Steric Demand of the Cp*Ga Ligand: Synthesis and Structure of Ni(Cp*Ga)₄ and of *cis*-M(Cp*Ga)₂(CO)₄ (M = Cr. Mo)

Peter Jutzi,* Beate Neumann, Lars Oliver Schebaum, Anja Stammler, and Hans-Georg Stammler

Fakultät für Chemie, Universität Bielefeld, D-33615 Bielefeld, Germany

Received May 11, 1999

Summary: In the reaction of $(\eta^5$ -pentamethylcyclopentadienyl)gallium (Cp*Ga) with $Ni(COD)_2$ (COD = 1,5cyclooctadiene) and NorM(CO)₄ (Nor = norbornadiene; M = Cr, Mo) the complexes Ni(Cp*Ga)₄ (1) and cis- $M(Cp^*Ga)_2(CO)_4$ (M = Cr(2), Mo(3)), respectively, were obtained. Compounds 1-3 were characterized by NMR and IR data and by elemental analysis. In addition, an X-ray crystal structure analysis was performed on complexes 1 and 3. Cis-orientation of the Cp*Ga ligands is made possible by deviation of the Cp*_{centroid}-Ga-M vector from linearity. 1 is the first homoleptic complex with Cp*Ga as ligand.

Introduction

Very recent investigations have shown that RGa fragments are interesting novel ligands in transitionmetal chemistry.^{1,2} In a preliminary report, we have shown that the reaction of Cp^*Ga with $Cr(CO)_5(C_8H_{14})$ $(C_8H_{14} = cis$ -cyclooctene), $Fe_2(CO)_9$, $Fe(CO)_3CHT$ (CHT = cycloheptatriene), $Co_2(CO)_8$, and $Ni(CO)_4$ leads to the complexes $Cr(Cp^*Ga)(CO)_5$ (4), $Fe(Cp^*Ga)(CO)_4$ (5), Fe_2 - $(\mu$ -Cp*Ga)₃(CO)₆ (**6**), Co₂(μ -Cp*Ga)₂(CO)₆ (**7**), and Ni₄- $(\mu$ -Cp*Ga)₄(CO)₆ (8), respectively, where Cp*Ga adopts terminal as well as bridging positions.² The steric demand of this ligand can be estimated from its calculated cone angle;³ from there the question arises how many Cp*Ga ligands can be fixed in terminal positions and in cis-orientation to a transition-metal center. In this context we report here on the synthesis and structure of the compounds $Ni(Cp^*Ga)_4$ (1) and *cis*- $M(Cp^*Ga)_2(CO)_4$ (M = Cr (2), Mo (3)).

Results and Discussion

Reaction of $Ni(COD)_2$ (COD = 1,5-cyclooctadiene) with 4 equiv of Cp*Ga in refluxing *n*-hexane led to a full substitution of COD by Cp*Ga ligands and to the

		Se	cher	ne 1	
Ni(COD) ₂	÷	4 Cp*Ga		n-hexane	Ni(Cp*Ga) ₄ 1
		(COD = 2	1,5-cy	clooctadiene)	_
				•	

$$NorM(CO)_4$$
 + 2 Cp*Ga - Nor

(Nor = norbornadiene: M = Cr. Mo)

formation of the homoleptic nickel complex Ni(Cp*Ga)₄ (1) (Scheme 1).

 $Ni(Cp^*Ga)_4$ (1) could be isolated in 60% yield as orange crystals. The compound is rather air-stable and can be handled in air for at least several hours. It melts at 192 °C but decomposes slowly under these conditions. The complex dissolves easily in aprotic organic solvents such as *n*-hexane and toluene.

The reaction of $NorM(CO)_4$ (Nor = norbornadiene, M = Cr, Mo) with 2 equiv of Cp*Ga resulted in the formation of the corresponding transition-metal complexes cis-M(Cp*Ga)₂(CO)₄ (M = Cr (**2**), Mo (**3**)) (Scheme 2), which could be isolated in high yield in the form of yellow crystals. They melt with decomposition at approximately 180 °C and are soluble in aprotic organic solvents.

Complexes 1-3 have been characterized by means of NMR and IR data and by elemental analysis. By repeated crystallization from toluene crystals suitable for an X-ray structure analysis were obtained for **1** and 3.

The molecular structure of 1 is presented in Figure 1. Crystallographic data are given in Table 1, and selected bond lengths and angles are collected in Table 2.

Complex 1 crystallizes in the tetragonal space group *I*4, showing the nickel atom tetrahedrally coordinated by four Ga atoms with Ga-Ni-Ga angles of 109.5°. The Ga-Ni bond length is 2.2188(5) Å; this distance is slightly shorter than those observed in Ni₄(Cp*Ga)₄- $(CO)_{6}$.⁴ The Cp*_{centroid}-Ga distance is 2.003(4) Å and is thus shortened by about 4% in comparison to the corresponding distance of Cp*Ga in the solid state⁵ or

^{(1) (}a) Kuchta, M. C.; Bonanno, J. B.; Parkin, G. J. Am. Chem. Soc. 1996, 118, 10914-10915. (b) Schulte, M. M.; Herdtweck, E.; Raudaschl-**1996**, *118*, 10914–10915. (b) Schulte, M. M.; Herdtweck, E.; Raudaschl-Sieber, G.; Fischer, R. A. Angew. Chem. **1996**, *108*, 489; Angew. Chem., Int. Ed. Engl. **1996**, *35*, 424–426. (c) Fischer, R. A.; Schulte, M. M.; Herdtweck, E.; Mattner, M. R. Inorg. Chem. **1997**, *36*, 2010–2017. (d) Su, J.; Li, X.-W.; Crittendon, R. C.; Campana, C. F.; Robinson, G. H. Organometallics **1997**, *16*, 4511–4513. (e) Reger, D. L.; Garza, D. G.; Rheingold, A. L.; Yap, G. P. A. Organometallics **1998**, *17*, 3624–3626. (f) Linti, G.; Köstler, W. Chem. Eur. J. **1998**, *4*, 942. (g) Schnepf, A.; Stösser, G.; Carmichael, D.; Mathey, F.; Schnöckel, H. Angew. Chem. Stösser, G.; Carmichael, D.; Mathey, F.; Schnöckel, H. Angew. Chem. **1999**, 111, 1757–1759; Angew. Chem., Int. Ed. **1999**, 38, 1646–1648.

⁽²⁾ Jutzi, P.; Neumann, B.; Reumann, G.; Stammler, H.-G. Organometallics 1998, 17, 1305–1314.
(3) (a) Tolman, C. A. Chem. Rev. 1977, 77, 313. (b) White, D.; Coville,

N. J. Adv. Organomet. Chem. 1994, 36, 95.

⁽⁴⁾ The Ga–Ni distances in $Ni_4(Cp^*Ga)_4(CO)_6^2$ are found between 2.2933(11) and 2.8321(13) Å.

Figure 1. Molecular structure of $Ni(Cp^*Ga)_4$ (1), with thermal ellipsoids at 50% probability.

Table 1.	Crystallographic Data for Ni(Cp*Ga) ₄ (1)
	and <i>cis</i> -Mo(Cp*Ga) ₂ (CO) ₄ (3)

	$C_{40}H_{60}Ga_4Ni$ (1)	$C_{24}H_{30}Ga_2MoO_4$ (3)			
fw	878.51	616.94			
cryst color, habit	brown, octahedral	yellow, irregular			
cryst size, mm ³	0.90 imes 0.80 imes 0.50	$0.70 \times 0.40 \times 0.30$			
temp, K	173	173(2)			
wavelength	Μο Κα, Ο	Μο Κα, 0.710 73 Å			
	(graphite mo	nochromator)			
space group	tetragonal, <i>1</i> 4	triclinic, <i>P</i> 1			
unit cell dimens					
a, Å	12.110(2)	8.377(3)			
b, Å	12.110(2)	9.397(3)			
<i>c</i> , Å	14.955(4)	18.548(8)			
α, deg	90	85.56(3)			
β , deg	90	82.10(3)			
γ , deg	90	66.34(3)			
<i>V</i> , Å ³	2193.2(8)	1324.3(9)			
Ζ	2	2			
density (calcd), Mg/m ³	1.330	1.550			
θ range for data collecn, deg	2-30	2-28.5			
no. of rflns collected	3581	7144			
no. of indep rflns	$3180 \ (R_{\rm lnt} = 0.0641)$	6699 ($R_{\rm int} = 0.0382$)			
abs cor	empirical from ψ -scans				
final $R_F[I > 2\sigma(I)]$	0.0479 [2948]	0.0493 [4862]			
$R_{\rm wF^2}$ (all data)	0.1212	0.1130			
no. of params	107	326			
largest diff peak and hole, e Å ⁻³	0.456 and -0.454	0.633 and -0.829			
diffractometer used	Siemens P2(l) diffractometer				
programs used	Siemens SHELXTL plus/SHELXL-97				
structure refinement	full-matrix least squares on F^2				
remarks		displaced Cp* ring (78:22); rings			
		prizu batzuibe			

adjusted usin SAME

Table 2. Selected Bond Lengths (Å) and Angles(deg) for 1

2.334(4) 2.329(4) 2.331(4)	Ga(1)-C(5) Ga(1)-Ni(1) Cp* _{centroid} -Ga	2.351(4) 2.2188(5) 2.003(4)
2.346(4) 109.46(15)	Cp*centroid=Ga=Ni	164.70(10)
	2.334(4) 2.329(4) 2.331(4) 2.346(4) 109.46(15)	$\begin{array}{cccc} 2.334(4) & Ga(1)-C(5) \\ 2.329(4) & Ga(1)-Ni(1) \\ 2.331(4) & Cp^*_{centroid}-Ga \\ 2.346(4) \\ 109.46(15) & Cp^*_{centroid}-Ga-Ni \\ \end{array}$

in the gas phase.⁶ The Cp^{*} moieties are nearly symmetrically η^5 -bonded to the gallium centers, but a substantial deviation from linearity is observed for the

Figure 2. Molecular structure of *cis*-Mo(Cp*Ga)₂(CO)₄ (**3**), with thermal ellipsoids at 50% probability.

Table 3.	Selected	Bond	Lengths	(Å)	and	Angles
		(deg)	for 3			U

	· 0,		
Ga(1)-C(1)	2.257(4)	Ga(2)-C(11)	2.253(8)
Ga(1) - C(2)	2.244(4)	Ga(2) - C(12)	2.268(7)
Ga(1)-C(3)	2.282(4)	Ga(2)-C(13)	2.276(6)
Ga(1)-C(4)	2.302(4)	Ga(2)-C(14)	2.286(7)
Ga(1)-C(5)	2.298(4)	Ga(2)-C(15)	2.314(11)
Ga(1)-Mo(1)	2.554(1)		
Ga(2)-Mo(1)	2.537(1)		
O(1)-C(21)	1.144(6)	Mo(1)-C(21)	2.037(6)
O(2)-C(22)	1.158(5)	Mo(1)-C(22)	1.972(4)
O(3)-C(23)	1.153(5)	Mo(1)-C(23)	1.977(5)
O(4)-C(24)	1.152(6)	Mo(1)-C(24)	2.046(6)
Cp*(1)centroid-Ga(1)	1.928(6)		
$Cp^{*}(2)_{centroid}-Ga(2)$	1.932(6)		
Ga(1)-Mo(1)-G	fa(2)	90).34(4)
Cp*(1) _{centroid} -Ga	a(1)-Mo(1)	160).8(6)
Cp*(2) _{centroid} -Ga	a(2)-Mo(1)	172	2.2(6)

Cp*centroid-Ga-Ni vectors (165°). Repulsive intramolecular interactions between the Cp* methyl groups of different Cp*Ga ligands (cone angle θ 112°) are the main reason for the observed deviation; they would cause steric stress in case of a linear Cp*_{centroid}-Ga-Ni arrangement. The asymmetry within the Cp*GaNi moiety in the solid state is not maintained in solution. Here, fast haptotropic shifts in the Cp* part of the molecule lead to averaged NMR signals (¹H, ¹³C) for the Cp* methyl groups and for the Cp* ring atoms, even at low temperature (-80 °C). In the IR spectrum, absorptions typical for the Cp* ring system (2958, 2906, and 2855 cm⁻¹) are detected. 1 is the first homoleptic complex with Cp*Ga as ligand and, except for Ni[InC-(SiMe₃)₃]₄,⁷ is the only homoleptic transition-metal compound containing ElR ligands (El = group 13 element).

The molecular structure of **3** in the solid state is shown in Figure 2. Crystal structure parameters are given in Table 1, and selected bond lengths and angles are collected in Table 3.

The structure of **3** contains two Cp^*Ga units in cisorientation to the molybdenum center with Ga-Mo

⁽⁵⁾ Loos, D.; Baum, E.; Ecker, A.; Schnöckel, H.; Downs, A. J. Angew. Chem. **1997**, 109, 894; Angew. Chem., Int. Ed. **1997**, 36, 860.

⁽⁶⁾ Haaland, A.; Martinsen, K. G.; Volden, H. V.; Loos, D.; Schnöckel,
H. Acta Chem. Scand. 1994, 48, 172.
(7) Uhl, W.; Pohlmann, M.; Wartchow, R. Angew. Chem. 1998, 110,

⁽⁷⁾ Uhl, W.; Pohlmann, M.; Wartchow, R. Angew. Chem. **1998**, *110*, 1007; Angew. Chem., Int. Ed. **1998**, *36*, 961.

	Cr(Cp*Ga)(CO) ₅ (4) Fe(Cp*Ga)(CO) ₄ (5)	<i>cis</i> -Mo(Cp*Ga) ₂ (CO) ₄ (3)	Ni(Cp*Ga) ₄ (1)	Cp*Ga
d(Cp* _{centroid} -Ga)	1.910(4) 1.863(4)	1.930(6)	2.003(4)	2.081(5)

distances of 2.5536(14) and 2.5373(11) Å, respectively; this interaction is similar to that in the only other structurally investigated example, $(\eta^5-C_5H_4Me)(CO)_3$ -MoGaI₂·Et₂O (2.582(2) Å).⁸ The Ga–Mo–Ga angle is 90° within experimental error, and Cp*_{centroid}-Ga distances are 1.928(6) and 1.932(6) Å, respectively. Similar to the situation in **1**, the Cp* ligands are nearly symmetrically η^{5} -bonded to the gallium atoms, but pronounced deviations from linearity are observed for the Cp*_{centroid}-Ga-Mo vectors $(160.8(6)/172.2(6)^\circ)$. These deviations are necessary to allow the cis-orientation of two Cp*Ga units (cone angle θ 107°) at an octahedrally coordinated metal center. In the $Mo(CO)_4$ part of the molecule, the Mo-CO_{axial} distances (2.042(6) Å, average) are greater than the Mo-CO_{equatorial} (1.975(5) Å, average) distances, thus indicating pronounced back-bonding in positions with trans-oriented Cp*Ga ligands. Corresponding to a dynamic Cp* system, only one kind of methyl group is detected by NMR spectroscopy for 2 and 3. The IR spectra show absorptions in the $\nu_{\rm CO}$ region typical for terminal CO ligands (between 1986 and 1861 cm⁻¹).

It is interesting to compare the $Cp^*_{centroid}$ -Ga distances in transition-metal compounds with respect to the character of the Ga-metal interaction. In Table 4 data are given for Cp*Ga and for complexes with terminal Cp*Ga ligands.

In all compounds the Cp*_{centroid}-Ga distances are shortened in comparison to those of Cp*Ga in the solid state⁵ or in the gas phase.⁶ A reduced distance corresponds to a gallium atom in a comparatively higher oxidation state and indicates predominant σ -donor quality of the Cp*Ga fragment. The shortest Cp*_{centroid}-Ga distances are observed in the monosubstituted complexes $Cr(Cp^*Ga)(CO)_5$ (4) and $Fe(Cp^*Ga)(CO)_4$ (5), indicating the most pronounced electron donation toward the transition-metal center. In 3, the overall electron donation is less effective due to the presence of a second Cp*Ga ligand; this is documented by the comparatively longer Cp*_{centroid}–Ga distances. The longest Cp*_{centroid}-Ga distance in this series is found in the homoletic nickel complex 1, thus indicating only weak electron transfer from each of the four Cp*Ga units.

From molecular models it can be concluded that it is difficult to prepare compounds with three terminal Cp*Ga ligands at an octahedrally coordinated metal center. In this context it is interesting to note that the reaction of $M(CO)_3(CH_3CN)_3$ (M = Cr, Mo, W) with Cp*Ga proceeds with elimination of CH₃CN and results in the formation of compounds with the general composition $M_2(Cp*Ga)_3(CO)_6$, where the Cp*Ga presumably adopts bridging positions. The structures of these complexes have not yet been fully defined.⁹

Experimental Section

General Comments. All manipulations were carried out under a purified argon atmosphere using standard vacuum techniques. The solvents were purified by conventional means and distilled immediately prior to use. Ni(COD)₂ was commercially available; NorM(CO)₄ (M = Cr, Mo) was prepared according to literature methods.¹⁰ The melting point determinations were performed using a Büchi 510 melting point apparatus. Elemental analyses were performed by the Microanalytical Laboratory of the Universität Bielefeld. The NMR spectra were recorded in benzene-*d*₆ using a Bruker Avance DRX 500 spectrometer (¹H, 500.1 MHz; ¹³C{¹H}, 125.8 MHz). Chemical shifts are reported in ppm and were referenced to the solvent resonances as internal standard. IR data were collected using a Bruker Vektor 22-FT spectrometer. The samples were measured as KBr pellets.

Preparation of Ni(Cp*Ga)₄ (1). A solution of Cp*Ga (0.63 g, 3.05 mmol) in *n*-hexane (5 mL) was added dropwise to a solution of Ni(COD)₂ (0.21 g, 0.76 mmol) in *n*-hexane (25 mL). While the reaction mixture was heated at reflux for 3 h, the color of the solution changed from initially yellow to red-brown. After the mixture was cooled to room temperature, all volatile components were removed in vacuo. The red-brown residue was dissolved in toluene and filtered. The filtrate was concentrated and cooled to -30 °C to yield 0.47 g of Ni(Cp*Ga)₄ (0.53 mmol, 70%) in the form of orange crystals.

Mp: 192 °C dec. ¹H NMR (C₆D₆): δ 1.94 (s, 60 H, Cp* methyl). ¹³C NMR (C₆D₆): δ 10.12 (Cp* methyl), 112.97 (Cp* ring). IR (cm⁻¹, KBr): 2958 (w), 2906 (m), 2855 (m), 1422 (w), 1375 (w), 1098 (w), 1015 (w). Anal. Calcd for C₄₀H₆₀NiGa₄ ($M_{\rm r}$ = 878.51): C, 54.68; H, 6.88. Found: C, 54.66; H, 6.72.

Preparation of *cis*-**Cr**(**Cp*****Ga**)₂(**CO**)₄ (2) and of *cis*-**Mo**-(**Cp*****Ga**)₂(**CO**)₄ (3). In a typical experiment a solution of 1.5 mmol of Cp*Ga and 0.75 mmol of the corresponding NorM-(CO)₄ (M = Cr, Mo) complex in *n*-hexane (20 mL) was refluxed for 3 h. After the mixture was cooled to room temperature, all volatile components were removed in vacuo and the yellow residue was crystallized from toluene to give *cis*-M(Cp*Ga)₂-(CO)₄ in about 80% yield.

Data for **2**: mp 170 °C dec; ¹H NMR (C_6D_6) δ 1.83 (s, 30 H, Cp* methyl); ¹³C NMR (C_6D_6) δ 9.33 (Cp* methyl), 114.86 (Cp* ring), 223.35/230.77 ($CO_{ax/eq}$); IR (cm⁻¹, KBr) 2966 (w), 2922 (w), 2866 (w), 1986 (m), 1900 (s, sh), 1890 (s), 1861 (s), 1362 (w), 1101 (w), 799 (w), 669 (m), 644 (m). Anal. Calcd for C₂₄H₃₀O₄CrGa₂ ($M_r = 573.94$): C, 50.22; H, 5.26. Found: C, 49.97; H, 5.47.

Data for **3**: mp 190 °C dec; ¹H NMR (C_6D_6) δ 1.81 (s, 30 H, Cp* methyl); ¹³C NMR (C_6D_6) δ 9.39 (Cp* methyl), 114.63 (Cp* ring), 211.25/216.10 ($CO_{ax/eq}$); IR (cm⁻¹, KBr) 2963 (w), 2922 (w), 2864 (w), 2009 (m), 1910 (s, sh), 1904 (s), 1872 (s), 1383 (w), 1097 (w), 1021 (w), 799 (w), 608 (m), 580 (m). Anal. Calcd for C₂₄H₃₀O₄MoGa₂ ($M_r = 616.94$): C, 46.64; H, 4.89. Found: C, 46.48; H, 4.80.

Acknowledgment. The support of this work by the Deutsche Forschungsgemeinschaft, the Universität Bielefeld, and the Fond der Chemischen Industrie is gratefully acknowledged.

Supporting Information Available: Tables of crystal data, positional and thermal parameters, and bond lengths and angles for **1** and **3**. This material is available free of charge via the Internet at http://pubs.acs.org.

OM990355V

⁽⁸⁾ Green, M. L. H.; Mountford, P.; Smout, G. J.; Speel, S. R. Polyhedron **1990**, *9*, 2763–2765.

⁽⁹⁾ Jutzi, P.; Schebaum, L. O., Manuscript in preparation.