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Summary: The ligand (1R,2R,4S)-2-endo-hydroxy-2-exo-
(o-methoxybenzene)-1,3,3-trimethylbicyclo[2.2.1]-
heptane (1) serves as a “chiral n-butyllithium trap” and
precipitates n-butyllithium in complex 2. With dimeth-
ylzinc, ligand 1 forms a dimeric zinc chelate complex
(3). The X-ray crystal structures of 2 and 3 are discussed.

Complexes of organometallics with chiral ligands play
a major role in asymmetric synthesis.1 Organolithiums2

add to prochiral carbonyl functions enantioselectively3

in the presence of chiral alkoxides4 or amines.5 Orga-
nozinc reagents enable the use of even catalytic quanti-

ties of chiral ligands in highly enantioselective alkyla-
tions.6 The molecular structures of these chiral inter-
mediates can provide explanations for their reactivity
and selectivity,7 but relatively few structures of chirally
modified alkyllithium and alkylzinc reagents are known.
Williard et al. reported X-ray structures of mixed
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aggregates of n-, sec-, and tert-butyllithium and N-
isopropyl-O-methylvalinol (Scheme 1).8

Extensive studies by Noyori et al. have shown that
monomeric zinc chelate complexes act as catalysts in
3-exo-(dimethylamino)isonorborneol (DAIB) promoted
dialkylzinc additions to aldehydes.9 These monomers
equilibrate with their dimers. X-ray structures show
that the Zn-Me groups in homochiral DAIB dimers are
syn (as shown in Scheme 2) while heterochiral DAIB
dimers have anti alignments of Zn-Me moieties. The
syn alignments contribute to a lower stability of the
homochiral dimers and provide the basis for a higher
catalyst reactivity compared to heterochiral dimers.
Chirality amplification phenomena are also influenced
by these differences.6a-c,9

We here present X-ray crystal structures of two chiral
organometallic complexes, which have been obtained by
treating the chiral chelating alkoxy ligand (1R,2R,4S)-
2-endo-hydroxy-2-exo-(o-methoxybenzene)-1,3,3-tri-
methylbicyclo[2.2.1]heptane (1)10 with two frequently
used organometallic reagents, n-butyllithium and di-
methylzinc.

Treatment of 1 with n-butyllithium in hexanes at 0
°C and recrystallization from toluene/hexanes yields
colorless crystals of 2.11 X-ray crystal analysis of 2
reveals a distorted cubic Li4C1O3 core, consistent with
three {lithium (1R,2R,4S)-2-endo-oxido-2-exo-(o-meth-
oxybenzene)-1,3,3-trimethylbicyclo[2.2.1]heptane} (1-Li)

moieties and one n-butyllithium subunit (Figure 1).12

The oxygen atoms of the three methoxy groups coordi-
nate the lithiums of the Li4C1O3 core in a special way:
the three Li ions, which are coordinated to the CR atom,
are chelated by oxido and methoxy groups, the fourth
lithium (Litrans) by only three alkoxide ions (Figure 1).
The structure does not allow tetracoordination of all four
Li cations. Litrans appears less attractive for coordination
due to its sterically crowded environment.13 It is coor-
dinated to three bulky alkoxido units, while each Licis
ion contacts two alkoxide moieties and the smaller
n-butyl group. The n-butyl group in 2 adopts a nearly
perfect antiperiplanar conformation, the CR-Câ-Cγ-
Cδ dihedral angle is 177°. The methyl groups of the
methoxy units are positioned out of the planes of the
attached benzene rings by 19.4°, 19.7°, and 32.6°.14

Reaction of dimethylzinc with a hexane solution of 1
at 0 °C and recrystallization from hexanes yield colorless
crystals of 3.15 The X-ray structure of 3 reveals a C2
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Scheme 1. Williard’s Mixed Chiral Organolithium
Aggregates (R ) n-Bu, s-Bu, t-Bu)

Scheme 2. Noyori’s Homochiral Syn Methylzinc
Dimer of 3-exo-(Dimethylamino)isonorborneol

(DAIB)
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symmetric, dimeric aggregate of the methyl zinc chelate
complex 3 (Figure 2). Out of the three possible isomers
with different configurations at the tetrahedral Zn
centers, namely R,R, R,S, and S,S, complex 3 adopts
S,S configurations at the Zn centers. As in Noyori’s
homochiral DAIB methylzinc dimer (Scheme 2),9d the
two methyl groups at the zinc atoms in 3 are aligned

syn with respect to the central Zn2O2 ring (Figure 2).
The bond distances in the central Zn2O2 ring (2.012 Å
for the dimer forming Zn-O bond and 1.966 Å for the
internal Zn-O bond) are both shorter in 3 than in
Noyori’s homochiral dimer (2.05 and 1.98 Å, respect-
ively).9d The central Zn2O2 ring in 3 is not planar, but
puckered significantly (O-Zn-O-Zn dihedral angle:
16°). The planarity (bond angle sum) at the 3-fold
coordinated O atom in the Zn2O2 ring is higher in 3
(353°) than in Noyori’s homochiral dimer (347° and
341°).9d Disordered aryl CH and methoxy CH3 groups
are apparent in 3. The methoxy methyl groups bend by
31.9° and (due to disorder) by 26.1° out of the plane of
the aryl moieties.14 The folded Zn2O2 conformation in 3
supports close contacts between Cmeta and Cpara atoms
of the aryl groups (2.981 and 3.152 Å). However,
complete π-π interactions involving all aryl C ring
atoms are not apparent in 3, due to a skew alignment
of the aryl groups (Figure 2).

Our studies demonstrate that the chiral chelating
ligand 1 readily forms with n-butyllithium the chiral
mixed aggregate 2. This implies the possibility of
complexation with other organolithiums (e.g., s- or
t-BuLi) and suggests their use in enantioselective reac-
tions with prochiral electrophiles. The close structural
similarities between dimeric 3 and Noyori’s highly
efficient catalyst (Scheme 2) point to promising applica-
tions of 3 as catalyst in enantioselective additions of
alkylzincs to aldehydes. The suitabilities of 2 and 3 for
enantioselective reactions are currently under investi-
gation.
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Figure 1. X-ray crystal structure of 2. Hydrogen atoms
are omitted for clarity.

Figure 2. X-ray crystal structure of 3. Disordered aryl and
methoxy methyl groups are not shown. Hydrogen atoms
are omitted for clarity.
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