3170

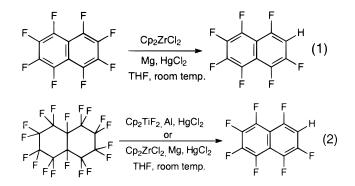
Carbon-Fluorine Bond Cleavage by Zirconium Metal Hydride Complexes

Brian L. Edelbach, A. K. Fazlur Rahman, Rene J. Lachicotte, and William D. Jones*

Department of Chemistry, University of Rochester, Rochester, New York 14627

Received April 8, 1999

The zirconium hydride dimer $[Cp_2ZrH_2]_2$ reacts with C_6F_6 at ambient temperature to give $Cp_2Zr(C_6F_5)F$ as the major product along with Cp_2ZrF_2 , C_6F_5H and H_2 . Neither the reaction rate nor the product ratio is affected by changes in H_2 pressure or the concentration of C_6F_6 . The reaction follows zero-order kinetics. The new compound $Cp_2Zr(C_6F_5)F$ has been structurally characterized. $[Cp_2ZrH_2]_2$ reacts with C_6F_5H to give $Cp_2Zr(P-C_6F_4H)F$, Cp_2ZrF_2 , $C_6F_4H_2$, and H_2 . The zirconium hydride Cp_3ZrH has been structurally characterized and also reacts with C_6F_6 . The products of the reaction are CpH, $Cp_2Zr(C_6F_5)F$, C_6F_5H , Cp_2ZrF_2 , Cp_4Zr , and Cp_3ZrF . The reaction rate is first order in $[Cp_3ZrH]$ and $[C_6F_6]$, but the product ratio is unaffected by the concentration of C_6F_6 . Possible mechanisms of these reactions are discussed.


Introduction

The use of transition metal complexes to cleave strong carbon–fluorine bonds has blossomed in the past several years.^{1–21} Many late transition metal complexes with electron-donating ligands are believed to undergo oxidative addition to the C–F bond of a fluorinated aromatic group.^{4–9} Catalytic processes for C–F cleavage

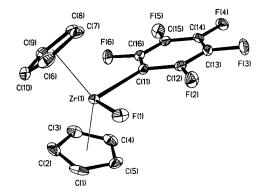
- (1) Kiplinger, J. L.; Richmond, T. G. Osterberg, C. E. Chem. Rev. 1994, 94, 373. Murphy, E. F.; Murugavel, R.; Roesky, H. W. Chem. Rev. 1997, 97, 3425.
- (2) Burdeniuc, J.; Jedlicka, B.; Crabtree, R. H. Chem.Ber./Recl. 1997, 130, 145.
- (3) Richmond, T. G. In *Topics in Organometallic Chemistry, Activation of Unreactive Bonds and Organic Synthesis*; Springer-Verlag: New York, 1999; Vol. 3, pp 243–269.
- (4) Belt, S. T.; Helliwell, M.; Jones, W. D.; Partridge, M. G.; Perutz,
 R. N. J. Am. Chem. Soc. 1993, 115, 1429.
- (5) Jones, W. D.; Partridge, M. G.; Perutz, R. N. J. Chem. Soc., Chem. Commun. **1991**, 264.
- (6) Hofmann, P.; Unfried, G. Chem. Ber. 1992, 125, 659.
- (7) Lucht, B. L.; Poss, M. J.; King, M. A.; Richmond, T. G. *J. Chem. Soc., Chem. Commun.* **1991**, 400.
- (8) Crespo, M.; Martinez, M.; Sales, J. J. Chem. Soc., Chem. Commun. 1992, 822.
- (9) Cronin, L.; Higgitt, C. L.; Karch, R.; Perutz, R. N. Organometallics **1997**, *16*, 4920.
- (10) Kiplinger, J. L.; Richmond, T. G. J. Am. Chem. Soc. 1996, 118, 1805.
 - (11) Aizenberg, M.; Milstein, D. J. Am. Chem. Soc. 1995, 117, 8674.
- (12) Aizenberg, M.; Milstein, D. Science **1994**, 265, 359.
 (13) Burns, C. J.; Andersen, R. A. J. Chem. Soc., Chem. Commun.
- 1989, 136. (14) Watson, P. L.; Tulip, T. H.; Williams, I. Organometallics 1990,
- 9, 1999. (15) Weydert, M.; Andersen, R. A.; Bergman, R. G. J. Am. Chem. Soc. **1993**, 115, 8837.
- (16) Burk, M. J.; Staley, D. L.; Tumas, W. J. Chem. Soc., Chem. Commun. 1990, 809.
- (17) Kiplinger, J. L.; Richmond, T. G. J. Am. Chem. Soc. Chem. 1996, 118, 1805.
- (18) Kiplinger, J. L.; Richmond, T. G. J. Chem. Soc. Commun. 1996, 1115.
- (19) Whittlesey, M. K.; Perutz, R. N.; Moore, M. H. *Chem. Commun.* **1997**, *119*, 7734.
- (20) Edelbach, B. L.; Jones, W. D. J. Am. Chem. Soc. 1997, 119, 7734.
- (21) Hughes, R. P.; Lindner, D. C.; Rheingold, A. L.; Liable-Sands, L. M. *J. Am. Chem. Soc.* **1997**, *119*, 11544.

have been demonstrated for some of these compounds.¹⁰⁻¹² Examples of early transition metal complexes that cleave C–F bonds are more rare, perhaps due to the electrophilic nature of the complexes.¹³⁻¹⁶

Recently, Kiplinger and Richmond provided the first example of selective room-temperature hydrogenolysis of aromatic C–F bonds by homogeneous early transition metal metallocenes.¹⁷ They have shown that octafluoronaphthalene reacts with Cp₂ZrCl₂ in THF with Mg as the terminal reductant to give 1,3,4,5,6,7,8-heptafluoronaphthalene in quantitative yield (eq 1). The C–F bond activation step was proposed to occur via oxidative addition to the transient low-valent zirconocene fragment [Cp₂Zr]. They have also reported the use of reduced titanocene and zirconocene complexes as catalysts for the aromatization of cyclic perfluorocarbons at room temperature (eq 2).¹⁸

Several prior studies have demonstrated that transition metal hydrides are active for C–F bond cleavage, either by electron transfer¹⁹ or nucleophilic aromatic substitution pathways.²⁰ We have found that the reaction of $[Cp_2ZrH_2]_2$ or Cp_3ZrH with perfluorobenzene leads to the formation of the C–F activation product $Cp_2Zr(C_6F_5)F$, **1**, as well as Cp_2ZrF_2 and C_6F_5H . Evidence is presented that suggests that the C–F cleavage occurs via a σ -bond metathesis pathway and by way of oxidative addition to [Cp₂Zr].

Results


Thermal Reactions of $[Cp_2ZrH_2]_2$ with Polyfluorinated Arenes. The thermolysis of $[Cp_2ZrH_2]_2$ with 12 equiv of C_6F_6 at 65 °C in THF solution leads to the rapid formation (~1 min) of the C–F activated product $Cp_2Zr(C_6F_5)F$, **1**, as the major product (80%) as well as smaller quantities of Cp_2ZrF_2 , C_6F_5H , and H_2 . The compound $[Cp_2ZrH_2]_2$ is only sparingly soluble in THF, but its solution NMR spectrum has been reported and is consistent with a $[Cp_2Zr(H)(\mu-H)]_2$ structure.²² The amount of hydrogen released in the reaction was not quantified, but H_2 is clearly seen in a ¹H NMR spectrum of the reaction solution at δ 4.54 (THF-*d*₈). Good mass balance is observed in accordance with the reaction shown in eq 3. When the reaction is monitored at room

7 $[Cp_2ZrH_2]_2 + 8C_6F_6 \longrightarrow 6Cp_2Zr + Cp_2ZrF_2$ 1 C_6F_5 (3) +2 $C_6F_5H + 13H_2$

temperature, the product ratios are identical to those at 65 °C, and the product ratio is constant throughout the course of the reaction. The thermolysis of $[Cp_2ZrD_2]_2$ with C_6F_6 at 65 °C in THF solution leads to compound 1, C_6F_5D (as identified by ¹⁹F NMR spectroscopy and GC/MS), and Cp_2ZrF_2 in a ratio of 3.5:2.0:1, respectively. The evolution of a gas (presumably D_2) was also observed during the course of the reaction.

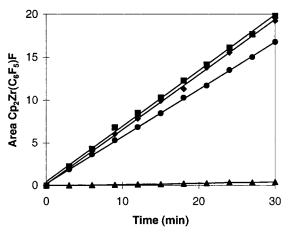
The ¹H NMR spectrum of **1** in THF- d_8 was characterized by a single Cp resonance at δ 6.405. The ¹⁹F NMR spectrum exhibits a downfield resonance at δ 168.2 corresponding to the zirconium-bound fluoride as well as three distinct upfield resonances in a 2:1:2 ratio at δ -49.3, -93.8, and -98.8, which correspond to the ortho, para, and meta aromatic fluorine resonances, respectively. The meta fluorine resonance is broad, whereas the para and ortho resonances are sharp. The presence of only three aromatic fluorine resonances indicates rapid rotation around the Zr-aryl bond on the NMR time scale at room temperature. A ¹⁹F NMR spectrum of 1 at -50 °C exhibits five distinct resonances. The coalescence temperature for both the ortho and meta fluorines is approximately -15 °C. The rate constant at coalescence is 600 s^{-1} for both types of fluorine, corresponding to a barrier to rotation of approximately 11.8 kcal/mol.

A single-crystal X-ray structure of **1** is shown in Figure 1. The complex displays the expected geometry with the C_6F_5 group in the equatorial plane of the Cp_2 -Zr fragment. The Zr–F bond length of 1.946(2) Å is similar to that seen in Cp_2ZrF_2 (1.98 Å).²³ The Zr–C bond distance of 2.346 Å compares with that of 2.329 Å seen in the only other structurally characterized perfluorophenyl zirconium complex, [{(Cp)[η -CPh{N(Si-Me_3)}_2](C_6F_5)}Zr{ μ -MeB(C₆F₅)}].²⁴

Figure 1. ORTEP drawing of **1** showing 30% probability ellipsoids.

The effect of solvent on the reaction rate and ratio of products was tested by performing the same reaction in *p*-xylene- d_{10} , CD₂Cl₂, and pyridine- d_5 . The reaction in *p*-xylene- d_{10} gave the same product ratios as that in THF; however the rate is approximately one-tenth as fast. The reaction in CD₂Cl₂ gives Cp₂ZrCl₂ as the main organometallic complex. No **1**, C₆F₅H, or Cp₂ZrF₂ is observed. When the reaction is run in pyridine, the product ratio is 7.4:1:1.4 for **1**, C₆F₅H, and Cp₂ZrF₂, respectively. A large broad singlet at δ 102 was also observed but not identified (we determined it was not pyridine-HF by adding 1 μ L of pyridinium poly(hydrogen fluoride) (~30% pyridine/70% hydrogen fluoride) to an NMR tube containing 0.5 mL of pyridine).

Free radical intermediates can be virtually ruled out in these reactions. When the thermal reaction of $[Cp_2-ZrH_2]_2$ with C_6F_6 was carried out in the presence of the radical trap 9,10-dihydroanthracene (10 equiv) in THF, the rate of reaction and product ratios were not affected. The same results were observed when the reaction was run in neat isopropylbenzene as trap and the reaction monitored by ¹⁹F NMR spectroscopy. Also, the use of $[Cp_2ZrH_2]_2$ prepared from the reaction of Cp_2ZrMe_2 with H_2 produced identical product distributions.


The rate and ratio of product formation shown in eq 3 is unaffected by the pressure of H₂ (0 vs 4 atm of H₂) or the concentration of C_6F_6 . When the reaction is performed in a sealed NMR tube at room temperature with varying concentrations of C_6F_6 (0.88, 1.78, and 2.68 M), the appearance of 1 follows zero-order kinetics (Figure 2). That is, a plot of [1] vs time is linear, suggesting that the rate is limited by the rate of dissolving of [Cp₂ZrH₂]₂ or that the solution is saturated in [Cp₂ZrH₂]₂ and the rate is determined by the rate of cleavage of [Cp₂ZrH₂]₂ into Cp₂ZrH₂. The rate of disappearance of [Cp₂ZrH₂]₂ was seen to depend on the rate of stirring. An unstirred sample of [Cp₂ZrH₂]₂ containing C₆F₆ reacts much more slowly than a stirred sample containing the same concentration of C_6F_6 (Figure 2), indicating that mass transport is rate limiting.

Various zirconocene, $[Cp_2Zr]$, synthons were reacted with C_6F_6 to determine if formal oxidative addition of $[Cp_2Zr]$ to the aromatic carbon–fluorine bond to form complex **1** was viable. The complexes $Cp_2Zr(CH_2=CHEt)$ and $Cp_2Zr(CH_2=CH_2)$ generated in situ from Cp_2ZrBu_2 and Cp_2ZrEt_2 , respectively, are known to act as $[Cp_2-Zr]$ equivalents.²⁵ Recently, it has been demonstrated

⁽²²⁾ Bickley, D. G.; Hao, N.; Bougeard, P.; Sayer, B. G.; Burns, R. C.; McGlinchey, M. J. *J. Organomet. Chem.* **1983**, *246*, 257.
(23) Bush, M. A.; Sim, G. A. *J. Chem. Soc.* (A) **1971**, 2225.

⁽²⁴⁾ Gomez, R.; Green, M. L. H.; Haggitt, J. L. J. Chem. Soc., Chem. Commun. 1994, 2607.

⁽²⁵⁾ Negishi, E.; Takahaski, T. Bull. Chem. Soc. Jpn. 1998, 755, 5–769, and references therein.

Figure 2. Graph of appearance of $Cp_2Zr(C_6F_5)F$ vs time (min): $\bullet = 0.88 \text{ M } C_6F_6$ with stirring, $\blacksquare = 1.78 \text{ M } C_6F_6$ with stirring, $\blacklozenge = 2.68 \text{ M } C_6F_6$ with stirring, $\blacktriangle = 1.78 \text{ M } C_6F_6$ without stirring.

that the complex $Cp_2Zr(Me_3SiC \equiv CSiMe_3)$ (THF) can also serve as a $[Cp_2Zr]$ equivalent.²⁶ Reaction of any of these complexes with C_6F_6 in THF- d_8 leads to decomposition rather than formation of **1**.

The thermal reaction of [Cp₂ZrH₂]₂ with 12 equiv of C₆F₅H at 65 °C in THF solution leads to the formation of the C–F activation product $Cp_2Zr(p-C_6F_4H)F$ as the major product as well as Cp_2ZrF_2 , $C_6F_4H_2$, and H_2 in the same ratios as observed in the reaction with C_6F_6 . The complex $Cp_2Zr(C_6F_5)H$, arising from C–H activation of C₆F₅H, was not observed. The ¹H NMR spectrum of Cp₂Zr(*p*-C₆F₄H)F was characterized by a single Cp resonance at δ 6.40 in THF- d_8 , as well as an aromatic resonance at δ 7.027 (tt, $J_{H-F} = 9.4$, 7.1 Hz). The triplet of triplets pattern is consistent with a hydrogen coupling to two ortho and two meta fluorines, indicating that C-F activation occurred exclusively para to the hydrogen in C₆F₅H. The ¹⁹F NMR spectrum exhibits a downfield resonance at δ 166.2 corresponding to the zirconium-bound fluoride as well as two broad upfield resonances in a 1:1 ratio at δ -51.6, -76.3, which correspond to the ortho and meta aromatic fluorines, respectively. The presence of only two aromatic fluorine resonances indicates rapid rotation around the Zr-aryl bond on the NMR time scale at room temperature. A ¹⁹F NMR spectrum of $Cp_2Zr(p-C_6F_4H)F$ at -70 °C exhibits four distinct resonances. The coalescence temperature is approximately -15 °C for the meta fluorine and approximately -30 °C for the ortho fluorines. The rate constants at coalescence are 476 and 184 s^{-1} for the meta fluorine and ortho fluorines, respectively, which correspond to a barrier to rotation of approximately 11.4 kcal/mol.

In an attempt to synthesize possible intermediates, such as Cp_2ZrHF , pyridinium poly(hydrogen fluoride) was added to $[Cp_2ZrH_2]_2$ in THF. The addition of 2 equiv of pyridinium poly(hydrogen fluoride) per Zr atom leads to quantitative formation of Cp_2ZrF_2 (hydrogen gas was also observed). Addition of 1 equiv of pyridinium poly-(hydrogen fluoride) per Zr atom also leads to Cp_2ZrF_2 , with unreacted $[Cp_2ZrH_2]_2$ remaining in the reaction flask. Although Cp_2ZrHF is a likely intermediate in this reaction, it must rapidly conproportionate to give $Cp_2\text{-}ZrF_2$ and $Cp_2ZrH_2.$

Structure of Cp₃ZrH. The synthesis of the complex Cp₃ZrH (**2**) was reported in 1981 by the reaction of Cp₄-Zr and LiAlH₄.²⁷ Andersen has also reported an improved synthesis of the complex by reaction of Cp₄Zr with *t*-BuLi.²⁸ This complex might formally be assigned a 20 e⁻ configuration should all Cp rings be η^5 -coordinate, but it has been pointed out that the lack of a metal orbital with a_2' symmetry prevents bonding with the corresponding group orbital on the three cyclopentadienyl ligands, so that one pair of electrons from the Cp₃ donor set cannot be included in the metal's electronic configuration.²⁹ While no X-ray structure for **2** has been reported, IR studies indicated that all three Cp ligands were η^5 -coordinated.³⁰

We have found that colorless 2 crystallizes in trigonal space group $P6_3/m$ with Z = 2, consistent with a molecule of **2** being disordered on a 3/m (=6) center. Solution and initial refinement of the Cp₃Zr portion of the molecule showed residual electron density that could be associated with the hydride ligand approximately 2 Å from the Zr on the 3/m center. Furthermore, the anisotropic thermal ellipsoid for the Zr showed substantial elongation along the 3-fold axis. A different model was introduced in which half of a Zr was introduced 0.3 Å away from the mirror plane but on the 3-fold axis. The improved refinement along with the isotropic appearance of the Zr thermal ellipsoid indicated that this model was superior. Furthermore, the hydride ligand could now be refined, also disordered over either side of the mirror plane. In the final model, the positions and thermal parameters of all atoms were refined, with the hydrogen atoms being refined isotropically. The Zr lies 0.20 Å away from the mirror plane, and the Zr-H distance is 1.72(10) Å. Other Cp₃ZrX molecules that have been structurally characterized also show Zr to be away from the plane of the three Cp centroids.³¹

Andersen has reported the synthesis and structure of the related Zr^{III} species, $Cp_3Zr.^{28}$ Crystals of this d¹ complex are brown, and the molecule crystallizes in the same space group as **2**. Furthermore, the coordinates reported for Cp_3Zr are virtually *identical* to those found for **2**, with one important difference in the refinement. The model placed the zirconium at the 3/m center, on the mirror plane. The thermal ellipsoid for Zr is elongated along the 3-fold axis, but only slightly. Consequently, it appears that the Cp_3Zr core of **2** is isomorphous and nearly isostructural with Cp_3Zr . When the model for **2** was modified to place the Zr on the

⁽²⁶⁾ Ohff, A.; Pulst, S.; Lefeber, C.; Peulecke, N.; Arndt, P.; Burlakov, V. V.; Rosenthal, U. *Synlett.* **1996**, 111.

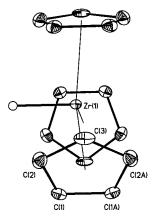
⁽²⁷⁾ Brainina, E. M.; Strunkina, L. I.; Lokshin, B. V.; Ezernitskaya, M. G. *Izv. Akad. Nauk SSSR, Ser. Khim.* **1981**, 447.

⁽²⁸⁾ Lukens, W. W.; Andersen, R. A. Organometallics 1995, 14, 3435.
(29) (a) Bursten, B. E.; Rhodes, L. F.; Strittmatter, R. J. J. Am. Chem. Soc. 1989, 111, 2756. (b) Strittmatter, R. J.; Bursten, B. E. J. Am. Chem. Soc. 1991, 113, 552. (c) Lauher, J. W.; Hoffman, R. J. Am. Chem. Soc. 1976, 98, 1729.

⁽³⁰⁾ Lokshin, B. V.; Klemenkova, Z. S.; Ezernitskaya, M. G.; Strunkina, L. I.; Brainina, E. M. *J. Organomet. Chem.* **1982**, *235*, 69. (31) (a) Brackemeyer, T.; Erker, G.; Frohlich, R. *Organometallics*

 ⁽a) Dittere Inter, F. D.; Bruth, Y. G., Fromer, R. Organization and M. S. Chem. Soc. 1978, 100, 5238. (c) Ushioda, T.; Green, M. L. H.; Haggitt, J.; Yan, X. J. Organomet. Chem. 1996, 518, 155. (d) Kulishov, V. I.; Bokii, N. G.; Struchkov, Y. T. Zh. Strukt. Khim. 1970, 11, 700. (e) Kopf, J.; Vollmer, H. J.; Kaminsky, W. Cryst. Struct. Commun. 1980, 9, 985. (f) Diamond, G. M.; Green, M. L. H.; Popham, N. A.; Chernega, A. N. J. Chem. Soc., Dalton Trans. 1993, 2535. (g) Brackemeyer, T.; Erker, G.; Frohlich, R.; Prigge, U.; Peuchert, U. Chem. Ber. 1997, 130, 899.

mirror plane and the hydride omitted (as if it were Cp_3 -Zr), refinement showed a severely elongated thermal ellipsoid for Zr, indicating the incorrectness of this model (see Supporting Information).


Thermal Reactions of Cp₃ZrH with C₆F₆. The complex Cp₃ZrH, **2**, is also capable of cleaving the C–F bond of C₆F₆ at room temperature. The major products of the reaction are **1** and CpH, formed in equimolar quantities, which account for 55% of the total yield based upon Cp₃ZrH. Minor products observed include Cp₂ZrF₂ (14%), Cp₄Zr (11%), C₆F₅H (38%), and the new compound Cp₃ZrF (11%). The rate of the reaction showed a first-order dependence on the concentration of C₆F₆. As in the reaction of [Cp₂ZrH₂]₂, the product ratio is unaffected by the concentration of C₆F₆ or by addition of CpH.

The complex assigned as Cp₃ZrF can be produced independently by addition of 0.5 equiv of pyridinium poly(hydrogen fluoride) to Cp₄Zr. Free cyclopentadiene, Cp₃ZrF, and Cp₂ZrF₂ are formed, the latter two in a 1.8:1 ratio. The new compound Cp₃ZrF was characterized by ¹H and ¹⁹F NMR spectroscopy, as well as mass spectroscopy. The ¹H NMR spectrum of Cp₃ZrF in THF*d*₈ consists of a single Cp resonance at δ 6.099, and the ¹⁹F NMR spectrum exhibits one distinct resonance at δ 25.5. Direct inlet MS shows a peak at *m/e* 304 for M⁺, as well as fragments at 285 (M⁺ – F) and 239 (M⁺ – Cp, 100%).

Previously, we reported that the addition of fluoride (via tetrabutylammonium fluoride, TBAF) to a solution containing (C₅Me₅)Rh(PMe₃)H₂ and C₆F₆ greatly accelerated the formation (C₅Me₅)Rh(PMe₃)(C₆F₅)H.²⁰ It was demonstrated that fluoride acted as a base by deprotonating (C₅Me₅)Rh(PMe₃)H₂ to give [(C₅Me₅)-Rh(PMe₃)H]⁻, which undergoes nucleophilic aromatic substitution with C₆F₆ to give (C₅Me₅)Rh(PMe₃)(C₆F₅)H. An analogous reaction was performed by adding TBAF (~1.4 equiv) to a solution containing Cp₃ZrH and C₆F₆. No rate acceleration was observed, and the main product in the reaction was Cp₂ZrF₂.

Discussion

Mechanistic Considerations for the Reaction of [Cp₂ZrH₂]₂ with C₆F₆. One possible mechanism for the formation of the products depicted in eq 3 is a concerted σ -bond metathesis in which the aryl^F carbon of C₆F₆ bonds to the zirconium and the fluorine bonds to the hydride (Figure 4). The products of this reaction are Cp₂- $Zr(C_6F_5)H$ and HF. Hydrogen fluoride could then protonate the Zr-H bond of $Cp_2Zr(C_6F_5)H$ to give 1 and H₂ or protonate the Zr-C₆F₅ bond to give Cp₂ZrHF and C₆F₅H. The complex Cp₂ZrHF conproportionates to give Cp_2ZrF_2 and Cp_2ZrH_2 . While this mechanism accounts for all of the observed products, it has several drawbacks. First, given the crowded environment shown in Figure 4 and the strong fluorophilicity of zirconium, metathesis in the opposite direction should be favored (vide infra). Second, the addition of Proton-Sponge³² had no affect on the rate or the products formed in the reaction, and no pyridinium HF was observed when the

Figure 3. ORTEP drawing of **2** showing 30% probability ellipsoids. Cp-hydrogens have been omitted for clarity.

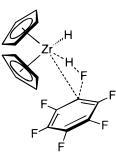
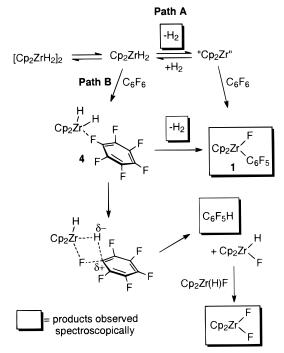
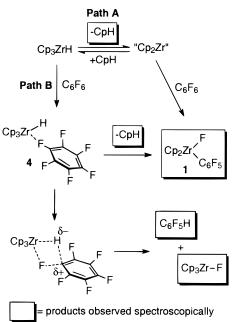



Figure 4. Possible transition state for C-F activation.

Scheme 1. Possible Mechanisms for the Reaction of $[Cp_2ZrH_2]_2$ with C_6F_6

reaction was run in pyridine. Both of these observations suggest that HF is not formed during the course of the reaction.


Two other mechanistic pathways are depicted in Scheme 1. Both paths involve initial dimer cleavage to monomer. In path A this is followed by loss of H₂ from the monomer to give [Cp₂Zr], which then undergoes a formal oxidative addition to C_6F_6 to give compound **1**. To our knowledge, thermal reductive elimination of H₂

⁽³²⁾ Proton Sponge is a trademark name for [1,8-bis(dimethyl-amino)naphthalene, N,N,N,N-tetramethyl-1,8-naphthalenediamine], $C_{10}H_6[N(CH_3)_2]_2$.

from Cp₂ZrH₂ has not been reported. Path A can be ruled out as the exclusive pathway since it does not account for the formation of C₆F₅H or Cp₂ZrF₂. Path A can also be ruled out as a competing pathway for the formation of **1** based on the following argument. Neither the pressure of H₂ nor the concentration of C₆F₆ had an effect on the product ratios. If path A is contributing to the formation of **1**, the *product ratio* should change with changes in H₂ pressure (if reaction of [Cp₂Zr] with C₆F₆ is rate determining in path A) or with changes in the concentration of C₆F₆ (if loss of H₂ from Cp₂ZrH₂ is rate determining in path A). The fact that no effect upon *product ratio* was observed with changes in the amount of H₂ or C₆F₆ present appears to rule out path A altogether.

In path B an interaction is depicted between the fluorophilic Zr(IV) center on Cp₂ZrH₂ and a fluorine on C_6F_6 to give complex 4 (Scheme 1). The interaction of aromatic C-F bonds with bis(cyclopentadienyl) Zr(IV) type species has been reported,³³ and several of these complexes have been characterized by X-ray crystallography.^{33b,c,d} Erker et al. have estimated the C-F- - -Zr bond dissociation energy in the (CH₃C₅H₄)₂Zr(µ-C₄H₆)B-(C₆F₅)₃ betaine complex at approximately 8-9 kcal/ mol.^{33c} In the reaction of Cp₂ZrH₂ and C₆F₆ this interaction results in two possible reactivity patterns. First, the Zr- $-F-(C_6F_5)$ association may result in an associatively induced reductive elimination of H₂ from Cp₂- ZrH_2 to give $[Cp_2Zr - -F - (C_6F_5)]$, which then undergoes a formal oxidative addition to C_6F_6 to give compound 1. In a similar pathway, Schwartz et al. have shown that reductive elimination of methane from Cp₂Zr(Me)(H) involves initial coordination of a 2e donor ligand.³⁴ Other examples involving ligand-induced reductive elimination from late transition metals have also been reported.³⁵ In a second competing pathway, a concerted σ -bond metathesis occurs, resulting in the formation of C₆F₅H and Cp₂ZrHF, which conproportionates to give Cp_2ZrF_2 and Cp_2ZrH_2 (Scheme 1). Metathesis in this direction is facilitated by attack of the hydridic proton on the aromatic carbon of C_6F_6 and by the strong fluorophilicity of zirconium. The nucleophilicity of the hydrogens on Cp₂ZrH₂ has been well established,³⁶ and nucleophilic attack on polyfluorinated aromatic rings is well documented. This later reaction sequence accounts for the fact that only 0.5 mol of Cp₂ZrF₂ is observed for every mole of C₆F₅H produced. Finally, the small observed isotope effect suggests that Zr-H(D) bond cleavage is occurring before or during the rate-determining step.

Scheme 2. Possible Mechanisms for the Reaction of Cp_3ZrH with C_6F_6

One might argue against the mechanism depicted in path B based on the observation that all of the $[Cp_2Zr]$ synthons employed failed to give compound **1**. However, a detailed study on the chemistry of the $Cp_2ZrCl_2/2$ *n*-BuLi system has demonstrated that the thermal decomposition of the resulting dibutylzirconocene results in a myriad of intermediates and casts doubt that this system or other related systems truly lead to a simple $[Cp_2Zr]$ synthon.³⁷

Mechanistic Considerations for the Reaction of Cp₃ZrH with C₆F₆. Two mechanisms for the reaction of Cp₃ZrH with C₆F₆ are outlined in Scheme 2. Both are analogous to those presented in the $[Cp_2ZrH_2]_2$ system. Path A involves reversible reductive elimination of free CpH to give the putative 14-electron $[Cp_2Zr]$ fragment, which cleaves the C–F bond of C₆F₆ to give compound 1. Path A is again ruled out due to lack of change in product ratio with changes in C₆F₆ concentration or addition of CpH.

Path B depicts a C–F- - -Zr interaction between C_6F_6 and Cp₃ZrH, as suggested above. This interaction may lead to an associatively induced reductive elimination of CpH and C-F bond activation of C₆F₆ by the [Cp₂- $Zr - -F - (C_6F_5)$ intermediate to give complex **1**. This pathway accounts for the 1:1 ratio of CpH to 1 observed in the overall reaction. The same interaction may also lead to a σ -bond metathesis between Cp₃ZrH and C₆F₆ to give C₆F₅H and Cp₃ZrF. This pathway should result in a 1:1 ratio of C₆F₅H to Cp₃ZrF. In contrast, the observed ratio of C_6F_5H to Cp_3ZrF is ~2.7:1. The deficiency of Cp₃ZrF can be accounted for by the observation of the small quantities of Cp₂ZrF₂ and Cp₄-Zr, in terms of mass balance. Path B is also consistent with the observed first-order decay of Cp₃ZrH in the reaction with C₆F₆, assuming the reaction of Cp₃ZrH with C_6F_6 is the slow step. Reaction of **2** with C_6F_6 in the presence of 0.79 M cumene gives an almost identical mixture of products, ruling out radical processes.

^{(33) (}a) Horton, A. D.; Orpen, A. G. Organometallics 1991, 10, 3910.
(b) Yang, X.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc. 1994, 116, 10015. (c) Karl, J.; Erker, G.; Frohlich, R. J. Am. Chem. Soc. 1997, 119, 11165. (d) Dahlmann, M.; Erker, G.; Nissinen, M.; Fröhlich, R. J. Am. Chem. Soc. 1999, 121, 2820. (e) Watson, P. L.; Tulip, T. H.; Williams, I. Organometallics 1990, 9, 1999. (f) Lancaster, S. J.; Thornton-Pett, M.; Dawson, D. M.; Bochmann, M. Organometallics 1998, 17, 3829.

^{(34) (}a) Gell, K. I.; Schwartz, J. J. J. Am. Chem. Soc. **1978**, 100, 3246. (b) Gell, K. I.; Schwartz, J. J. J. Am. Chem. Soc. **1981**, 103, 2687.

^{(35) (}a) Abis, L.; Sen, A.; Halpern, J. J. Am. Chem. Soc. 1978, 100, 2915.
(b) Jones, W. D.; Hessell, E. T. J. Am. Chem. Soc. 1992, 114, 6087.
(c) Yamamoto, T.; Abla, M. J. Organomet. Chem. 1997, 535, 209.
(d) Wick, D. D.; Reynolds, K. A.; Jones, W. D. J. Am. Chem. Soc. 1999, 121, 3974.

^{(36) (}a) Labinger, J. A.; Komadina, J. H. *J. Organomet. Chen.* **1978**, *155*, C25. (b) Labinger, J. A. In *Transition Metal Hydrides*; Dedieu, A., Ed.; VCH: New York, 1992; Chapter 10.

Conclusions

The zirconium hydrides [Cp₂ZrH₂]₂ and Cp₃ZrH react with C₆F₆ to give the C-F activation product Cp₂Zr- $(C_6F_5)F$. Mechanistic studies are consistent with an initial association between the zirconium metal center and C₆F₆ via fluorine. Such an interaction may lead to ligand-assisted loss of H₂ or (CpH) and C-F activation, resulting in the formation of a zirconium-fluorine bond. Competitively, a σ -bond metathesis between the zirconium hydride and C_6F_6 may also occur, resulting in the formation of a new zirconium fluoride complex and a new C-H bond. A similar mechanism is also postulated for the Cp₃ZrH system. Further studies are under way with the more soluble (C₅Me₅)ZrH₂ system in order to gain more insight into the mechanism of these reactions.

Experimental Section

General Considerations. All manipulations were performed under an N₂ atmosphere, either on a high-vacuum line using modified Schlenk techniques or in a Vacuum Atmospheres Corporation glovebox. Tetrahydrofuran, benzene, ether, and toluene were distilled from dark purple solutions of benzophenone ketyl. Alkane solvents were made olefin-free by stirring over H₂SO₄, washing with aqueous KMnO₄ and water, and distilling from dark purple solutions of tetraglyme/ benzophenone ketyl. Benzene- d_6 , *p*-xylene- d_{10} , and tetrahydrofuran-d, were purchased from Cambridge Isotope Laboratories, distilled under vacuum from dark purple solutions of benzophenone ketyl, and stored in ampules with Teflon sealed vacuum line adapters. CD₂Cl₂ was purchased from Cambridge Isotope Laboratories and distilled under vacuum from a solution of calcium hydride. Pyridine was dried with calcium hydride and stored over molecular sieves. The preparations of C_6F_5Li ,³⁸ [Cp₂ZrH₂]₂,³⁹ Cp₃ZrH,²⁸ Cp₂ZrF₂,⁴⁰ Cp₄Zr,⁴¹ Cp₂-Zr(C₆F₅)₂,⁴² and "anhydrous TBAF" ²⁰ have been previously reported. Pyridinium poly(hydrogen fluoride) (~30% pyridine/ 70% hydrogen fluoride), Proton Sponge, and the fluorinated aromatic compounds were purchased from Aldrich Chemical Co. The liquids were stirred over sieves, freeze-pump-thaw degassed three times, and vacuum distilled prior to use.

All ¹H NMR and ¹⁹F NMR spectra were recorded on a Bruker Avance 400 spectrometer. All ¹H chemical shifts are reported in ppm (δ) relative to tetramethylsilane and referenced using chemical shifts of residual solvent resonances (THF- d_8 , δ 1.73). ¹⁹F NMR spectra were referenced to external $C_6H_5CF_3$ (δ 0.00 with downfield chemical shifts taken to be positive; CFCl₃ appears at δ +62.54 relative to internal C₆H₅-CF₃ in THF-d₈ solvent). GC-MS was conducted on a 5890 Series II gas chromatograph fitted with an HP 5970 series mass selective detector. Analyses were obtained from Desert Analytics. A Siemens SMART system with a CCD area detector were used for X-ray structure determination. Kinetic fits were performed using Microsoft Excel. All errors are quoted as 95% confidence limits (\pm error = $t\sigma$, σ = standard deviation, t from student's t-distribution).

Thermolysis of [Cp₂ZrH₂]₂ with Perfluorobenzene. A sample of [Cp₂ZrH₂]₂ (244 mg, 0.546 mmol) was suspended in 8 mL of THF. Perfluorobenzene (13.1 mmol, 1.5 mL) was added at room temperature, and the mixture was heated to 65 °C.

Within a few minutes vigorous gas evolution was observed and the suspension of [Cp₂ZrH₂]₂ disappeared to give a clear colorless solution. The solvent, excess C₆F₆, C₆F₅H, and H₂ were removed under vacuum to give a white powder (412 mg). A ¹H NMR spectrum of the sample revealed a 4:1 mixture of Cp₂Zr(C₆F₅)F, 1, and Cp₂ZrF₂. Compound 1 can be separated from Cp₂ZrF₂ by dissolving the mixture in a minimum of THF and layering with hexanes. X-ray quality crystals of 1 are formed with Cp₂ZrF₂ remaining in solution. An NMR tube scale reaction was performed at 65 °C with 14.5 mg (0.065 mmol based on monomer) of $[Cp_2ZrH_2]_2$ and C_6F_6 (0.84 mmol, 97 μ L) in THF-d₈. Integration revealed a 6:1:2 mixture of Cp₂-Zr(C₆F₅)F, Cp₂ZrF₂, and C₆F₅H, respectively. Hydrogen is also observed at δ 4.55 ppm. The formation of zirconium species was quantitative. For Cp₂Zr(C₆F₅)F, ¹H NMR (THF- d_8): δ 6.405 (s, 10 H). ¹⁹F NMR (THF- d_8 , 23 °C): δ 168.2 (t, J_{F-F} = 20.71 Hz, Zr–F), –49.3 (m, 2 F_{ortho}), –93.8 (t, J_{F-F} = 18.8 Hz, 1 F_{para}), – 98.8 (bs, 2 F_{meta}). ¹⁹F NMR (THF- d_8 , –55 °C, aromatic fluorines): δ –51.5 (m, 1 F), –52.2 (m, 1 F), –96.9 (t, $J_{F-F} = 18.8$ Hz, 1 F), -101.1 (m, 1 F), -101.8 (m, 1 F). Calcd for C₁₆H₁₀F₆Zr: C, 47.16; H, 2.47. Found: C, 46.99; H, 2.37. For Cp₂ZrF₂, ¹H NMR (THF- d_8): δ 6.39 (s, 10 H). ¹⁹F NMR (THF-d₈): δ 94.3. For C₆F₅H, ¹H NMR (THF-d₈): 7.34-7.45 (m). ¹⁹F NMR (THF- d_8): δ -75.0 (m, 2 F), -91.1 (t, $J_{\rm F-F}$ = 18.83 Hz, 1 F), -99.2 (m, 2F).

Thermolysis of [Cp₂ZrH₂]₂ with Pentafluorobenzene. A sample of [Cp₂ZrH₂]₂ (252 mg, 0.565 mmol) was suspended in 8 mL of THF. Pentafluorobenzene (13.5 mmol, 1.5 mL) was added at room temperature, and the mixture was heated to 65 °C. Within a few minutes vigorous gas evolution was observed and the suspension of [Cp₂ZrH₂]₂ disappeared to give a clear colorless solution. The solvent was removed to give a white powder (396 mg). A ¹H NMR spectrum of the sample revealed a 4:1 mixture of Cp₂Zr(*p*-C₆F₄H)F and Cp₂ZrF₂. Cp₂-Zr(p-C₆F₄H)F can be isolated by removing Cp₂ZrF₂ via sublimation (90 °C at 0.001 mmHg). An NMR tube scale reaction was performed at 65 °C with 23 mg (0.103 mmol based on monomer) of $[Cp_2ZrH_2]_2$ and C_6F_5H (1.23 mmol, 137 μL) in THF-d₈. Integration revealed a 4:1:2 mixture of Cp₂Zr(2,3,5,6-C₆HF₄)F, Cp₂ZrF₂ and *p*-C₆F₄H₂, respectively. Hydrogen is also observed at δ 4.55 ppm. The formation of zirconium species was quantitative. For Cp₂Zr(2,3,5,6-C₆HF₄)F, ¹H NMR (THF*d*₈): δ 7.027 (tt, *J*_{H-F} = 9.4, 7.2 Hz), 6.40 (s, 10 H). ¹⁹F NMR (THF- d_8 , 23 °C): δ 166.2 (t, $J_{F-F} = 18.8$ Hz, Zr-F), -51.6 (bs, 2 $F_{\rm ortho}$), -76.3 (bs, 2 $F_{\rm meta}$). ¹⁹F NMR (THF- d_8 , -70 °C, aromatic fluorines): δ -50.9 (m, 1 F), -51.4 (m, 1 F), -75.2 (m, 1 F), -76.5 (m, 1 F). Calcd for C₁₆H₁₁F₅Zr: C, 49.34; H, 2.85. Found: C, 49.43; H, 2.74. For p-C₆F₄H₂, ¹H NMR (THF d_8): 7.40 (m, partially obscured by excess C₆F₅H). ¹⁹F NMR (THF- d_8): $\delta - 77.5$ (s).

Reaction of [Cp₂ZrH₂]₂ with Various Concentrations of Perfluorobenzene. Three NMR tubes were prepared with varying concentrations of C₆F₆ (0.88, 1.78, and 2.68 M) in THFd₈. Each tube also contained 13 mg (0.029 mmol) of [Cp₂ZrH₂]₂ and α, α, α -trifluorotoluene as an internal standard. The NMR tubes were shaken vigorously for 20 s, put into the NMR spectrometer, and spun at 20 Hz. The reaction was followed by monitoring the growth of 1 via ¹⁹F NMR spectroscopy at 23 °C until approximately half of the $[Cp_2ZrH_2]_2$ had disappeared. The products formed in each case were 1, C₆F₅H, and Cp₂ZrF₂ in a ratio of 6:2:1. Hydrogen gas was also observed in each reaction but was not quantified. The rate of appearance of 1 was observed to be independent of the concentration of C₆F₆. The relative ratios of the products was constant throughout the course of each reaction. A fourth NMR tube containing 13 mg of [Cp₂ZrH₂]₂ and 1.78 M C₆F₆ was also monitored *without* spinning. In this case the rate of appearance of **1** was approximately 50 times slower than those that were spun.

Reaction of [Cp₂ZrH₂]₂ and C₆F₆ with and without H₂. Two NMR tubes were prepared with 13 mg (0.029 mmol) of $[Cp_2ZrH_2]_2$, C_6F_6 (1.78 M), and α, α, α -trifluorotoluene as an

⁽³⁸⁾ Chernega, A. N.; Graham, A. J.; Green, M. L. H.; Haggitt, J.; Lloyd, J.; Mehnert, C. P.; Metzler, N.; Souter, J. J. Chem. Soc., Dalton Trans. 1997, 13, 2293.

⁽³⁹⁾ Wailes, P. C.; Weigold, H. *Inorg. Synth.* **1990**, *28*, 257.
(40) Murphy, E. F.; Yu, P.; Dietrich, S.; Roesky, H. W.; Parisini, E.; Noltemeyer, M. *J. Chem. Soc., Dalton Trans.* **1996**, 1983.

⁽⁴¹⁾ Brainina, E. M.; Dvorysantseva, G. G. Izv. Akad. Nauk SSSR, Ser. Khim. 1967, 442.

⁽⁴²⁾ Chaudhari, M. A.; Stone, F. G. A. J. Chem. Soc. (A) 1966, 838.

internal standard in THF- d_8 . To one tube was added approximately 4 atm of H₂. The NMR tubes were shaken vigorously for 20 s and put into the NMR spectrometer and spun at 20 Hz. The reaction was followed by monitoring the growth of **1** via ¹⁹F NMR spectroscopy at 23 °C until approximately half of the [Cp₂ZrH₂]₂ had disappeared. The products formed in each case were **1**, C₆F₅H, and Cp₂ZrF₂ in a ratio of 4:2:1. The rate of appearance of **1** was observed to be independent of the pressure of H₂.

Reaction of [Cp₂ZrH₂]₂ with Pyridinium Poly(hydrogen fluoride). Pyridinium poly(hydrogen fluoride) (~30 wt % pyridine/70 wt % hydrogen fluoride) (~0.27 mmol HF) was added to a resealable NMR tube containing a THF-*d*₈ suspension of [Cp₂ZrH₂]₂ (15 mg, 0.067 mmol based on monomer). Vigorous gas evolution was observed immediately upon addition, and within a matter of seconds no [Cp₂ZrH₂]₂ remained. ¹H and ¹⁹F NMR spectroscopy revealed Cp₂ZrF₂ as the only metal-containing compound. Hydrogen gas was also observed in the ¹H NMR spectrum. A similar reaction was performed with ~0.13 mmol of pyridinium poly(hydrogen fluoride). In this case only half of the [Cp₂ZrH₂]₂ was converted to Cp₂ZrF₂; the remainder was left as an unreacted solid in the NMR tube.

Reaction of Cp₄Zr with Pyridinium Poly(hydrogen fluoride). Pyridinium poly(hydrogen fluoride) (~30 wt % pyridine/70 wt % hydrogen fluoride) (~0.025 mmol HF) was added to a resealable NMR tube containing a THF- d_8 solution of Cp₄Zr (18 mg, 0.05 mmol) at room temperature. ¹H and ¹⁹F NMR spectroscopy revealed cyclopentadiene, Cp₃ZrF, and Cp₂-ZrF₂, the latter two in a ratio of ~1.8:1. For Cp₃ZrF, ¹H NMR (THF- d_8): δ 6.099 (s). ¹⁹F NMR (THF- d_8): δ 25.5 (s, Zr–F). MS (70 eV, direct inlet, 300 °C): *m/e* 304 (M⁺), 285 (M⁺ – F), 239 (M⁺ – Cp), 220 (M⁺ – Cp – F), 174 (M⁺ – 2Cp).

Reaction of Cp₃ZrH with Various Concentrations of C₆F₆. A 0.06 M THF-d₈ stock solution of Cp₃ZrH containing hexamethylbenzene as an internal standard was prepared, and 0.4 mL aliquots were added to three resealable NMR tubes. Perfluorobenzene (30, 60, and 90 μ L) was added to each NMR tube. The volume of each tube was adjusted to 0.91 mL by addition of THF-d₈, giving a concentration of Cp₃ZrH of 0.026 M and concentrations of perfluorobenzene of 0.29, 0.57, and 0.86 M. The NMR tubes were stirred at room temperature, and the reaction was followed by ¹H NMR spectroscopy for three half-lives. The products of the reaction were 1, CpH, C₆F₅H, Cp₂ZrF₂, Cp₄Zr, Cp₃ZrF, and Cp₃ZrX, in a 3.8:3.8:2.7: 1.0:0.77:0.74:0.62 ratio. A plot of ln[Cp₃ZrH] vs time was linear. The observed pseudo-first-order rate constants were 2.22(3) \times 10 $^{-6}$ s $^{-1}$ (0.29 M), 4.40(16) \times 10 $^{-6}$ s $^{-1}$ (0.57 M), and $6.19(12) \times 10^{-6} \text{ s}^{-1}$ (0.86 M).

Reaction of Cp₃ZrH (2) with C₆F₆ and TBAF. A 0.06 M THF- d_8 stock solution of Cp₃ZrH containing hexamethylbenzene as an internal standard was prepared, and a 0.4 mL aliquot was added to a resealable NMR tube. Perfluorobenzene (60 μ L) was added to the NMR tube. A benzene solution of TBAF was added to give a 0.8 M solution in TBAF. The sample was diluted with THF- d_8 to 0.91 mL, giving a solution of Cp₃ZrH (0.026 M) and perfluorobenzene (0.57 M). The NMR tube was stirred at room temperature, and the reaction was followed by ¹H NMR spectroscopy for three half-lives. There was no rate acceleration for the disappearance of **2** compared to the reaction without TBAF, although the main organome-tallic product was now Cp₂ZrF₂; only a trace of Cp₂Zr(C₆F₅)F was observed.

X-ray Structural Determination of 1 and 2. A colorless crystal approximately $0.38 \times 0.18 \times 0.12 \text{ mm}^3$ of **1** was mounted on a glass fiber under Paratone-8277 (Exxon) and immediately placed in a cold nitrogen stream at -80 °C on the X-ray diffractometer. A very small colorless plate of **2** ($0.24 \times 0.01 \times 0.01 \text{ mm}^3$) was mounted in the same manner, and the data were also obtained at -80 °C. The X-ray intensity data for the two crystals were collected on a standard Siemens SMART CCD area detector system equipped with a normal

Table 1. Crystallographic Data for Cp2Zr(C6F5)F(1) and Cp3ZrH (2)

	1	2
	Crystal Parameters	
chemical formula	$C_{16}H_{10}F_6Zr$	C ₁₅ H ₁₆ Zr
fw	407.46	287.50
cryst syst	orthorhombic	hexagonal
space group	$Pna2_1$	$P6_3/m$
Ż	4	2
<i>a</i> , Å	15.772(3)	8.0122(6)
b, Å	11.408(3)	8.0122(6)
<i>c</i> , Å	7.8990(7)	10.3314(11)
vol, Å ³	1421.2(4)	574.37(9)
$\rho_{\rm calc}, {\rm g} {\rm cm}^{-3}$	1.904	1.662
cryst dimens, mm ³	0.12 imes 0.18 imes 0.38	$0.01 \times 0.01 \times 0.24$
temp, °C	-80	-80
Measu	rement of Intensity Da	ata
diffractometer	Siemens SMART	Siemens SMART
radiation	Mo, 0.71073 Å	Mo, 0.71073
frame range/time, deg/		0.3/60
2θ range, deg	4.4 - 56.6	5.9 - 46.4
data collected	$-10 \leq h \leq 20$,	$-8 \le h \le 6$,
	$-13 \leq k \leq 14$,	$-7 \leq k \leq 8$,
	$-10 \le l \le 10^{2}$	$-11 \le l \le 11$
no. of data collected	8420	2526
no. of unique data	3281	298
no. of obs data	2757	288
$(I > 2\sigma(I))$	0.0269	0.0400
agreement between equivalent data (R _{int}	0.0368	0.0400
no. of params varied	208	42
μ , mm ⁻¹	0.836	0.924
systematic absences	0 kl, k+l odd,	00 <i>l</i> , <i>l</i> odd
	<i>h</i> 0 <i>l</i> , <i>h</i> odd;	
	00 <i>1</i> , <i>1</i> odd	
abs corr	empirical	empirical
	(SADABS)	(SADABS)
range of trans factors	0.605-0.928	0.714-0.928
$R1(F_0)$, wR2(F_02)	0.0307, 0.0607	0.0313, 0.0589
$(I > 2\sigma)$	0.0415 0.0040	0.0050 0.0000
R1(F_0), wR2(F_0^2) (all data)	0.0415, 0.0640	0.0352, 0.0602
goodness of fit	0.961	1.317
absolute structure	-0.05(4)	1.017
param	0.00(1)	
Purum		

focus molybdenum-target X-ray tube operated at 2.0 kW (50 kV, 40 mA). A total of 1321 frames of data (1.3 hemispheres) were collected using a narrow frame method with scan widths of 0.3° in ω and exposure times of 30 s/frame for **1** and 60 s/frame for 2 using a detector-to-crystal distance of 5.094 cm (maximum 2θ angle of 56.52°). The total data collection time was approximately 13 h for 30 s exposures and 26 h for 60 s exposures. Frames for 1 were integrated to 0.75 Å with the Siemens SAINT program to yield a total of 8420 (3281 independent) reflections. Frames for 2 were integrated to 0.90 Å, yielding 2526 (298 independent) reflections. Laue symmetry revealed an orthorhombic crystal system for 1 and a hexagonal crystal system for 2. The final unit cell parameters (at -80°C) were determined from the least-squares refinement of three-dimensional centroids of 4856 reflections for 1 and 1706 reflections for 2.43 Data were corrected for absorption using the program SADABS.⁴⁴ The space groups for 1 and 2 were assigned as Pna21 (No. 33) and P63/m (No. 176), respectively. The structure solutions were achieved by direct methods and refined employing full-matrix least-squares on F^2 (Siemens, SHELXTL,⁴⁵ version 5.04). One independent molecule was located in the asymmetric unit for **1**, as expected for Z =

⁽⁴³⁾ It has been noted that the integration program SAINT produces cell constant errors that are unreasonably small, since systematic error is not included. More reasonable errors might be estimated at $10 \times$ the listed value.

⁽⁴⁴⁾ The SADABS program is based on the method of Blessing; see: Blessing, R. H. Acta Crystallogr., Sect. A **1995**, *51*, 33.

4. All of the atoms were refined anisotropically, with hydrogens included in idealized positions, and the structure was refined to a goodness of fit (GOF)⁴⁶ of 0.965 and final residuals⁴⁷ of R1 = 3.07% ($I > 2\sigma(I)$), wR2 = 6.07% ($I > 2\sigma(I)$). For a Z = 2, one-sixth of the molecule was located in the asymmetric unit of 2. The Zr and hydride atoms were found to be disordered across the mirror plane, and successful anisotropic refinement was achieved as described in the text. The hydrogen atoms were located, and their positions and isotropic thermal pa-

number of data and parameters. (47) R1 = $(\Sigma ||F_c| - |F_c|)/\Sigma F_o|$; wR2 $[\Sigma [w(F_o^2 - F_c^2)^2]/\Sigma [w(F_o^2)^2]]^{1/2}$, where $w = 1/[\sigma(F_o^2) + (aP)^2 + bP]$ and $P = [(\max; 0, F_o^2) + 2F_c^2]/3$.

rameters were refined The structure refined to a goodness of fit (GOF)⁴ of 1.318 and final residuals⁵ of R1 = 3.13% (I > $2\sigma(I)$, wR2 = 5.90% ($I > 2\sigma(I)$). Data collection and refinement parameters are listed in Table 1.

Acknowledgment. Acknowledgment is made to the U.S. Department of Energy, Grant FG02-86ER13569, for their support of this work.

Supporting Information Available: Tables of bond distances and angles and atomic positions for 1 and 2. This material is available free of charge via the Internet at http://pubs.acs.org.

OM9902481

⁽⁴⁵⁾ SHELXTL: Structure Analysis Program, version 5.04; Siemens Industrial Automation Inc.: Madison, WI, 1995. (46) GOF = $[\sum [w(F_0^2 - F_c^2)^2]/(n - p)]^{1/2}$, where *n* and *p* denote the