7)	Ge(1)-Li(1)	2.675(6)
Ge(1)-Li(2)	2.684(6)	Li(1)-C(3)	2.291(7)
Li(1)-C(2)	2.304(7)	Li(1)-C(4)	2.392(7)
Li(1)-C(1)	2.412(7)	C(1) - C(2)	1.417(5)
C(1)-Li(2)A	2.319(7)	C(2) - C(3)	1.444(5)
C(2)-Li(2)A	2.256(8)	C(3)-C(4)	1.416(5)
C(3)-Li(2)A	2.256(8)	C(4)-Li(2)A	2.316(7)
C(1) - Ge(1) - C(4)	84.09(16)	Li(2)A-Ge(1)-Li(1)	94.6(2)
Li(2)A-Ge(1)-Li(2)	171.49(8)	Li(1)-Ge(1)-Li(2)	93.8(2)
C(2) - C(1) - Ge(1)	113.4(3)	C(1) - C(2) - C(3)	114.7(3)
C(4) - C(3) - C(2)	114.8(3)	C(3) - C(4) - Ge(1)	113.1(3)
	(-)	., .,,	

to a germanium atom of another C_4Ge ring. This combination of linkages results in a polymeric network (Figure 2).

The three Li–Ge bond distances are almost equal (Li-(1)–Ge(1) = 2.675, Li(2)–Ge(1) = 2.684, and Li(2A)–Ge(1) = 2.583 Å, respectively). The angle between the Li(2)–Ge(1) vector and the plane of the C₄Ge ring is 38.6°. The nearly equal carbon–carbon bond lengths in the GeC₄ ring (bond distances of the C₁–C₂, C₂–C₃, and C₃–C₄ are 1.417, 1.444, and 1.416 Å, respectively), and its planar geometry (bond angle summation of the GeC₄ ring; 540.0°) is consistent with a high degree of aromaticity.

It is noteworthy that the ⁷Li NMR spectrum of solutions of X-ray quality crystals of **2** shows a broad signal at $\delta = -5.63$ ppm consistent with π -complexation.^{9,10} Compound **1** shows only six peaks in the ¹³C NMR, consistent with a C_2 axis of symmetry. Upon lithiation of **1** to form **2**, the ring carbons shift downfield $[\Delta\delta(C_{\alpha/\beta}) = 6.02 \text{ ppm}]$. The trend in chemical shifts of the ring carbons in **2** is the same as in the aromatic 2,3,4,5-tetraphenyl substituted germole dianion {[TPGeCp²⁻]·2[Li⁺] (TPGeCp = 2,3,4,5-tetraphenyl-1-germacyclopentadiene), $\Delta\delta(C_{\alpha/\beta}) = 12.74 \text{ ppm}$ }.²

Figure 2. Stereoview of crystal structure of **2** in the solid state. All hydrogens and ethyl groups are omitted for clarity.

In summary, our results strongly suggest that the processes involving η^1 , η^5 exchanges proceed through structure **c** without breaking aromaticity in the C₄E ring. This supports the mechanism proposed earlier by West⁴ and could account for the rapidity of the exchanges resulting in the observation of only one lithium peak in solution for **2**.

Experimental Section

General Procedures. All reactions were performed under an inert argon atmosphere using standard Schlenck techniques. Air-sensitive reagents were transferred in an argonfilled glovebox. THF was freshly distilled under nitrogen from sodium/benzophenone ketyl immediately prior to use. Hexane was stirred over sulfuric acid, distilled from calcium hydride, and stored over 4 Å molecular sieves. Literature methods were used to prepare 1,1-dichloro-2,3,4,5-tetraethylgermole (1).⁹ MS data were obtained on a Hewlett-Packard 5988A GC-MS system equipped with a methyl silicon capillary column. NMR spectra were recorded on a JEOL GSX400 spectrometer at 400 (¹H), 155 (⁷Li), and 100 MHz (¹³C).

X-ray Structure Determination of C₁₈H₃₆GeLi₂N₂ (2). X-ray quality crystals of 2 were grown from a concentrated THF/TMEDA solution at room temperature. A single crystal of 2 was mounted in a thin-walled glass capillary tube and sealed under argon. The space group is $P2_1/c$, monoclinic, with unit cell dimensions a = 17.4334(9) Å, b = 12.3698(6) Å, c =10.0941(5) Å, $\alpha = 90^{\circ}$, $\beta = 105.5250(10)^{\circ}$, $\gamma = 90^{\circ}$, volume = 2097.35(18) Å³, Z = 4, fw = 366.96, $d_{calc} = 1.162$ mg/m³, F(000) = 784, and abs coeff = 1.460 mm⁻¹. Intensity data were collected at 298(2) K on a Siemens CCD SMART diffractometer with Mo K α radiation and a graphite monochromator. A total of 12251 unique reflections were measured, and 4899 [R(int)= 0.0895] having $I > 2\sigma(I)$ were independent. The structure was solved by direct methods and refined by the full-matrix least-squares techniques on F² using the SHELXTL program (1953 data and 208 parameters). Final R = 0.0642, $R_w = 0.1454$ (for all reflections, R = 0.0779, $R_w = 0.1529$), and goodnessof-fit on $F^2 = 1.173$. Full details can be found in the Supporting Information.

NMR Study of 2. The NMR samples were prepared by dissolving the X-ray quality crystals of **2** in THF- d_8 . The selected data for **2**: ¹H NMR (THF- d_8 , ref; THF- $d_8 = 1.73$

⁽¹⁰⁾ Sakurai, H. Pure Appl. Chem. 1994, 66, 1431.

ppm): δ 1.08 (t, 6H), 1.28 (t, 6H), 2.14 (s, 12H), 2.27 (s, 4H), 2.58 (q, 4H), 2.69 (q, 4H). ¹³C NMR (THF- d_8 , ref; THF- d_8 = 25.48 ppm): δ 167.35, 126.44, 58.93, 46.41, 28.65, 22.65, 22.60, 19.12. ⁷Li NMR (THF- d_8 , ref; ext. LiBr (0.1 mol in D₂O) = 0.00): δ -5.63 (br s).

Preparation of 3.⁶ Stirring or sonication¹¹ in a cleaning bath of **1** (1.72 g, 5.88 mmol) and lithium (0.191 g, 27.52 mmol) in THF for 2 h gives a dark red solution. Filtration and addition to an excess of trimethylchlorosilane (2.50 mL, 19.74 mmol) with stirring at room temperature produces a pale brown solution immediately. Additional stirring for 3 h gives a colorless solution with salt. All volatiles are removed under reduced pressure; the residue is extracted with hexane. Evaporation of hexane yields **3** as a colorless oil; yield, 95%

by ¹H NMR integration. ¹H NMR (CDCl₃, ref; ext. TMS = 0.00 ppm): δ 0.20 (s, SiMe₃, 18H), 2.41 (q, 6H, Me, J = 7.33 Hz), 2.30 (q, 6H, Me, J = 7.33 Hz), 0.97 (t, 4H, CH₂, J = 7.33 Hz), 1.06 (t, 4H, CH₂, J = 7.33 Hz). ¹³C NMR (CDCl₃, ref; CDCl₃ = 77.00 ppm): δ 0.63 (SiMe), 150.59 (C_{sp²}), 143.99 (C_{sp²}), 24.60 (CH₂), 21.43 (CH₂), 17.25 (CH₃), 15.35 (CH₃). ²⁹Si NMR (CDCl₃, ext. TMS): δ –7.89 (SiMe₃). MS (M⁺, relative abundance): 384 (M⁺; 6), 369 (M⁺ – Me; 10), 311 (M⁺ – SiMe₃; 16), 73 (100). Anal. Calcd for C₁₈H₃₈GeSi₂: C, 56.41; H, 9.99. Found: C, 56.68; H, 9.64.

Acknowledgment. Financial support from the National Science Foundation through Grant No. 9452892 is gratefully acknowledged. We also thank Dr. P. Wei for assistance with the X-ray crystal structure determination.

Supporting Information Available: Tables of bond distances and angles, hydrogen atom coordinates, and anisotopic thermal parameters for **2**. This material is available free of charge via the Internet at http://pubs.acs.org.

OM990241J

⁽¹¹⁾ Sonication can activate lithium metal by keeping the lithium surface clean. A common ultrasonic cleaner (Branson, 50/60 Hz) was used for sonication of synthetic scale reactions. The sample was placed in a location in the bath that produced maximum cavitation in the reaction flask. For reviews of the effects of ultrasonic waves on heterogeneous reactions see: (a) Boudjouk, P. In *High Energy Processes in Oganometallic Chemistry;* Suslick, K. S., Ed.; ACS Symposium Series 333; American Chemical Society: Washington, DC, 1987; Chapter 13. (b) Boudjouk, P. In *Ultrasound: Chemical, Physical and Biological Effects;* Suslick, K. S., Ed.; Verlag Chemie: Deerfield Beach, FL, 1988; Chapter 5.