Formation of Iron-Fluorophosphorane Complexes $(\eta^5 - C_5 H_5)(CO) LFe{P(OPh)_n F_{4-n}}$ (L = CO, P(OPh)_3; n = 0,

1) and $(\eta^5 - C_5 H_5)(CO)_2 Fe{P(OC_6 H_4 NMe)F_2}$. Nucleophilic Attack of F⁻ toward a Trivalent Phosphorus Atom **Coordinated to a Transition Metal**

Kazuyuki Kubo, Kumiko Bansho, Hiroshi Nakazawa,* and Katsuhiko Miyoshi*

Department of Chemistry, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan

Received July 19, 1999

The reaction of a phosphite complex, $[Cp(CO)_2Fe{P(OPh)_3}]PF_6$, with Et_4NF in CH_2Cl_2 at room temperature yielded a mixture of metallafluorophosphoranes, $Cp(CO)_2Fe(PF_4)$ (1) and $Cp(CO)_2Fe\{P(OPh)F_3\}$ (2). Similar phosphite complexes $[Cp(CO)Fe\{P(OPh)_3\}_2]PF_6$ and

 $Fe(PF_4)$ (3) and $Cp(CO)_2Fe\{P(OC_6H_4NMe)F_2\}$ (4), respectively. The ³¹P and ¹⁹F NMR studies of these metallafluorophosphoranes revealed that pseudorotation around the hypervalent phosphorus center takes place readily in 1 and 3, whereas it marginally occurs at room temperature in **4**, but not in **2** even at elevated temperature. The difference in the energy barrier of the rotation process was interpreted in terms of the apicophilicity of the substituents on the phosphorane phosphorus.

Introduction

During the past few decades, much attention has been focused on the syntheses, structures, and properties of pentacoordinate phosphorus compounds, phosphoranes, partly because they have many attractive properties arising from their unusual valency.¹ However, studies on the transition-metal derivatives have been started in relatively recent years, and a few synthetic approaches to metallaphosphoranes have been reported to date.² They are based roughly on two strategies. One is based on reactions of a transition-metal complex with an organic phosphorane or a phosphoranide (a tetracoordinate anionic phosphorus compound).^{3–8} Most of metallaphosphoranes reported so far have been prepared with recourse to this simple strategy. The other approach involves valence expansion of a lower-coordinate phosphorus ligand such as a phosphide or a phosphite ligand, coordinated to a transition metal, into a pentacoordinate phosphorus species by oxidative or nucleophilic addition of some inorganic or organic reagents to the phosphorus atom. For example, Ebsworth et al. reported the oxidative addition of halogens (Cl₂ or XeF₂) to a phosphide phosphorus coordinated to an iridium center (eq 1),⁹ and we recently reported a new synthetic method for metallaphosphoranes, in which a trivalent phosphorus compound coordinated to a cationic transition-metal center is nucleophilically attacked by organic Lewis bases to expand its formal valence (eq $2).^{10}$

As an extension of our above-mentioned preparative method, we herein report the synthesis of metallafluo-

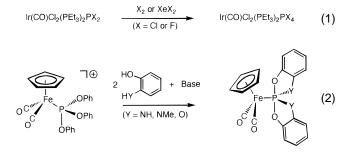
⁽¹⁾ For review articles, see: Holmes, R. R. Pentacoordinated Phosphorus; ACS Monographs No. 175 and 176; American Chemical Society: Washington, DC, 1980; Vols. I and II.

⁽²⁾ For review articles, see: (a) Montgomery, C. D. *Phosphorus, Sulfur, Silicon* **1993**, *84*, 23. (b) Dillon, K. B. *Chem. Rev.* **1994**, *94*, 1441.

 ^{(3) (}a) Lattman, M.; Chopra, S. K.; Cowley, A. H.; Arif, A. M. Organometallics 1986, 5, 677. (b) Lattman, M.; Burns, E. G.; Chopra, S. K.; Cowley, A. H.; Arif, A. M. Inorg. Chem. 1987, 26, 1926.
 (4) Brunus, E. G.; Chu, S. S. C.; Meester, P.; Lattman, M. Organo-

metallics 1986, 5, 2383.

Inetallics **1986**, *5*, 2383.
(5) (a) Wachter, J.; Mentzen, B. F.; Reiss, J. G. *Angew. Chem., Int. Ed. Engl.* **1981**, *20*, 284. (b) Vierling, P.; Riess, J. G. *J. Am. Chem. Soc.* **1981**, *103*, 2466. (c) Jeanneaux, F.; Grand, A.; G.Riess, J. *J. Am. Chem. Soc.* **1981**, *103*, 4272. (d) Dupart, J. M.; Grand, A.; Pace, S.; Riess, J. G. *J. Am. Chem. Soc.* **1982**, *104*, 2316. (e) Vierling, P.; Riess, J. G. *J. Am. Chem. Soc.* **1984**, *106*, 2432. (f) Dupart, J. M.; Grand, A.; Biers, J. G. *J. Am. Chem. Soc.* **1984**, *106*, 2432. (f) Dupart, J. M.; Grand, A.; Biers, J. G. *J. Am. Chem. Soc.* **1984**, *106*, 2432. (f) Dupart, J. M.; Grand, A.; Biers, Biers, J. G. *J. Am. Chem. Soc.* **1984**, *106*, 2432. (f) Dupart, J. M.; Grand, A.; Biers, Biers Riess, J. G. J. Am. Chem. Soc. 1986, 108, 1167. (g) Vierling, P.; Riess,
 J. G. Organometallics 1986, 5, 2543. (h) Vierling, P.; Riess, J. G.;
 Grand, A. Inorg. Chem. 1986, 25, 4144. (i) Khasnis, D. V.; Burton, J. M.; Zhang, H.; Lattman, M. Organometallics 1992, 11, 3745.

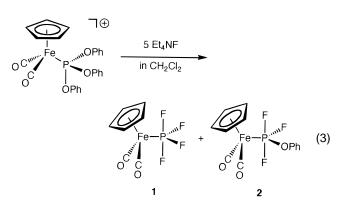

^{(6) (}a) Khasnis, D. V.; Lattman, M.; Siriwardane, U. Inorg. Chem. 1989, 28, 681. (b) Khasnis, D. V.; Lattman, M.; Siriwardane, U. Inorg. Chem. 1989, 28, 2594. (c) Khasnis, D. V.; Lattman, M.; Siriwardane, U. J. Chem. Soc., Chem. Commun. 1989, 1538. (d) Khasnis, D. V. Lattman, M.; Siriwardane, U.; Chopra, S. K. J. Am. Chem. Soc. 1989, 111, 3103. (e) Khasnis, D. V.; Lattman, M.; Siriwardane, U. Organo-metallics 1991, 10, 1326. (f) Khasnis, D. V.; Lattman, M.; Siriwardane, U.; Zhang, H. *Organometallics* **1992**, *11*, 2074. (7) (a) Lattman, M.; Anand, B. N.; Grrett, D. R.; Whitener, M. A.

Inorg. Chim. Acta **1983**, *76*, L139. (b) Lattman, M.; Morse, S. A.; Cowley, A. H.; Lasch, J. G.; Norman, N. C. *Inorg. Chem.* **1985**, *24*, 1364. (c) Anand, B. N.; Bains, R.; Usha, K. *J. Chem. Soc., Dalton Trans.* 1990. 2315.

^{(8) (}a) Chopra, S. K.; Martin, J. C. Heteroatom Chem. 1991, 2, 71. (b) Faw, R.; Montgomery, C. D.; Rettig, S. J.; Shurmer, B. Inorg. Chem. 1998, 37, 4136.

^{(9) (}a) Ebsworth, E. A. V.; McManus, N. T.; Pilkington, N. J.; Rankin, D. W. H. *J. Chem. Soc., Chem. Commun.* **1983**, 484. (b) Ebsworth, E. A. V.; Holloway, J. H.; Pilkington, N. J.; Rankin, D. W. H. *Angew.*

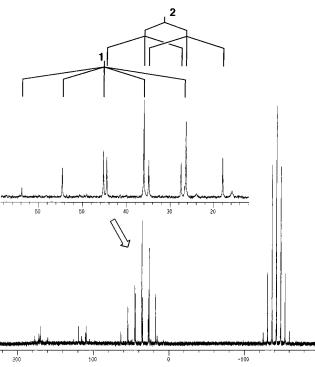
Chem., Int. Ed. Engl. 1984, 23, 630. (10) (a) Nakazawa, H.; Kubo, K.; Miyoshi, K. J. Am. Chem. Soc. 1993, 115, 5863. (b) Kubo, K.; Nakazawa, H.; Mizuta, T.; Miyoshi, K. Organometallics 1998, 17, 3522.



rophosphoranes by the reactions of cationic iron complexes having a phosphite ligand with a fluoride anion as a nucleophile. Also reported is dynamic behavior of the resulting metallaphosphoranes, i.e., pseudorotation around the hypervalent phosphorus.

Results and Discussion

Reaction of [Cp(CO)LFe{P(OPh)₃}]PF₆ (L = CO, P(OPh)₃) with F⁻. In any case, products obtained were extremely moisture-sensitive, and several attempts to isolate them were unsuccessful (vide infra). The IR data of the products were somewhat unreliable because of their high instability. Therefore, the products were characterized by the NMR measurements of the reaction mixture alone. Their ³¹P NMR and ¹⁹F NMR data are given in Table 1.


A cationic iron complex with a triphenyl phosphite ligand $[Cp(CO)_2Fe{P(OPh)_3}]PF_6$ (Cp stands for η^5 -C₅H₅) was treated with 5 equiv of Et₄NF in CH₂Cl₂ at room temperature. The ³¹P NMR monitoring of the mixture revealed that the signal assignable to the starting complex disappeared in a few minutes, and new signals appeared around 35 ppm. On the basis of the following discussions, we concluded that the main products in the reaction were two iron-phosphorane complexes, $Cp(CO)_2Fe(PF_4)$ (1) and $Cp(CO)_2Fe\{P(OPh)-F_3\}$ (2) (eq 3).

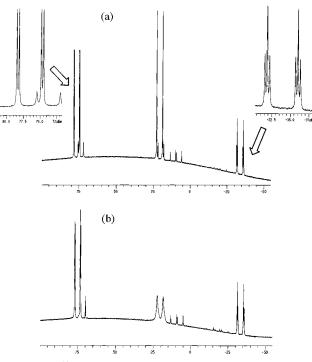

The ³¹P NMR spectrum of the reaction mixture exhibits three main signals; a septet at -142.87 ppm (J = 710 Hz), a quintet at 45.26 ppm (J = 1127 Hz), and a doublet of triplets at 31.23 ppm (J = 1168 and 1032 Hz) (Figure 1). The septet is unambiguously assigned to PF₆⁻. The chemical shifts of the quintet and the doublet of triplets are at a higher field by ca. 120 ppm than that of the starting complex, indicating that the valence of the phosphorus atoms is expanded. The large coupling constants (greater than 1000 Hz) indicate that these products have direct P-F bond(s). These observations suggest that the quintet arises from complex 1 if a pseudorotation process around the pentacoordinate phosphorus is taking place fast on the NMR time scale and that the doublet of triplets arises from complex **2** if the corresponding pseudorotation does not occur or is very slow on the NMR time scale.

Table 1. ³¹P and ¹⁹F NMR Data^a

Complex	³¹ P NMR (δ; ppm)	¹⁹ F NMR (δ; ppm)
Feed F	1 ^b 45.26 (qui, $J_{\rm PF}$ = 1127 Hz)	20.71 (d, $J_{\rm PF}$ = 1128 Hz)
Fe-P OCC F OCC F	2 ^b 31.23 (d t, $J_{\rm PF}$ = 1168, 1032 Hz)	-34.01 (d t, J _{PF} = 1173 Hz, J _{FF} = 92 Hz, equatorial F) 76.44 (d d, J _{PF} = 1033 Hz, J _{FF} = 92 Hz, apical F)
Pe-P-Mark OCANT FE-P-FF (PhO) ₃ P	3 ^b 49.07 (qui d, $J_{PF} = 1108$, $J_{PP} = 191$ Hz, PF ₄) 170.02 (d, $J_{PP} = 190$ Hz, P(OPh) ₃)	20.35 (d, $J_{\rm PF}$ = 1108 Hz)
Fe-P-MMe CC C F	4 ° 39.98 (d d, J _{PF} = 1205, 1010 Hz)	-21.20 (d d, J _{PF} = 1205 Hz, J _{FF} = 107 Hz, equatorial F) 63.13 (d d, J _{PF} = 1009 Hz, J _{FF} = 105 Hz, apical F)

Figure 1. ³¹P NMR spectrum of the reaction mixture of $[Cp(CO)_2Fe{P(OPh)_3}]PF_6$ with 5 equiv of Et_4NF in CH_2 - Cl_2 at room temperature.

Figure 2. ¹⁹F NMR spectrum of the reaction mixture of $[Cp(CO)_2Fe\{P(OPh)_3\}]PF_6$ with 5 equiv of Et_4NF in CH_2 -Cl₂. A doublet assignable to PF_6^- is omitted for simplicity. (a) At room temperature. (b) At -50 °C.

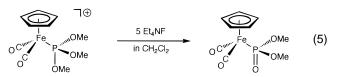
The ¹⁹F NMR spectrum of the reaction mixture shown in Figure 2a exhibits three main signals, together with some other weak ones. For the doublet at 20.71 ppm, the coupling constant (1128 Hz) is the same as that (1127 Hz) of a quintet at 45.26 ppm in the ³¹P NMR spectrum within experimental error. The doublet is thus assigned to **1**, in which a facile pseudorotation around the phosphorus is taking place. The other two strong signals, a doublet of triplets at -34.01 ppm (J = 1173 and 92 Hz) and a doublet of doublets at 76.44 ppm (J = 1033 and 92 Hz), can be thought to arise from **2**, in which a pseudorotation does not take place. Considering the great equatophilicity of an OPh and a Cp(CO)₂Fe group (vide infra), it is reasonably concluded that the doublet of triplets is due to the equatorial F which couples with P with a coupling constant of 1173 Hz, corresponding to 1168 Hz observed in the ³¹P NMR spectrum, and also with the two apical F's with a coupling constant of 92 Hz, and the doublet of doublets is due to the two apical F's which couple with P with a coupling to 1032 Hz observed in the ³¹P NMR spectrum, and also with the equatorial F with a coupling to 1032 Hz observed in the ³¹P NMR spectrum, and also with the equatorial F with a coupling constant of 92 Hz.

On the basis of the ³¹P and ¹⁹F NMR spectra examined above, it is reasonably proposed that 1 and 2 have PF₄ and P(OPh)F₃ fragments, respectively. However, it is still not clear whether they have a Cp(CO)₂Fe fragment or not. Thus, ¹³C NMR and ¹H NMR spectra of [Cp(CO)₂Fe{P(OPh)₃}]PF₆ treated with Et₄NF in CD₂-Cl₂ in a sealed NMR tube were measured. The ¹³C NMR spectrum showed two broad doublets at 210.19 ppm $(J_{CP} = 50.9 \text{ Hz})$ and 211.27 ppm $(J_{CP} = 52.2 \text{ Hz})$. They are assignable to the terminal carbonyl carbons in the $Cp(CO)_2Fe$ fragment in 1 and 2, respectively, which couple with a P atom (and probably with F atoms as well). These P-C coupling constants strongly suggest that the phosphorus atom is directly bonded to the Cp- $(CO)_2$ Fe fragment both in **1** and in **2**. In addition, the ¹³C NMR spectrum exhibited two signals at 86.30 and 86.17 ppm due to Cp carbons for 1 and 2, respectively. The ¹H NMR spectrum also showed two intense signals in a Cp-proton region at 5.24 and 5.20 ppm, which are assignable to 1 and 2, respectively, together with a few small signals. However, in the ¹³C NMR and ¹H NMR spectra, the signals due to the OPh group in 2 were not assignable because of overlap with the signals due to free PhO⁻.


The metallafluorophosphoranes thus formed decompose slowly even under a nitrogen atmosphere at room temperature, and they are extremely moisture-sensitive. During the continued stirring of the solution for several days, the color changed from pale yellow to reddish yellow, and the Cp-proton signal assignable to a reduced iron complex, $[Cp(CO)_2Fe]_2$, appeared in the ¹H NMR spectrum of the reaction mixture. When the reaction mixture was exposed to air, the signals due to 1 and 2 disappeared rapidly, while small signals around 115 ppm, which had been also observed before exposure to air, increased in intensity in the ³¹P NMR spectrum, indicating the hydrolysis of the products occurring. Unfortunately, any effort to isolate the metallafluorophosphoranes from the mixture was in vain. Therefore, we attempted to estimate the yields of the products directly from the integrated intensity of the signals in the NMR spectra. The reaction mixture was homogeneous and seemed to have no insoluble material. However, the signals in the ¹H NMR spectrum were not well resolved, and we could not estimate the exact yields. Thus, the yields were obtained roughly from the ³¹P NMR and ¹³C NMR spectra. The ³¹P NMR spectrum revealed that 1 and 2 were generated approximately in 86% total yield, and their formation ratio was about 2:7.

Similarly, the Cp-carbon signals in the 13 C NMR spectrum suggested ca. 80% total yield for them on the basis of all Cp-containing species. These observations suggest that **1** and **2** had formed quantitatively with the accompanying decomposition of the products.

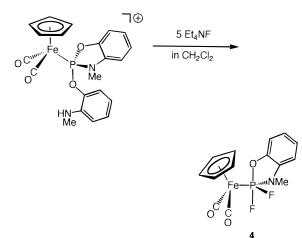
Complexes 1 and 2 were formed from $[Cp(CO)_2Fe-{P(OPh)_3}]PF_6$ and F^- presumably by several cycles of nucleophilic attack of F^- at the P atom coordinated to Fe and a sequential elimination of OPh⁻ from the P. Complex 2 can be thought as an intermediate complex formed during the course of the formation of 1. Indeed, the treatment of $[Cp(CO)_2Fe{P(OPh)_3}]PF_6$ with a greater excess amount of Et_4NF and a longer reaction time led to almost exclusive formation of 1. It should be noted that complex 2 is the first example of a phosphorane with three different monodentate substituents including a metal fragment.


Recently, Verkade et al. reported fluoride-catalyzed reduction of Pd(II) to Pd(0)–phosphine complexes, in which a phosphine ligand coordinated to the Pd center is oxidized to R_3PF_2 , which is finally converted to O= PR_3 .¹¹ In this reaction, a metallafluorophosphorane intermediate was proposed, although it has not been detected. Our present results seem to be consistent with their proposal.

The reaction with Et_4NF of $[Cp(CO)Fe{P(OPh)_3}_2]PF_6$ having two phosphite ligands on the iron center was also examined under conditions similar to those in the reaction of $[Cp(CO)_2Fe{P(OPh)_3}]PF_6$ (eq 4). Although

the reaction mixture contained a considerable amount of the starting materials even after overnight stirring, the formation of $Cp(CO){P(OPh)_3}Fe(PF_4)$ (3) was verified by the following observations (ca. 30% yield): The ³¹P NMR spectrum displayed a doublet at 170.02 ppm $(J_{\rm PP} = 190 \text{ Hz})$ assignable to a P(OPh)₃ ligand and a quintet of doublets at 49.07 ppm ($J_{PF} = 1108$ Hz, $J_{PP} =$ 191 Hz) assignable to a PF_4 ligand. The coupling constant of $J_{PP} = 191$ Hz strongly suggests that P(OPh)₃ and PF_4 ligands are coordinated to the same iron center. Namely, one of the two P(OPh)₃ ligands was converted into the PF₄ group, while the other remained intact. This observation can be rationally explained as follows: The nucleophilic substitution of an F atom for an OPh group may be promoted on a phosphorus atom, if it has been already substituted by F because of the accompanying increase in positive charge on the phosphorus. Therefore, the subsequent substitution may be more incident to that phosphorus atom on which the first nucleophilic attack of the F⁻ had occurred, eventually to form 3. However, F⁻ may not be so nucleophilic to attack the remaining P(OPh)₃ phosphorus in electrically neutral 3. When the reaction mixture was subjected to prolonged stirring, a decomposition reaction proceeded with some starting materials remaining.

Next we attempted the reaction of $[Cp(CO)_2Fe-{P(OMe)_3}]PF_6$, having $P(OMe)_3$ in place of $P(OPh)_3$, with F^- (eq 5). In this reaction, the formation of a

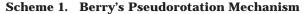

phosphonate complex, $Cp(CO)_2Fe\{P(O)(OMe)_2\}$, was confirmed by comparison of its spectroscopic data with those of the authentic sample, and there was no evidence that the phosphorus atom was directly attacked by F⁻ to give a pentacoordinate phosphorus species. In general, a transition-metal complex L_pMX (X = halogen) reacts with trialkyl phosphite $P(OR)_3$ to give a cationic phosphite complex, $[L_nM{P(OR)_3}]X$, as an intermediate. Then, X^- readily attacks an α -carbon in the OR group on the phosphorus atom to form a phosphonate complex $L_n M\{P(O)(OR)_2\}$ and RX (the Arbuzov-like dealkylation reaction).¹² Therefore, in the reaction of $[Cp(CO)_2Fe{P(OMe)_3}]PF_6$ with F⁻, F⁻ attacks not a phosphorus atom of the P(OMe)₃ ligand but its methyl carbon, yielding the phosphonate complex. This reaction seems in general to be an energetically more favorable process because of greater stability of the resulting phosphonate complex. However, in the reaction of $[Cp(CO)_2Fe{P(OPh)_3}]PF_6$, the formation of $Cp(CO)_2Fe\{P(O)(OPh)_2\}$ is kinetically prevented by a reluctance of the sp² ipso-carbon in the Ph group to be nucleophilically attacked by F⁻. Instead, F⁻ directly attacks the phosphorus center to form a pentavalent species.

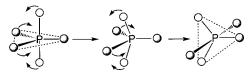
Reaction of [Cp(CO)₂Fe{P(OC₆H₄NMe)(OC₆H₄N-MeH)}]PF₆ with F⁻. We recently reported the syntheses of metallaphosphoranes with two chelate substituents on the phosphorane phosphorus (eq 2). In contrast, metallaphosphoranes discussed above have only monodentate substituents on the phosphorus. Then, we attempted to obtain a metallaphosphorane having one chelate and two monodentate substituents in addition to a transition-metal fragment on the phosphorus center. For this purpose, a readily available phosphite complex, [Cp(CO)₂Fe{P(OC₆H₄NMe)(OC₆H₄NMeH)}]-PF₆, which has one O–N chelate on the phosphorus atom, was chosen as a starting material and treated with F⁻ (eq 6). The reaction mixture at room temperature displayed broad signals in the NMR spectra, which

with Γ^{-} (eq. 6). The reaction mixture at room temperature displayed broad signals in the NMR spectra, which sharpened at low temperature, because of dynamic behavior of the product (vide infra). Therefore, the NMR data were collected at -80 °C. The ³¹P NMR spectrum of the mixture showed a doublet of doublets at 39.98 ppm ($J_{PF} = 1205$, 1010 Hz) as a unique product. Signals due to the inert PF₆⁻ were also observed. In the ¹³C NMR spectrum, a broad doublet at 212.56 ppm ($J_{CP} =$ 50.4 Hz) and a broad multiplet at 211.61 ppm were observed, both of which are assignable to diastereotopic carbonyl carbons in the Cp(CO)₂Fe fragment. The signals assignable to the carbons in NMe (32.73 ppm, d, $J_{CP} = 14.3$ Hz), Cp (85.96 ppm, s) and aromatic ring

^{(11) (}a) Mason, M. R.; Verkade, J. G. *Organometallics* **1992**, *11*, 2212. (b) McLaughlin, P. A.; Verkade, J. G. *Organometallics* **1999**, *17*, 5937.

^{(12) (}a) Brill, T. B.; Landon, S. J. *Chem. Rev.* **1984**, *84*, 577, and references therein. (b) Nakazawa, H.; Fujita, T.; Kubo, K.; Miyoshi, K. *J. Organomet. Chem.* **1994**, *473*, 243, and references therein.


(6)


(107.46 ppm, s; 108.66 ppm, d, $J_{\rm CP} = 9.4$ Hz; 119.02 ppm, s; 119.43 ppm, s; 134.65 ppm, d, *J*_{CP} = 18.1 Hz; 149.52 ppm, d, $J_{CP} = 11.8$ Hz) were also observed. In the ¹H NMR spectrum, a signal assignable to protons in Cp (5.08 ppm, s) was also observed, although the signals due to aromatic ring and NMe protons could not be identified because of overlap with free [OC₆H₄NHMe]⁻ and intense NEt4⁺ signals, respectively. In the ¹⁹F NMR spectrum, two doublets of doublets at -21.20 ppm $(J_{\rm PF} = 1205 \text{ Hz}, J_{\rm FF} = 107 \text{ Hz})$ and at 63.13 ppm $(J_{\rm PF} =$ 1009 Hz, $J_{\rm FF}$ = 105 Hz) were observed in equal intensity, together with a doublet assignable to PF6-. We assigned the former to an equatorial F atom and the latter to an apical F atom on the basis of the similarity in chemical shifts to those of **2**. In this way, the formation of the metallaphosphorane $Cp(CO)_2Fe$ -

 $\{P(OC_6H_4NMe)F_2\}$ (4) is indicated in which one F atom is in an apical position and the other F atom is in an equatorial position. The yield of 4 was estimated as 97% from the ³¹P NMR spectrum.

Trends for the Metallafluorophosphoranes in ³¹P NMR Spectra. The ³¹P NMR chemical shifts of the metallafluorophosphoranes reported here are reasonable when compared with those of the reported metallaphosphoranes having a Cp(CO)LFe fragment (L = CO, $P(OPh)_3$, $P(OMe)_3$, PMe_3).^{8,10} In **2** and **4**, an apical P-Fbond displays a smaller coupling constant than an equatorial P-F bond. The same trend is also observed in non-transition-metalated fluorophosphoranes and can be explained by the intrinsic difference in bond nature between apical and equatorial bonds. It has been wellknown that the apical bond in a trigonal bipyramidal structure is weaker and longer than an equatorial bond. This reflects the difference in the overlap populations between the two, which has been ascribed to the smaller 3s orbital character in the apical bond than that in the equatorial bond.¹³ Therefore, this smaller s character in the apical bond should give rise to a smaller P-F coupling constant in the NMR spectra. In this way, the electronic structure of the transition-metalated phosphoranes is understood similarly to that of organic ones.

In complex **3**, the iron center has a $P(OPh)_3$ ligand, which is a more efficient electron donor than CO. Therefore, **3** should have a greater electron density on the iron center than **1**, which renders the transition-

metal fragment in **3** a stronger π donor than in **1**. Recently, we have reported that greater π donacity of a transition-metal fragment gives a lower magnetic field shift to a phosphorane phosphorus in the ³¹P NMR spectrum.^{10b} The chemical shift of the PF₄ group in **3** is, as expected, in a lower magnetic field than that of **1**, suggesting that this trend is general for metallaphosphoranes.

Pseudorotation Process and Apicophilicity. Rearrangement of substituents around the central atom is one of the unique properties exhibited by pentacoordinate hypervalent compounds. It is widely accepted that this process proceeds via the Berry's pseudorotation mechanism (Scheme 1).14 For complex 1, a very fast pseudorotation is observed at room temperature, and thus four F atoms look equivalent on the ³¹P and ¹⁹F NMR time scale. When a CH₂Cl₂ solution of 1 is cooled to -50 °C, broadening of its signal is observed in the ¹⁹F NMR spectrum, indicating that the rotation becomes slower (Figure 2b). For 2, in contrast, the rearrangement does not take place or is very slow on the NMR time scale at room temperature. When a toluene solution of 2 was heated to 100 °C, slight broadening of its signals was observed in both the ³¹P and ¹⁹F NMR spectra with some decrease in their intensity due to the accompanying decomposition of 2. Thus, a quantitative estimate of the energy barrier for the pseudorotation could not be performed. Previous NMR studies on the MePF₄ and Me₂PF₃ have revealed that the fast rotation takes place for MePF₄, whereas no evidence for such a rotation is obtained for Me₂PF₃.¹⁵ Such contrasting dynamic behavior has been examined theoretically by Wasada et al. and has been interpreted in terms of site preference of the substituents on the pentacoordinate phosphorus as follows:^{16e} an electronegative group prefers an apical position (apicophilicity), and a less electronegative group, a group forming a strong covalent bond to phosphorus, and/or a good π donor group prefer an equatorial position.¹⁶ In the pseudorotation process of Me₂PF₃, at least one relatively equatophilic Me group has to occupy an apical position, which would lead to the phosphorane to a high-energy state. Therefore, its rotation process may be hindered. In contrast, a lowenergy barrier is expected for MePF₄ because the Me group can keep a pivotal position during the pseudorotation process and apical and equatorial F atoms can

⁽¹³⁾ Strich, A.; Veillard, A. J. Am. Chem. Soc. **1973**, 95, 5574, and references therein.

⁽¹⁴⁾ Berry, R. S. J. Chem. Phys. 1960, 32, 933.

⁽¹⁵⁾ Muetterties, E. L.; Mahler, W.; Schmutzler, R. *Irorg. Chem.* **1963**, 2, 613.

⁽¹⁶⁾ For recent theoretical considerations on apicophilicity and equatophilicity or equatoriphilicity, see: (a) Deiters, J. A.; Holmes, R. R.; Holmes, J. M. J. Am. Chem. Soc. **1988**, 110, 7672. (b) Mathiew, S.; Morokuma, K.; Dorigo, A. E. The 1989 International Chemical Congress of Pacific Basin Societies; Chemical Society of Japan: Tokyo, 1989; Phys590. (c) Mathiew, S.; Morokuma, K. Annu. Rev. Inst. Mol. Sci. **1990**, 18. (d) Wang, P.; Zhang, Y.; Glaser, R.; Reed, A. E.; Schleyer, P. v. R.; Streitwieser, A. J. Am. Chem. Soc. **1991**, 113, 55. (e) Wasada, H.; Hirao, K. J. Am. Chem. Soc. **1992**, 114, 16. (f) Wang, P.; Zhang, Y.; Glaser, R.; Streitwieser, A.; Schleyer, P. v. R. J. Comput. Chem. **1993**, 14, 522.

exchange their positions readily. The same argument could be applied to the difference in rotation energy barriers between 1 and 2. That is, a transition-metal fragment acts as a good π donor toward a hypervalent phosphorus center and thus prefers an equatorial position, as Martin^{8a} and we^{10b} have revealed. In addition, Akiba et al. found the high pseudorotation barrier in some hypervalent antimony species, which was attributed to the great electron donacity and bulkiness of transition-metal substituents.¹⁷ Thus, both Cp(CO)₂Fe and OPh groups, which are more equatophilic groups than an F atom, are expected to keep equatorial positions, leading to a high rotation energy barrier in 2. To date, the pseudorotation process of metalated hypervalent compounds has been examined only for the species bearing chelate substituents.^{2a,10b,17} The chelate would introduce some steric rigidity around the phosphorus center and make the rotation energy barrier higher. Therefore, metallaphosphoranes having no chelate substituent on the phosphorus center could be better probes to estimate the relative apicophilicity of substituents.

Additional information about the pseudorotation process was derived from the NMR study of the metallaphosphorane 4. A five-memberd ring generally prefers to occupy an apical-equatorial position rather than an equatorial-equatorial position on steric grounds.18 Therefore, the *o*-OC₆H₄NMe chelate preferentially takes an apical-equatorial position, in which a more equatophilic nitrogen atom may occupy an equatorial position. The strong π donor Cp(CO)₂Fe group then should be in an equatorial site. 4 is thus expected to have a high rotational energy barrier because the two equatophilic substituents are in equatorial positions as in 2. However, a CH_2Cl_2 solution of 4 at room temperature displays a broad doublet of doublets in the ³¹P NMR spectrum, which sharpens at -80 °C. This observation indicates that the pseudorotation is almost beginning even at room temperature. The reason for a relatively low energy barrier for 4 could arise from the F atom being in an equatorial position; although an F atom is generally highly apicophilic, one F atom has to take an equatorial position in 4 because the o-OC₆H₄NMe chelate occupies an apical-equatorial position on steric demand. This electronically unfavorable situation probably makes the energy barrier lower.

Experimental Section

All reactions were carried out under an atmosphere of dry nitrogen by using Schlenk tube techniques or in a sealed NMR tube. CH₂Cl₂ was purified by distillation from P₂O₅, and toluene was distilled from sodium benzophenone ketyl, and they were stored under a nitrogen atmosphere. Et₄NF was obtained from a common commercial source and dried by azeotropic distillation with CHCl₃ three times before use. [Cp- $(CO)_{2}Fe(THF)]PF_{6}^{19} [Cp(CO)_{2}Fe\{P(OPh)_{3}\}]PF_{6}^{10a} [Cp(CO)_{2}-$

 $Fe{P(OMe)_3}PF_{6}^{20}$ and $[Cp(CO)_2Fe{P(OC_6H_4NMe)(OC_6H_4-H_6NMe)(OC_6$ NMeH)}]PF₆^{10b} were prepared according to the literature.

A JEOL LA-300 spectrometer was used to obtain ¹H NMR ¹³C NMR, ³¹P NMR, and ¹⁹F NMR spectra. ¹H NMR and ¹³C NMR data were referred to SiMe₄, as an internal standard. ³¹P NMR and ¹⁹F NMR data were referred to 85% H₃PO₄ and CFCl₃, respectively, as external standards.

Preparation of [Cp(CO)Fe{P(OPh)₃}₂]PF₆. P(OPh)₃ (0.60 mL, 2.3 mmol) was added to a solution of [Cp(CO)₂Fe(THF)]- PF_6 (450 mg, 1.14 mmol) in CH_2Cl_2 (6 mL), and the mixture was refluxed for 14 h. After the volatile components were removed under reduced pressure, the resulting residue was dissolved in a small amount of CH_2Cl_2 . Then the CH_2Cl_2 solution was loaded on a silica gel column and eluted with CH2-Cl₂ and then with acetone. A pale yellow band, which contained Cp₂Fe, was first eluted with CH₂Cl₂. The second yellow band that eluted with CH_2Cl_2 /acetone (1:1) was collected, and the effluent was concentrated to ca. 0.5 mL in vacuo. Addition of ether resulted in the formation of a pale yellow precipitate, which was washed with ether several times and dried under reduced pressure to give a pale yellow powder of [Cp(CO)Fe-{P(OPh)₃}₂]PF₆ (767 mg, 0.84 mmol, 73% yield). Anal. Calcd for C42H35F6FeO7P3: C, 55.16; H, 3.86. Found: C, 54.92; H, 3.85. IR (ν_{CO} , in CH₂Cl₂): 2016. ³¹P NMR (δ , in acetone- d_6): 158.55. ¹H NMR (δ, in acetone-d₆): 4.91 (s, 5H, C₅H₅), 7.32-7.50 (m, 30H, OPh). ¹³C NMR (δ , in acetone- d_6): 86.51 (s, C5H5), 122.36 (s, OPh), 127.63 (s, OPh), 131.80 (s, OPh), 152.15 (t, $J_{CP} = 5.58$ Hz, OPh), 212.65 (t, $J_{CP} = 37.54$ Hz, CO).

Reactions of Iron-Phosphite Complexes with NEt₄F. Since reactions of iron-phosphite cationic complexes with F are basically similar in all cases, the reaction of [Cp(CO)₂Fe- $\{P(OPh)_3\}$]PF₆ with NEt₄F is shown as a typical example. A CH_2Cl_2 solution (0.83 mL) containing $[Cp(CO)_2Fe{P(OPh)_3}]$ -PF₆ (106 mg, 0.17 mmol) and NEt₄F (124 mg, 0.83 mmol) was stirred at room temperature for a few minutes. Then, the resulting reaction mixture was subjected to ³¹P and ¹⁹F NMR measurements at room temperature and at -50 °C. After removal of volatile components under reduced pressure from the CH₂Cl₂ solution, the products were extracted with toluene and the toluene solution was subjected to NMR measurements at 100 °C.

Acknowledgment. This work was supported by a Grant-in-Aid for Scientific Research (Nos. 10440195 and 11740371) and a Grant-in-Aid on Priority Area of Interelement Chemistry (No. 11120235) from the Ministry of Education, Science, Sports and Culture of Japan.

OM990564F

⁽¹⁷⁾ Yamamoto, Y.; Okazaki, M.; Wakisaka, Y.; Akiba, K. Organo-

metallics **1995**, *14*, 3364. (18) Deiters, J. A.; Holmes, R. R. *Organometallics* **1996**, *15*, 3944, and references therein.

⁽¹⁹⁾ Catheline, D.; Astruc, D. *Organometallics* 1984, *3*, 1094.
(20) Nakazawa, H.; Kubo, K.; Tanisaki, K.; Kawamura, K.; Miyoshi, K. Inorg. Chim. Acta 1994, 222, 123.