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Summary: The ligand (1R,2R,4S)-2-endo-hydroxy-2-exo-
(o-methoxybenzene)-1,3,3-trimethylbicyclo[2.2.1]-
heptane (1) serves as a “chiral n-butyllithium trap” and
precipitates n-butyllithium in complex 2. With dimeth-
ylzinc, ligand 1 forms a dimeric zinc chelate complex
(3). The X-ray crystal structures of 2 and 3 are discussed.

Complexes of organometallics with chiral ligands play
a major role in asymmetric synthesis.! Organolithiums?
add to prochiral carbonyl functions enantioselectively?
in the presence of chiral alkoxides* or amines.> Orga-
nozinc reagents enable the use of even catalytic quanti-
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ties of chiral ligands in highly enantioselective alkyla-
tions.® The molecular structures of these chiral inter-
mediates can provide explanations for their reactivity
and selectivity,” but relatively few structures of chirally
modified alkyllithium and alkylzinc reagents are known.
Williard et al. reported X-ray structures of mixed
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Scheme 1. Williard’s Mixed Chiral Organolithium
Aggregates (R = n-Bu, s-Bu, t-Bu)
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Scheme 2. Noyori’'s Homochiral Syn Methylzinc
Dimer of 3-exo-(Dimethylamino)isonorborneol
(DAIB)
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aggregates of n-, sec-, and tert-butyllithium and N-
isopropyl-O-methylvalinol (Scheme 1).8

Extensive studies by Noyori et al. have shown that
monomeric zinc chelate complexes act as catalysts in
3-exo-(dimethylamino)isonorborneol (DAIB) promoted
dialkylzinc additions to aldehydes.® These monomers
equilibrate with their dimers. X-ray structures show
that the Zn—Me groups in homochiral DAIB dimers are
syn (as shown in Scheme 2) while heterochiral DAIB
dimers have anti alignments of Zn—Me moieties. The
syn alignments contribute to a lower stability of the
homochiral dimers and provide the basis for a higher
catalyst reactivity compared to heterochiral dimers.
Chirality amplification phenomena are also influenced
by these differences.6a-¢9

We here present X-ray crystal structures of two chiral
organometallic complexes, which have been obtained by
treating the chiral chelating alkoxy ligand (1R,2R,4S)-
2-endo-hydroxy-2-exo-(0o-methoxybenzene)-1,3,3-tri-
methylbicyclo[2.2.1]heptane (1)1° with two frequently
used organometallic reagents, n-butyllithium and di-
methylzinc.

Treatment of 1 with n-butyllithium in hexanes at 0
°C and recrystallization from toluene/hexanes yields
colorless crystals of 2.1 X-ray crystal analysis of 2
reveals a distorted cubic LisC103 core, consistent with
three {lithium (1R,2R,4S)-2-endo-oxido-2-exo-(0-meth-
oxybenzene)-1,3,3-trimethylbicyclo[2.2.1]heptane} (1-Li)
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moieties and one n-butyllithium subunit (Figure 1).12
The oxygen atoms of the three methoxy groups coordi-
nate the lithiums of the Li,C103 core in a special way:
the three Li ions, which are coordinated to the C, atom,
are chelated by oxido and methoxy groups, the fourth
lithium (Litans) by only three alkoxide ions (Figure 1).
The structure does not allow tetracoordination of all four
Li cations. Liyans appears less attractive for coordination
due to its sterically crowded environment.!3 It is coor-
dinated to three bulky alkoxido units, while each Ligs
ion contacts two alkoxide moieties and the smaller
n-butyl group. The n-butyl group in 2 adopts a nearly
perfect antiperiplanar conformation, the C,—Cs—C,—
Cs dihedral angle is 177°. The methyl groups of the
methoxy units are positioned out of the planes of the
attached benzene rings by 19.4°, 19.7°, and 32.6°.14
Reaction of dimethylzinc with a hexane solution of 1
at 0 °C and recrystallization from hexanes yield colorless
crystals of 3.1 The X-ray structure of 3 reveals a C,

(11) Synthesis of 2: 1.2 mmol n-butyllithium (1.6 M in hexanes, 0.75
mL) were added at 0 °C to a solution of 0.9 mmol (234 mg) 1 in 1 mL
of hexanes. A white precipitate formed and was dissolved in hot
toluene/hexanes. Colorless crystals of 2 were obtained by cooling this
solution to room temperature (39% yield). X-ray crystallograpy revealed
that 2 was also formed (in lower yield) if a 1:1 ratio of n-butyllithium
to 1 was employed. X-ray crystal data of 2: CssH7gLi4Os; M = 862.93;
orthorhombic; space group P2;2:2;; a = 19.150(16) A; b = 18.387(13)
A; c=13.603(10) A; V = 4789.6(62) A3; Z = 4; T = 148(2) K; u = 0.074;
reflections total, 7304; reflections observed (>2¢gl), 3422; parameters
refined, 606; final R values, Rys = 0.0606; WR, = 0.182; GOFy4, =
0.999. The absolute configuration originates from (—)-fenchone, (1R,4S)-
1,3,3-trimethylbicyclo[2.2.1]heptane-2-one.
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distances, see: (a) Goldfuss, B.; Schleyer, P. v. R.; Hampel, F. 3. Am.
Chem. Soc. 1996, 118, 12183. (b) Kottke, T.; Stalke, D. Angew. Chem.
1993, 105, 619; Angew. Chem., Int. Ed. Engl. 1993, 32, 580.

(14) In the dimeric structure of [t-BuN(Li)SiMe;-0-CsH,OMe], the
methoxy methyl groups tilt 10.2° out of the aryl plane: Goldfuss, B.;
Schleyer, P. v. R.; Handschuh, S.; Hampel, F. J. Organomet. Chem.
1998, 552, 285.

(15) Synthesis of 3: 0.4 mmol (0.4 mL) of dimethylzinc (0.9 M in
hexanes) were added at 0 °C to a solution of 0.4 mmol (104 mg) of 1 in
1 mL of hexanes. The mixture was stirred (methane evolved) for 1 h.
A white precipitate formed and was dissolved in hot hexanes. Colorless
crystals of 3 were obtained by cooling this solution to room temperature
(58% vyield). X-ray crystal data of 3: CssHs204ZNny; M = 679.52;
orthorhombic; space group P2,2,2; a = 13.405(6) A; b = 13.508(6) A; ¢
= 0.233(4) A; V = 1671.9(13) A3, Z = 2; T = 148(2) K; u = 1.471;
reflections total, 2758; reflections observed (>20l), 2308; parameters
refined, 244; final R values, Rops = 0.0319; WR, = 0.0853; GOF,, =
1.060. The absolute configuration originates from (—)-fenchone, (1R,4S)-
1,3,3-trimethylbicyclo[2.2.1]heptane-2-one.
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Figure 1. X-ray crystal structure of 2. Hydrogen atoms
are omitted for clarity.

Figure 2. X-ray crystal structure of 3. Disordered aryl and
methoxy methyl groups are not shown. Hydrogen atoms
are omitted for clarity.

symmetric, dimeric aggregate of the methyl zinc chelate
complex 3 (Figure 2). Out of the three possible isomers
with different configurations at the tetrahedral Zn
centers, namely R,R, R,S, and S,S, complex 3 adopts
S,S configurations at the Zn centers. As in Noyori's
homochiral DAIB methylzinc dimer (Scheme 2),% the
two methyl groups at the zinc atoms in 3 are aligned
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syn with respect to the central Zn,O; ring (Figure 2).
The bond distances in the central Zn,O, ring (2.012 A
for the dimer forming Zn—0 bond and 1.966 A for the
internal Zn—0O bond) are both shorter in 3 than in
Noyori’'s homochiral dimer (2.05 and 1.98 A, respect-
ively).?d The central Zn,O; ring in 3 is not planar, but
puckered significantly (O—zZn—0O—Zn dihedral angle:
16°). The planarity (bond angle sum) at the 3-fold
coordinated O atom in the Zn,0O; ring is higher in 3
(853°) than in Noyori's homochiral dimer (347° and
341°).9d Disordered aryl CH and methoxy CH3 groups
are apparent in 3. The methoxy methyl groups bend by
31.9° and (due to disorder) by 26.1° out of the plane of
the aryl moieties.1* The folded Zn,0, conformation in 3
supports close contacts between Cpeta and Cpara atoms
of the aryl groups (2.981 and 3.152 A). However,
complete 7—s interactions involving all aryl C ring
atoms are not apparent in 3, due to a skew alignment
of the aryl groups (Figure 2).

Our studies demonstrate that the chiral chelating
ligand 1 readily forms with n-butyllithium the chiral
mixed aggregate 2. This implies the possibility of
complexation with other organolithiums (e.g., s- or
t-BuL.i) and suggests their use in enantioselective reac-
tions with prochiral electrophiles. The close structural
similarities between dimeric 3 and Noyori's highly
efficient catalyst (Scheme 2) point to promising applica-
tions of 3 as catalyst in enantioselective additions of
alkylzincs to aldehydes. The suitabilities of 2 and 3 for
enantioselective reactions are currently under investi-
gation.
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