Addition of Aromatic C-**H Bonds to Terminal Metal**-**Carbonyl Groups. A New Method for Cyclocarbonylation of Aromatic Groups**

Yi-Ru Wu,† Gia-Hsian Lin,† Reniguntala J. Madhushaw,† Keh-Ming Horng,‡ Chu-Chen Hu,† Chien-Le Li,† Fen-Lin Liao,† Sue-Lein Wang,† and Rai-Shung Liu*,†

Department of Chemistry, National Tsing Hua University, Hsinchu, 30043, Taiwan, Republic of China, and Research Center for Petroleum Refinery, China Petroleum Company, Chia-Yi, Taiwan, Republic of China

Received May 11, 1999

*Summary: Treatment of CpW(CO)₃[<i>η*¹-CH₂C=C(CH₂)_{*n*}-*Ar]* $(n = 0-1)$ with triflic acid catalysts (25 mol %) in *cold CH2Cl2 (*-*⁹⁵* °*C) effects a new cyclocarbonylation reaction to give CpW(CO)2(π-cyclopentenonyl) and CpW- (CO)2(π-cyclohexenonyl) compounds; these results provide direct evidence for addition of neutral aryl C*-*^H bonds to coordinated carbonyl groups.*

Substitutive carbonylation of the aryl C-H bond to form an aryl ketone group is a useful reaction in organic synthesis.¹ Such syntheses are generally carried out through treatment of aromatic compounds with carboxylic acid derivatives in the presence of acid catalysts (Friedel-Crafts acylation) as shown in Scheme 1 (eq 1).1 Intramolecular Friedel-Crafts reaction is an important tool for the syntheses of natural pericyclic ketones.² Nucleophilic attack of a metal-coordinated carbonyl group is an important step in metal-mediated organic syntheses.3,4 Although this synthetic method covers a wide range of nucleophiles, $3,4$ to our best knowledge, there is no precedent for attack of a neutral aryl group at a metal-carbonyl ligand to effect a substitutive carbonylation (Scheme 1, eq 2). A cationic metalcarbonyl group may serve as a good candidate to realize this carbonylation reaction because its structure resembles the intermediate in Friedel-Crafts reaction. We report here a new cyclocarbonylation for propargyltungsten compounds having a tethered aryl group. These cyclizations show the feasibility for addition of aryl C-H bonds at coordinated carbonyl groups.

As shown in Scheme 2, alkynyltungsten compound **2** was conveniently prepared from the corresponding propargyl tosylate 1 and CpW(CO)₃Na in 80% yield.⁵ Treatment of compound **2** with triflic acid (25 mol %) in cold CH_2Cl_2 (-95 °C) gave tungsten- π -allyl compound **3a** and **3b** in 40% and 32% yields, respectively, after separation from a silica column. The molecular structure 6 of **3b** shows that the molecule has a cyclopentenone fragment fused with a phenyl ring, and the $CpW(CO)_2$ fragment is bound to the ketone ring in a metal-*π*-allyl fashion. This information indicates that the aryl C-H bond of compound **²** is cleaved and inserted by a CO group to effect a substitutive carbonylation. We also examined the same operation on alkynyltungsten complex **⁴** (triflic acid, 0.25 equiv, -⁹⁵ °C) to give two cyclohexenonyl derivatives, **5a** and **5b**, in 21% and 24% yields, respectively, after separation on a silica column. The molecular structures of **5a** and **5b**7,8 are also elucidated by X-ray diffraction studies to confirm the formation of a tungsten-*π*-cyclohexenonyl complex.

We also prepared various alkynyltungsten compounds **⁶**-**¹¹** tethered with an aromatic group to generalize the cyclizations; the yields in Table 1 are estimated after separation on a silica column. Cyclocarbonylation of these alkynyl compounds **⁶**-**¹¹** follows the same reaction sequence involving the use of triflic acid catalyst (0.25 equiv) in cold CH_2Cl_2 (-95 °C). Entry 1 shows an intramolecular carbonylation of a tethered 2,5-dimethoxyphenyl group to yield the tungsten-*π*-cyclopentenonyl complex **12** in 55% yield. The same reaction sequence on compound **7** gave a 44% yield of *π*-cyclohexenonyl complex **13**, as shown in entry 2. Similarly, treatment of alkynyltungsten species **8** and **9** with triflic acid catalysts (0.25 equiv) gave the cyclocarbonylation products **14** and **15** in 52% and 45% yields, respectively.

[†] National Tsing Hua University.

[‡] China Petroleum Company.

^{(1) (}a) Friedel. C.; Crafts, J. M. *Compt. Rend.* **1877**, *84*, 1392. (b) Olah, G. A. *Friedel*-*Crafts Chemistry*; Wiley: New York, 1973; p 40. (2) (a) Reddy, P. A.; Krishna-Rao, G. S. *J. Chem Soc., Perkin Trans*.

¹ **1974**, 450. (b) Katsui, N.; Matsunaga, A.; Imaizumi, K.; Masamune, T.; Tomiyama, K. *Tetrahedron Lett*. **1971**, 83. (c) McCombie, S. W.; Shankar, B. B.; Garguly, A. K. *Tetrahedron Lett*. **1987**, 28, 4123. (3) Bates,

^{12:} Transition Metal Organometallics In Organic Synthesis; Abel, E. W*.*, Stone*,* F. G. A., Wilkinson, G., Eds.; Pergamon Press: Oxford, 1995;

Chapter 4, p 349. (4) Collman, J. P., Hegedus, L. S., Norton, J. R., Finke, R. G. *Principles and Application of Organotransition Metal Chemistry*; University Science Books: Mill Valley, CA, 1987; Chapter 7, p 403.

^{(5) (}a) Bell, P. B.; Wojcicki, A. *Inorg. Chem.* **1981,** *20*, 1585. (b) Wang, S.-H.; Shiu, L.-H.; Liao, Y.-L.; Wang, S.-L..; Lee, G.-H., Peng, S.-M.; Liu, R.-S. *J. Liu, R. J.; Liu, R. J.*; Liu, R. J.; Liu, R. J.; Liu, R.

⁽⁶⁾ Compound **3b** crystallizes in the monoclinic space group *C*2/*c*, *a* = 27.2181(8) Å, *b* = 8.7445(2) Å, *c* = 15.1753(4) Å, β = 121.192(2)°, *V* = 3089.7(8) Å³, *Z* = 8. Data were collected on a Siemens Smart-
CCD diffractometer, using Mo Kα radiation. Final *R* = 0.0264, *R*_m CCD diffractometer, using Mo K α radiation. Final *R* = 0.0264, R_w 0.0294 for 2768 reflections > 3 σ (*I*) out of 3346 unique reflections.

^{0.0294} for 2768 reflections > 3 σ (*l*) out of 3346 unique reflections.

(7) Compound **5a** crystallizes in the monoclinic space group P_2_1/c ,
 $a = 7.4008(4)$ Å, $b = 17.8675(9)$ Å, $c = 12.3853(6)$ Å, $\beta = 90.591(1)^\circ$,

⁽⁸⁾ Compound 5**b** crystallizes in the triclinic space group *P*1, $a = 7.9912(2)$ Å, $b = 8.2813(2)$ Å, $c = 12.4342(3)$ Å, $\alpha = 82.061(0)^\circ$, $\beta = 85.265(1)^\circ$, $\gamma = 89.076(1)^\circ$, $V = 812.2(3)$ Å³, $Z = 2$. Data were colle $R = 0.0323$, $R_w = 0.0304$ for 2498 reflections > 3.0*σ*(*I*) out of 3496 unique reflections.

Scheme 1

Condition (i) NaCpW(CO)_{3,} THF, 25°C, 10 hr (ii) CF₃SO₃H (25 mol %), CH₂Cl₂, - 95°C, 2h

Table 1. Acid-Catalyzed Cyclocarbonylation Reaction

The heterocyclic thiophenes of compounds **10** and **11** can also be carbonylated intramolecularly, as shown in entries 5 and 6, and the yields of the cyclocarbonyltion products **16** and **17** were 59% and 44% yields, respectively. The observed products **16** and **17** are consistent with our expectation because the thienyl C_2 -carbon is generally more reactive toward electrophiles than its C_3 -carbon. The conjugated effect of the sulfur atom is responsible for this effect. For **14** and **15**, the absence of the ortho-carbonylation product is probably due to its more congested structure compared to its paracarbonylation product.

The results shown in Scheme 2 and Table 1 clearly demonstrate a substitutive carbonylation for the C-^H bonds of various aromatic compounds. Two possible mechanisms are shown in Scheme 3. Previously, Rosen**Scheme 3**

blum reported⁹ that protonation of propargylmetal compounds yielded metal $-\eta^2$ -cis-allene cation¹⁰ **A** as the kinetically favorable intermediate. This cis-configuration of **A** is very important because it allows intramolecular attack of its tethered 2,5-dimethoxybenzene group at the coordinated CO group to effect an electrophilic substitution, yielding species **B** and **C** sequentially. Further insertion of the η ¹-acyl group of **C** gave the observed product **12**. An alternative mechanism involves a conventional electrophilic attack of a syn-*π*allylic acid **18** at its tethered 2,5-dimethoxy benzene as shown in eq 2. The species **18** can be generated from the intermediate **D** via attack of H_2O at the tungstencis-allene cation **A**; 5c commercial triflic acid normally contains a small amount of $H₂O$ that may furnish such a catalytic cyclocarbonylation.

We therefore prepared the tungsten-*π*-allyl complex **18** in a separate experiment. Compound **6** was treated with triflic acid (1.0 equiv) in anhydrous diethyl ether

⁽⁹⁾ Rosenblum, M.; Raghu, S. *J. Am. Chem. Soc.* **1973**, *95*, 3062. (10) (a) Memour, J. Y.; Charrier, C.; Benaim, J.; Roustan, J. L. *J. Organomet. Chem.* **1972**, *39*, 321. (b) Vinson, N. A.; Day, C. S.; Welker, M. E.; Guzei, I.; Rheingold, A. L. *Organometallics* **1999**, *18*, 1824.

at -95 °C for 2 h to yield a dark yellow precipitate, presumbly the η^2 -allene cation **A**. Subsequent treatment of this salt with an aqueous $Na₂CO₃$ solution afforded the expected acid **18** in 61% yield. The structure of **18** was confirmed by X-ray diffraction studies.¹¹ Treatment of compound 18 with CF_3SO_3H (1.0 equiv) in CH_2Cl_2 over various temperatures (-95 to 23 °C) for 24 h did not give the desired product **12** at all, and in this case compound **¹⁸** was recovered in significant amount (50- 71% yields). This information supports a direct attack of the aryl C-H bond at the coordinated CO group of species **A**.

In a summary, we have shown a new intramolecular cyclization via treatment of various alkynyltungsten compounds with a triflic acid catalyst. The key step of this cyclization is proposed to involve addition of the tethered aryl C-H bond of a cis-*η*2-allene species **^A** at its coordinated CO group. This cyclization is a useful tool in organic synthesis because the resulting tungsten*π*-allyl compounds have chemical versatilities in organic syntheses.¹²

Acknowledgment. We gratefully acknowledge financial support of this work from the National Science Council, Republic of China.

Supporting Information Available: Tables of crystal data, atomic coordinates, bond distances and angles, and thermal parameters of compounds **3a, 5a, 5b**, and **18** This material is available free of charge via the Internet at http://pubs.acs.org.

⁽¹¹⁾ Compound **18** crystallizes in the monoclinic space group P_21/n ,
 $a = 12.6211(2)$ Å, $b = 8.9088(2)$ Å, $c = 17.3164(5)$ Å, $\beta = 95.180(2)°$, $V = 1939.1(6)$ Å³, $Z = 4$. Data were collected on a Siemens Smart-CCD

di

⁽¹²⁾ Liu, R.-S. In *Advances in Metal-Organic Chemistry;* Liebeskind, L. S., Ed.; JAI Press: London, 1998; Vol 5, pp 145-187.