Reactions of Atomic Manganese with CH₂N₂ in Solid Argon at 12 K

W. E. Billups,* Sou-Chan Chang, John L. Margrave, and Robert H. Hauge

Department of Chemistry, Rice University, Houston, Texas 77251

Received March 30, 1999

Summary: The reactions of atomic manganese with diazomethane have been investigated by FTIR matrix isolation spectroscopy. In argon matrixes, MnCH₂ and $Mn(CH_2N_2)$ complexes are formed spontaneously. Photolysis of the matrix with $\lambda \geq 400$ nm radiation removes all but one of the $Mn(CH_2N_2)$ complexes as well as the $MnCH_2$ species. Wavelength-dependent photoreversibility is observed between a $N_2(CH_2N_2)$ complex and a species assigned to N2····HMnCH.

Introduction

The first transition metal carbene complexes were synthesized in E. O. Fischer's laboratory in 1964.^{1,2} The Fischer carbenes have subsequently found wide application in organic synthesis. Carbene complexes have also been recognized as important intermediates in homogeneous and heterogeneous catalysis. However, metal complexes of the simplest carbene, CH₂, have been isolated under ambient conditions in only a few cases.³ Naked M=CH₂ species have been isolated in solid argon for several of the group 2 metals and characterized by FTIR matrix isolation spectroscopy.⁵ In this paper we

(3) One of the first derivatives, $Ta(C_5H_5)_2CH_3CH_2$, was reported by Schrock and co-workers.⁴ The Schrock complexes differ from the Fischer carbenes in that the polarity of the M=C bond is such that

report the synthesis and characterization of Mn=CH₂ and HMnCH using matrix isolation spectroscopy.⁶

Experimental Section

A description of the multisurface matrix isolation apparatus has been reported previously.7 Manganese atoms were generated by vaporizing manganese (A. D. Mackay, 99.9%) from an alumina crucible enclosed in a resistively heated tantalum furnace over the range 1300-1500 °C. Argon (99.9995%) and dinitrogen (99.9995%) were obtained from Matheson Chemical Company. Matrixes were usually irradiated after deposition by exposure to a focused 100 W medium-pressure short arc Hg lamp. A water filter with various Corning long-pass cutoff filters and a band filter, 280-360 nm (UV), was used for wavelength-dependent photolysis studies. The syntheses of CH₂N₂, CD₂N₂, CHDN₂, and ¹³CH₂N₂ were reported in earlier work.7

Results and Discussion

Manganese atoms were found to react spontaneously with diazomethane in argon matrixes. FTIR spectra resulting from a study in which the concentration of manganese was gradually increased revealed that four different products are formed. Absorptions arising from these species are labeled a, b, c, and d in Figure 1. The $\log Ax - \log R_0(Mn)$ plot shown in Figure 2 supports the assumption that bands c and d arise from reactions of monatomic manganese. The higher slope value for the a and b bands is inconclusive; however, isotopic work also supports the assignment of these species to atomic manganese.

The doublet bands labeled a are the only absorptions that can be assigned to a $Mn=CH_2$ species. The band at 2864.3 cm⁻¹ is assigned to a C–H stretching mode and the 521.9 cm^{-1} band to a Mn=C stretching mode. The isotopic shift (13.9 cm⁻¹) observed for the Mn=C stretching band when ¹³CH₂N₂ was used supports the assignment of this species to atomic manganese. A diatomic model predicts a shift of 14.1 cm⁻¹ for MnCH₂ and 15.7 cm⁻¹ for Mn₂CH₂. Similar modes for MnCD₂ were not observed. This indicates that there is a strong isotope effect on the spontaneous reaction that prevents the formation of MnCD₂.

The bands labeled b, c, and d are assigned to Mn-(CH₂N₂) complexes. The formation of several Mn-

⁽¹⁾ Fischer, E. O.; Maasböl, A. Angew. Chem., Int. Ed. Engl. 1964, 3. 580.

⁽²⁾ Transition Metal Carbene Complexes, Verlag Chemie: Weinheim, FRG, 1983; Cardin, D. J.; Cetinkaya, B.; Lappert, M. F. Chem. Rev. **1972**, 72, 545. Cotton, F. A.; Lukehart, C. M. Progr. Inorg. Chem. **1972**, 16, 487. Casey, C. P. In Transition Metal Organometallics in Organic Synthesis; Alper, H., Ed.; Academic Press: New York, 1976; Vol. 1, pp 189-233. Brown, F. J. Progr. Inorg. Chem. 1980, 27, 1. Fischer, H. In The Chemistry of the Metal-Carbon Bond; Hartley, F. R., Patai, S., Eds.; John Wiley: Chichester, England, 1982; pp 181–231. Dötz, K. H. Carbene Complexes of Groups VIa, VIIa and VIIIa. *In Reactions of Coordinated Ligands*; Braterman, P. S., Ed.; Plenum Press: London. Fischer, E. O. Pure Appl. Chem. **1970**, 24, 407. Fischer, E. O. Pure Appl. Chem. **1972**, 30, 353. Kreiter, C. G.; Fischer, E. O. In XXIII International Congress of Pure and Applied Chemistry; Butterworth: London, 1971; pp 151–168. Fischer, E. O.; Schubert, U.; Fischer, H. Pure Appl. Chem. 1978, 50, 857. Fischer, E. O. Angew. Chem. 1974, 86, 651. Fischer, E. O. Adv. Organomet. Chem. 1976, 14, 1. Lappert, M. F. J. Organomet. Chem. 1975, 100, 139. Casey, C. P. In Reactive Intermediates; Jones, M., Jr., Moss, R. A., Eds.; John Wiley: New York, 1981; Vol. 2, pp 135–174. Fischer, E. O.; Fischer, H. In *Inorganic Reactions and Methods*; Zuckerman, J. J., Ed.; Verlag Chemie: Weinheim, FRG, 1986.

<sup>Fischer carbenes in that the polarity of the M=C bond is such that the negative charge resides on carbon.
(4) Schrock, R. R. Acc. Chem. Res. 1979, 12, 98.
(5) Billups, W. E.; Chang, S.-C.; Hauge, R. H.; Margrave, J. L. J. Am. Chem. Soc. 1995, 117, 1387. Billups, W. E.; Chang, S.-C.; Hauge, R. H.; Margrave, J. L. Inorg. Chem. 1993, 32, 1529. Chang, S.-C.; Hauge, R. H.; Kafafi, Z. H.; Margrave, J. L.; Billups, W. E. Inorg. Chem. 1990, 29, 4373. Chang, S.-C.; Hauge, R. H.; Kafafi, Z. H.; Margrave, J. L.; Billups, W. E. J. Am. Chem. Soc. 1988, 110, 7975. Chang, S.-C.; Hauge, R. H.; Kafafi, Z. H.; Margrave, J. L.; Billups, W. E. Chem. Commun. 1987, 1682. Chang, S.-C.; Kafafi, Z. H.; Hauge, R. H.; Billups, W. E. Chem. Commun. 1987, 1682. Chang, S.-C.; 1987, 109, 4508.</sup> W. E. Margrave, J. L. J. Am. Chem. Soc. 1987, 109, 4508.

⁽⁶⁾ Ab initio MO theory at the single configuration SCF level has been employed in an extensive study of several of the electronic states of $Mn=CH_2$. The electronic ground state is found to be of 8B_1 symmetry yielding $r_e(M-C) = 1.26$ Å. See: B. R. Brooks, H. F. Schaefer, III. *Mol. Phys.* **1977**, *34*, 193.

⁽⁷⁾ Hauge, R. H.; Fredin, L.; Kafafi, Z. H.; Margrave, J. L Appl. Spectrosc. 1986, 40, 588.

Figure 2. Plot of log Ax vs log $R_0(Mn)$ plots. Ax represents the absorbance of peak x measured as peak height in mm. $R_0(Mn)$ represents the molar ratio of manganese to argon, Mn/Arx1000.

(CH₂N₂) complexes is suggested by the dipolar resonance structures of diazomethane.

$$H_2C-N=N: \longrightarrow H_2C=N=N: \longrightarrow H_2C-N=N:$$

The bands assigned to b appear only in the C=N stretching and CH_2 bending regions. This complex must differ significantly from the c and d species. In addition it does not form with N_2CD_2 , which indicates a significant isotope effect on the rearrangement, which leads to the b species. The lack of formation of $MnCD_2$ as well suggests the b species may be an intermediate species which leads to the formation of $MnCD_2$.

The c and d bands are most likely due to very similar species. No other absorptions can be identified that are related to these peaks. The large 100 cm⁻¹ isotopic shifts that are observed in the Mn/CD₂N₂ reactions (Figure 3) indicate that these bands are either CH₂ wagging or CH₂ rocking modes. In the absence of other information, we are forced to conclude that these absorptions also arise from Mn(CH₂N₂) complexes.

The results of a photolysis experiment are displayed in Figure 4. The photolysis study revealed that the a

Figure 3. Isotope study showing c and d bands in (A) Mn/ CH₂N₂/Ar (B) Mn/¹³CH₂N₂/Ar, and (C) Mn/CHDN₂ + CD_2N_2 /Ar.

bands arise from two different species labeled a_1 and a_2 (B–A, C–B) in Figure 4. The a_1 bands located at 2864.3 and 521.9 cm⁻¹ decreased upon $\lambda \ge 500$ nm photolysis, while the a_2 bands at 2861.9 and 523.3 cm⁻¹ were not affected. Each set of bands disappeared completely after $\lambda \ge 400$ nm photolysis. This observation is consistent with a free and a perturbed MnCH₂ species, possibly by a N₂ molecule.

The absorptions arising from the Mn(CH₂N₂) complex which exhibits the b bands disappeared after $\lambda \ge 500$ nm photolysis, but the d bands increased in intensity after $\lambda \ge 500$ nm and $\lambda \ge 400$ nm photolysis. These observations suggest that the species corresponding to a₁, a₂, and b may either return to starting materials, Mn and CH₂N₂, or give species with d absorptions. Similar reactions may occur for the complex associated with the c bands, since these also decreased upon $\lambda \ge$ 400 nm photolysis. The similarity in frequency and concentration behavior suggests that species c and d are similar and may only be slightly different geometric isomers or the same species in different matrix sites.

New absorptions labeled e and g appeared after $\lambda \ge 400 \text{ nm}$ photolysis and increased significantly upon UV photolysis. The e bands can be assigned tentatively to HMnCH. Mn–H stretching bands are found in the 1600–1650 cm⁻¹ region and an Mn–C stretching band near 600 cm⁻¹ and C–H bending near 580 cm⁻¹. The calculated shifts from diatomic approximation are 17.7 and 18.7 cm⁻¹ for the Mn≡C stretching frequency of the HMn¹³CH species. This compares to the measured values of 6.5 and 14.7 cm⁻¹, respectively. The measured shift for the HMn¹³CH e species is much lower than expected. We attribute this low value for the e species as most likely due to it being a mixed mode with the

 Table 1. Measured Infrared Frequencies (cm⁻¹) and Tentative Assignments for Manganese/Diazomethane

 Reaction Products in Solid Argon

band	Mn/CH ₂ N ₂	Mn/13CH2N2	Mn/CHDN ₂	Mn/CD ₂ N ₂	assignment	species
a1	2864.3	2859.0			ν (CH ²)	MnCH ₂
	521.9	508.0			ν (Mn=C)	
\mathbf{a}_2	2861.6	2856.0			$\nu(CH_2)$	
	523.3	510.0			ν (Mn=C)	
b	1517.2	1493.0			ν (N=C)	$Mn(CH_2N_2)$
	1183.4	1172.3			$\delta(CH_2)$	
	1126.5	1120.0				
	1079.0					
	1065.5	1061.1				
	1063.3	1056.0				
	1026.7	1023.3				
с	637.6	629.4	605.3	532.0	$\rho_{\rm w}({\rm CH_2})/{\rm or} \ \rho_{\rm r}({\rm CH_2})$	$Mn(CH_2N_2)$
d	632.3	624.6	600.0	527.2	$\rho_{\rm w}({\rm CH_2})/{\rm or} \ \rho_{\rm r}({\rm CH_2})$	
e	1608.6	1608.6		1158.0	ν (Mn–H)	HMnCH
	601.7	595.2		587.0	$\nu(Mn \equiv C)$	
	580.7	578.5			δ (CH)	
g	616.1	611.8			π (CH ³)	CH_3
h	1616.5	1616.8			ν (Mn-H)	HMnCH ₃

E-D Martin Martin B-C martin Martin Martin B-C

Figure 4. Photolysis study in an argon matrix. Mn/CH₂N₂/ Ar $\approx 1.3/1.3/100$. A, without photolysis; B, after 10 min photolysis using $\lambda \geq 500$ nm; C, after 10 min photolysis using $\lambda \geq 400$ nm; D, after 10 min photolysis using $360 \geq \lambda \geq 280$ nm; E, after 10 min photolysis using $\lambda \geq 400$ nm. a = MnCH₂, c and d = Mn(CH₂N₂) complexes, e = HMnCH, g = CH₃, h = CH₃MnH.

nearby CH bending mode at 580.7 cm⁻¹. This suggestion is supported by closer agreement between the measured value of 14.7 cm⁻¹ versus the calculated value of 18.7 cm⁻¹ for the DMnCD species. In this case the CD bending mode is further removed from the Mn \equiv C stretch and is thus less mixed with it. A photoreversible phenomenon between $Mn(CH_2N_2)$ (d bands) and HMnCH (e bands) was observed as shown in Figure 4 (D–C and E–D). This reaction can be represented as follows.

Mn(CH₂N₂) (d)
$$\xrightarrow[\lambda \ge 400 \text{ nm}]{\text{UV}}$$
 N₂···MnNCH (e)

The g band at 616.1 cm⁻¹ shifts to 611.8 cm⁻¹ when ¹³CH₂N₂ is used. Although this absorption is characteristic of a methyl radical, the reaction pathway that leads to this species is not obvious. A CH₃MnH absorption, h band, at 1616.5 cm⁻¹, was observed after UV photolysis and is believed to result from the photoinduced Mn/CH₄ reaction. A small amount of dihydrogen that is formed by the cracking of pump oil probably reacts with a MnCH₂ species to yield methane. This process can be enhanced by adding H₂ during deposition. The Mn/CH₄ complex is a $C_{3\nu}$ species, as evidenced by a doublet splitting at 1305.1 and 1303.1 cm⁻¹ for the CH₄ deformation band.

The reactions of diazomethane with manganese atoms may be summarized as follows:

$$Mn + CH_2N_2 \xrightarrow{Ar} Mn(CH_2N_2) \xrightarrow{H_2 - N_2} Mn(CH_4) \xrightarrow{UV} CH_3MnH$$

$$\lambda \ge 400 \text{ nm}$$

$$Mn(CH_2N_2) \xrightarrow{UV} N_2 \cdots H MnCH$$

$$Mn(CH_2N_2) \xrightarrow{\lambda \ge 400 \text{ nm}} Mn + CH_2N_2$$

$$(b \text{ bands}) \xrightarrow{\lambda \ge 500 \text{ nm}} Mn + CH_2N_2$$

Finally, vibrational data are now available for all of the naked $M=CH_2$ species from chromium through zinc.⁵ A compilation of this work will be published shortly in a review article.

Acknowledgment. We gratefully acknowledge financial support from the National Science Foundation (CHE-9710042) and the Robert A. Welch Foundation.

OM990221H