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Summary: The monomeric bis(indenyl) complex [1,3-
(C3H7)2C9H5)]2Cr is high spin from 20 K to room tem-
perature. The isopropyl groups block the dimerization
that occurs with the unsubstituted (C9H7)2Cr complex
but do not affect its spin state.

Among the structurally characterized bis(indenyl)
complexes of the first-row transition metals, only that
of chromium is a dimer.1-5 Complete alkylation of the
indenyl rings, as in (C9Me7)2Cr,6 blocks the dimerization
and generates a low-spin (µeff ) 2.67 ( 0.05 µB (5-235
K)) monomer. Our interest in steric effects on the
structural and magnetic properties of organometallic
complexes7 led us to investigate the consequences of
partial substitution of the indenyl ligand with sterically
demanding groups. We have found that appropriate
indenyl substitution can inhibit dimerization of Ind′2-
Cr but still preserve a high-spin Cr(II) electron config-
uration.

Organometallic compounds of Cr(II) with π-bound
ligands, including almost all cyclopentadienyl-contain-
ing complexes, are generally low-spin species.8 Given
the bonding parallels between cyclopentadienyl and
indenyl complexes,9,10 it seems reasonable that (π-
indenyl)chromium species would also be low-spin. This
is true for (C9Me7)2Cr,6 but the other indenyl complexes
of chromium(II) that have been described in the litera-
ture are dimers in the solid state, including the chloride-
bridged (indenyl)3Cr2Cl,1 the mixed indenyl/allyl com-

plex [(η5-indenyl)(µ-η3-C3H5)Cr]2,11 and bis(indenyl)chrom-
ium itself ((indenyl)4Cr2).1 In the dimeric compounds,
spin pairing can occur through Cr‚‚‚Cr′ interactions,
leading to diamagnetic compounds.12 The question then
arises whether the permethylation of the indenyl ligand
in (C9Me7)2Cr serves only to inhibit dimerization or
whether the greater electron donating ability of the
[C9Me7]- ligand affects the electronic configuration of
the complex; i.e., would a monomeric “(C9H7)2Cr” com-
plex actually be high-spin?

We investigated the influence of partial substitution
on bis(indenyl)chromium with the 1,3-(C3H7)2C9H5 ligand
(Ind2i).13 Chromium(II) chloride reacts in a 1:2 molar
ratio with K[Ind2i]14 in THF to form violet (Ind2i)2Cr in
moderate yield.15 The complex displays high solubility
in hydrocarbon and ethereal solvents and is extremely
air- and moisture-sensitive. In C6D6 at room tempera-
ture, (Ind2i)2Cr displays a magnetic moment of 4.9 µB,
a value appropriate for a high-spin configuration with
four unpaired electrons. A similar, although slightly
lower, value is observed in the solid state (4.4 ( 0.2 µB)
from 20 to 350 K (Figure 1).16

To determine what structural effect the isopropyl
substituents were having on the complex, (Ind2i)2Cr was
examined with single-crystal X-ray diffraction.17 The
molecules are monomeric, with a metallocene-like sand-

* To whom correspondence should be addressed. Fax: 615-343-1234.
E-mail: t.hanusa@vanderbilt.edu.

† Vanderbilt University.
‡ University of Colorado at Boulder.
(1) Heinemann, O.; Jolly, P. W.; Krüger, C.; Verhovnik, G. P. J.
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wich geometry and an approximate C2 rotational axis
through the metal atom, although it is not crystallo-
graphically imposed. An ORTEP view of the complete
molecule is provided in Figure 2. The rings are in a fully
staggered orientation with respect to each other. The
average chromium-carbon distance of 2.32(2) Å is
substantially greater than that found in the low-spin
(C9Me7)2Cr (2.18(1) Å)6 and in all structurally charac-
terized chromocenes (e.g., 2.151(4) Å in (C5H5)2Cr,18

2.17(1) Å in (1,2,4-C5(i-Pr)3H2)2Cr,19 and 2.197(5) Å in
(C5Ph4H)2Cr20). The larger average distance in (Ind2i)2-
Cr correlates well with the high-spin state; for compari-
son, the Mn-C bonds in high-spin manganocenes are

typically 0.2-0.3 Å longer than those of low-spin
manganese compounds.21-23

As is characteristic for indenyl complexes, there is a
notable spread in the Cr-C distances in (Ind2i)2Cr,
which range from 2.226(8) to 2.420(7) Å. However, the
slip parameter5 ∆M-C for the complex (0.138(10) Å) is
only slightly greater than the value of 0.097(9) Å found
in (C9Me7)2Cr.6 These ∆M-C values are far below the
value of e0.7 found for true η3-bound ligands; conse-
quently, the bonding arrangement in (Ind2i)2Cr is ap-
propriately described as “distorted η5”.6

In the case of recently described high-spin manga-
nocenes containing the bulky [(C5(i-Pr)4H] ligand, dis-
tortions in the solid-state structure make it obvious that
steric influences are responsible for the high spin state.7
This is not the case with (Ind2i)2Cr. The isopropyl
substituents are bent out of the C5 plane by an average
of only 0.079 Å; for comparison, the isopropyl groups in
the more highly substituted, low-spin complex (1,2,4-
C5(i-Pr)3H2)2Cr show an average displacement of 0.10
Å.19 In addition, there are no short contacts between
isopropyl groups, as the closest approach is 4.16 Å, well
outside the sum of the van der Waals radii of two methyl
groups.24 The closest intermolecular C‚‚‚C′ contact is
3.80 Å between the isopropyl substituent (C15) and a
carbon in the C6 ring of the other indenyl ligand (C23′).
The isopropyl groups in (Ind2i)2Cr evidently serve only
to block the dimerization that occurs with monomeric
“Ind2Cr,” without causing the spin pairing that is found
in (C9Me7)2Cr.6,25

In summary, we have found that (Ind2i)2Cr is a mono-
meric high-spin Cr(II) species with four unpaired elec-
trons. The presence of the isopropyl groups prevents the
dimerization that occurs with the unsubstituted indenyl
ligand in Ind2Cr but does not influence the spin state
of the complex through steric crowding. The use of selec-
tive ligand substitution may be an attractive synthetic
strategy for generating other reactive organometallic
radicals without altering their magnetic properties.
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Figure 1. Magnetic susceptibility and 1/øM data as a
function of temperature for (Ind2i)2Cr in a field of 5000 G.
The magnetic moment is essentially temperature indepen-
dent to 20 K.

Figure 2. ORTEP plot of the non-hydrogen atoms of
(Ind2i)2Cr. Thermal ellipsoids are displayed at the 30%
level.
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