Synthesis and Structure of Dinuclear **Diphosphine-Bridged Palladium(II) Complexes**

Michael A. Zhuravel and David S. Glueck*

6128 Burke Laboratory, Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755

Christopher D. Incarvito and Arnold L. Rheingold

Department of Chemistry, University of Delaware, Newark, Delaware 19716

Received May 20, 1999

Summary: The dinuclear dicationic complexes [(Pd- $(dppe)(R)_2(\mu - diphos)]X_2$ (diphos = dppe; R = Ph (1), R= $Me(\mathbf{2})$, diphos = dppp, $R = Ph(\mathbf{3})$) were prepared by the addition of a bidentate diphosphine to [Pd(dppe)- $(R)(PMes_2H)$ ⁺, by treatment of [Pd(dppe)(R)(X)] (X = Cl, I) with Ag⁺ and a bidentate diphosphine, or by reaction of [Pd(dppe)(Ph)(X)] (X = Br, I) and dppe. NMR and crystal structure data show that the structure of **1** is the same in solution and in the solid state and allow structural and spectroscopic comparison of chelate and bridging dppe ligands at the same metal center.

Introduction

Dinuclear metal complexes with bridging bidentate diphosphines are well-known. For example, complexes of copper,¹ vanadium,² gold,³ iron,⁴ chromium,⁵ rhodium,⁶ nickel,⁷ and platinum⁸ have been reported. Analogous diphosphine-bridged complexes of Pd(0) and Pd(II) have been identified as intermediates in catalytic reactions,⁹ making characterization of this bonding mode in palladium complexes of particular interest. We report here synthesis of the dppe and dppp-bridged Pd(II) dinuclear complexes [(Pd(dppe)(R))₂(µ-diphos)]²⁺ (diphos = dppe (Ph₂PCH₂CH₂PPh₂) or dppp (Ph₂PCH₂CH₂CH₂-PPh₂)) and their spectroscopic and crystallographic characterization, including direct comparison of dppe as a bridging and a chelate ligand at a Pd(II) center.

Results and Discussion

The dinuclear diphosphine-bridged complex [(Pd- $(dppe)(Ph)_2(\mu - dppe)]X_2$ (1, X = OTf, BF₄) was initially

prepared by the addition of dppe to a dichloromethane solution of [Pd(dppe)(Ph)(PMes₂H)]X.^{10a} While no dissociation of the PMes₂H is observed in the absence of coordinating species, dppe readily displaces the bulky secondary phosphine. Complex 1 can also be prepared more conveniently from the neutral halide complexes [Pd(dppe)(Ph)(Br)] and [Pd(dppe)(Ph)(I)]. Addition of dppe to [Pd(dppe)(Ph)(Br)] in toluene leads to the formation of 1 over several days, while reaction of [Pd-(dppe)(Ph)(I)] with dppe in CH₂Cl₂ produced **1** in good yield, providing the most rational synthesis of 1. The synthesis of complex 1 is summarized in Scheme 1.

Complex 1 (X = OTf) was characterized spectroscopically. The ³¹P{¹H} NMR spectrum (CD₂Cl₂) shows three multiplets consistent with the AA'BB'CC' spin system, which can be reproduced by simulation¹¹ (Figure 1; see Table 1 for atom labeling and chemical shift and coupling constant information). The bridging phosphorus nuclei give rise to a multiplet at δ 17.8 with the large *trans* coupling constant ${}^{2}J_{PP} = 362$ Hz, which is consistent with observations for the mononuclear pre-

^{(1) (}a) Biagini-Cingi, M.; Manotti-Lanfredi, A.-M.; Ugozzoli, F.; Camus, A.; Marsich, N. *Inorg. Chim. Acta* **1997**, *262*, 69–75, and ref 4 therein. (b) Castro, R.; Romero, J.; Garcia-Vazquez, J. A.; Sousa, A.;

^{Chang, Y. D.; Zubieta, J.} *Inorg. Chim. Acta* **1996**, *345*, 119–122.
(2) Hessen, B.; van Bolhuis, F.; Teuben, J. H.; Petersen, J. L. J. Am. Chem. Soc. 1988, 110, 295-296.

⁽³⁾ McCleskey, T. M.; Henling, L. M.;Flanagan, K. A.; Gray, H. B. *Acta Crystallogr.* **1993**, *C49*, 1467–1469.

⁽⁴⁾ Tolman, C. A.; Ittel, S. D.; English, A. D.; Jesson, J. P. J. Am. Chem. Soc. 1978, 100, 4080-4089.

⁽⁵⁾ Arif, A. M.; Jones, R. A.; Hefner, J. G. J. Crystallogr. Spectrosc. Res. 1986, 16, 673-679.

⁽⁶⁾ Kakkar, A. K.; Taylor, N. J.; Marder, T. B. Organometallics 1989, 8, 1765-1768.

⁽⁷⁾ Del Zotto, A.; Mezzetti, A.; Novelli, V.; Rigo, P.; Lanfranchi, M.;
Tiripicchio, A. *J. Chem. Soc., Dalton Trans.* 1990, 1035–1042.
(8) (a) Al-Resayes, S. I.; Hitchcock, P. B.; Nixon, J. F. *J. Organomet. Chem.* 1984, *267*, C13–C15. (b) Peters, R. G.; Bennett, B. L.; Roddick,

D. M. *Inorg. Chim. Acta* **1997**, *265*, 205–211. (9) (a) de Graaf, W.; Boersma, J.; van Koten, G.; Elsevier, C. J. J. Organomet. Chem. **1989**, *378*, 115–124. (b) Portnoy, M.; Milstein, D. Organometallics 1993, 12, 1665-1673.

^{(10) (}a) Prepared by the reaction of Pd(dppe)(R)(I) (R = Me, Ph) with AgOTf and PMes₂H. Details of the synthesis and characterization will be reported separately: Zhuravel, M. A., Grewal, N. S.; Glueck, D. S. Manuscript in preparation. (b) Prepared similarly using PHPh₂: Zhuravel, M. A.; Glueck, D. S. Manuscript in preparation. (11) Simulation with gNMR v. 3.6 (Cherwell Scientific).

Figure 1. Experimental (top) and simulated (bottom) ${}^{31}P{}^{1}H$ NMR spectrum of **1**[OTf]₂ in CD₂Cl₂: (a) full spectrum; (b-d) expansions.

cursors $[Pd(dppe)(R)(PHMes_2)]^{+.10a}$ Signals due to the chelating dppe phosphorus nuclei are multiplets at δ 50.3 and 42.4. The difference in ³¹P NMR chemical shifts between the chelated and bridging dppe P nuclei is consistent with literature precedent.¹² Contributions from through-backbone and through-metal couplings have been suggested to account for J_{PP} values in metal complexes of chelate diphosphines.¹³ Direct comparison

Table 1. Atom Labeling and ³¹P NMR Data for
Complexes 1-3^a

^a Solvent: CD₂Cl₂ for **1**, **2**, CD₃CN for **3**; ³¹P NMR chemical shift reference: external 85% H₃PO₄; coupling constants in Hz.

Figure 2. ORTEP diagram of **1**·2THF. For clarity, bromide counterions, solvent molecules, and hydrogen atoms are not shown. Thermal ellipsoids are drawn at 30% probability. Selected bond lengths (Å) and angles (deg): Pd(1)-P(1) 2.360(2), Pd(1)-P(2) 2.281(2), Pd(1)-P(3) 2.336(2), Pd(1)-C(32) 2.047(4), P(3)-C(45) 1.824(6), C(45)-C(45)' 1.53(1), P(1)-Pd(1)-P(2) 83.01(7), P(2)-Pd(1)-P(3) 174.86(7), P(3)-Pd(1)-P(1) 100.95(7), C(32)-Pd(1)-P(1) 169.6(1), C(32)-Pd(1)-P(2) 86.8(1), C(32)-Pd(1)-P(3) 89.3(1).

of the P–P coupling constants observed for dppe in **1** (26 Hz, chelate, and 23 Hz, bridging) is difficult, however, because of the differing conformations of these ligands.¹⁴

In the ¹H NMR spectrum of **1** (CD₂Cl₂) the CH₂ protons of the chelate dppe appear as a multiplet at δ 2.15, in good agreement with the observation for the mononuclear complexes [Pd(dppe)(R)(PR'_2H)]⁺.¹⁰ The CH₂ protons of the bridging dppe, however, appear as a broad singlet at δ 1.02 with no apparent P–H coupling.

The crystal structure of **1** as the bromide salt is shown in Figure 2. Data collection and structure refinement are summarized in Table 2, and selected bond lengths

⁽¹²⁾ Garrou, P. E. Chem. Rev. 1981, 81, 229-266.

⁽¹³⁾ Grim, S. O.; Briggs, W. L.; Barth, R. C.; Tolman, C. A.; Jesson, J. P. *Inorg. Chem.* **1974**, *13*, 1095–1100.

⁽¹⁴⁾ Crumbliss, A. L.; Topping, R. J. In *Phosphorus-31 NMR* Spectroscopy in Stereochemical Analysis; Verkade, J. G., Quin, L. D., Eds.; VCH: Deerfield Beach, FL, 1987; pp 531–557.

Table 2.	Crystallographic Data for	
(Pd(dnne)	(Ph)) ₂ (<i>u</i> -dnne)]Br ₂ (1)-2THF	2

[(= u(uppe)(=))//(#	"hb " (1) *1111
formula	$C_{98}H_{98}Br_2O_2P_6Pd_2$
fw	1866.20
space group	$P\overline{1}$
<i>a</i> , Å	11.700(4)
<i>b</i> , Å	12.461(4)
<i>c</i> , Å	16.762(7)
α, deg	84.60(2)
β , deg	82.26(2)
γ , deg	63.86(2)
$V, Å^3$	2172.4(2)
Z	1
cryst color, habit	colorless block
$D(calc), g/cm^3$	1.426
μ (MoK α), cm ⁻¹	14.93
temp, K	264(2)
diffractometer	Siemens P4
radiation	Mo K α ($\lambda = 0.71073$ Å)
R(F), % ^a	5.31
$R(wF^2), \%^a$	12.77

^{*a*} Quantity minimized = $R(wF^2) = \sum [w(F_0^2 - F_c^2)^2] / \sum [(wF_0^2)^2]^{1/2};$ $R = \sum \Delta / \sum (F_0), \ \Delta = |(F_0 - F_c)|.$

and angles appear in the figure caption. Additional details are given in the Experimental Section and the Supporting Information. The geometry around each palladium center is distorted square planar, and the Pd–P bond lengths are similar. The longest of these (2.360(2) Å) is *trans* to the Ph group, while the other Pd–P bond lengths are 2.281(2) Å (*trans* to μ -dppe) and 2.336(2) Å (*trans* to chelating dppe), respectively. The P–CH₂ and C–C bond lengths in the bridging dppe (1.824(6) and 1.53(1) Å) are consistent with the data for free dppe¹⁵ (1.829(3) and 1.521(7) Å). The C–C–P angles are also very similar: 114.5(6)° (in **1**) and 110.9(4)° (free dppe), indicating that the bridging dppe is not sterically constrained.

The solution ³¹P NMR spectrum of **1** is consistent with its crystal structure. In contrast, the solid-state structures of several known μ -diphosphine complexes differ from their (sometimes dynamic) solution structures. For example, the crystal structure of [Ni(dppe)(NO)]₂- $(\mu$ -dppe)⁷ shows distorted tetrahedral coordination at nickel, but no P-P coupling is observed in the ³¹P NMR spectrum at room temperature. In the solid-state structure of $[Pd(dippe)]_2(\mu$ -dippe)¹⁶ (dippe = (i-Pr)₂PCH₂- $CH_2P(i-Pr)_2$), the P nuclei of a chelating dippe are inequivalent, which would give rise to an [ABC]₂ spin system. In solution, however, a simpler $[AB_2]_2$ spin system is observed, which was ascribed to facile rotation of the Pd(dippe) fragment around the remaining Pd-Pbond. Finally, the bridging dmpe observed by X-ray crystallography for $[Rh_2(dmpe)_4(\mu-dmpe)][Cp]_2^6$ (dmpe = $Me_2PCH_2CH_2PMe_2$, $Cp = C_5H_5^{-}$) dissociates in solution, and $[Pt(dfepe)(CO)]_2(\mu$ -dfepe)^{8b} (dfepe = $(C_2F_5)_2$ - $PCH_2CH_2P(C_2F_5)_2$) disproportionates in solution.

The substitution of PMes₂H with a chelating diphosphine is a general reaction. Addition of 0.5 equiv of dppe to a solution of [Pd(dppe)(Me)(PMes₂H)]OTf^{10a} in CH₂-Cl₂ results in the formation of the insoluble complex [(Pd(dppe)(Me))₂(μ -dppe)][OTf]₂ (**2**), which was characterized by elemental analysis and IR spectroscopy. The solubility of **2** in common solvents is not high enough for NMR spectroscopy; however, the ³¹P NMR spectrum of the reaction mixture confirms the loss of PMes₂H. Stirring **2** with 2 equiv of K(BAr'₄) (Ar' = 3,5-(CF₃)₂C₆H₃) produces the soluble BAr'₄ salt of **2**. The second-order ³¹P NMR spectrum of **2**[BAr'₄]₂ (CD₂Cl₂) is very similar to that of **1** (Table 1), as expected. The ¹H NMR spectrum (CDCl₃) includes peaks due to Pd–Me (m, δ 0.30) and dppe CH₂ resonances (δ 2.45–1.90 (m, chelate dppe); 0.7 (m, μ -dppe)) similar to those in **1**.

Similarly, reaction of $[Pd(dppe)(Ph)(PMes_2H)]OTf$ with dppp gives the dppp-bridged dication $[(Pd(dppe)-(Ph))_2(\mu$ -dppp)][OTf]₂ (**3**) in excellent yield. As expected, since the longer bridge of dppp reduces the long-range couplings,^{9b,16} the ³¹P NMR spectrum of **3** (CD₃CN) is much simpler than those of **1** and **2** (Table 1). The bridging dppp gives rise to a doublet of doublets at δ 17.0 with a large *trans* (360 Hz) and a small *cis* (29 Hz) coupling constant, and peaks due to dppe appear as two doublets of doublets at δ 52.7 and 45.1. As in the dppebridged complexes, the μ -dppp CH₂ ¹H NMR signals are a broad multiplet at δ 0.76 (acetone-*d*₆).

We have not explored the generality of these phosphine substitution reactions with ligands less bulky than PHMes₂ in detail. However, although complex **1** forms rapidly when dppe is added to $[Pd(dppe)(Ph)-(PHMes_2)]^+$ in THF, the analogous diphenylphosphine complex^{10b} $[Pd(dppe)(Ph)(PHPh_2)]^+$ does not react with dppe in THF under similar conditions.

In conclusion, the dinuclear diphosphine-bridged complexes $[(Pd(dppe)(R))_2(\mu\text{-diphos})]^{2+}$ form readily when the cationic complexes $[Pd(dppe)(R)(PMes_2H)]X$ are treated with diphos or by substitution of the halide X in [Pd(dppe)(R)(X)]. NMR and crystal structure data for **1** confirm that the diphosphine-bridged solid-state structure is maintained in solution and reveal similar bonding characteristics for chelate and μ -dppe ligands.

Experimental Section

General Experimental Details. Unless otherwise noted, all reactions and manipulations were performed in dry glassware under a nitrogen atmosphere at 20 °C in a drybox or using standard Schlenk techniques. Petroleum ether (bp 38– 53 °C), ether, THF, and toluene were dried and distilled before use by employing Na/benzophenone. CH_2Cl_2 was distilled from CaH₂. Acetone and acetonitrile were degassed by purging with N₂ and stored over molecular sieves.

Unless otherwise noted, all NMR spectra were recorded by using a Varian 300 MHz spectrometer. ¹H or ¹³C NMR chemical shifts are reported vs Me_4Si and were determined by reference to the residual ¹H or ¹³C solvent peaks. ³¹P NMR chemical shifts are reported vs H_3PO_4 (85%) used as an external reference. Coupling constants are reported in hertz (Hz). Unless otherwise noted, peaks in NMR spectra are singlets. Infrared spectra were recorded on KBr pellets on a Perkin-Elmer 1600 series FTIR machine and are reported in cm⁻¹. Elemental analyses were provided by Schwarzkopf Microanalytical Laboratory. Low-resolution FAB mass spectroscopy was performed by S. L. Mullen on a VG ZAB-SE instrument at the University of Illinois.

Unless otherwise noted, reagents were from commercial suppliers. The following compounds were made by the literature procedures: [Pd(dppe)(Ph)(I)],¹⁷ [Pd(dppe)(Me)(Cl)],¹⁸

 ⁽¹⁵⁾ Pelizzi, C.; Pelizzi, G. Acta Crystallogr. 1979, B35, 1785–1790.
 (16) Fryzuk, M. D.; Clentsmith, G. K. B.; Rettig, S. J.; Hagele, G. Organometallics 1996, 15, 2083–2088.

⁽¹⁷⁾ Mann, G.; Baranano, D.; Hartwig, J. F.; Rheingold, A. L.; Guzei,
I. A. *J. Am. Chem. Soc.* **1998**, *120*, 9205–9219.
(18) Dekker, G. P. C. M.; Elsevier, C. J.; Vrieze, K.; van Leeuwen,

⁽¹⁸⁾ Dekker, G. P. C. M.; Elsevier, C. J.; Vrieze, K.; van Leeuwen, P. W. N. M. *Organometallics* **1992**, *11*, 1598–1603.

 $K(BAr'_4)$.¹⁹ [Pd(dppe)(Ph)(Br)] was prepared as for [Pd(dppe)-(Ph)(I)] by treatment of [*trans*-Pd(PPh₃)₂(Ph)(Br)]²⁰ with dppe.

[(Pd(dppe)(Ph))₂(μ -dppe)]X₂ (X = BF₄, OTf, Br, I) (1). Method 1. [Pd(dppe)(Ph)(PMes₂H)]OTf (108 mg, 0.11 mmol) was dissolved in 2 mL of CH₂Cl₂. Dppe (22 mg, 0.06 mmol) was added to the yellow solution as a solid, and the mixture was allowed to stir for 20 min, after which precipitation of white solid started. Diethyl ether was added, and cooling to -25 °C afforded the product as 81 mg (81% yield) of off-white solid. Anal. Calcd for C₉₂H₈₂F₆O₆P₆Pd₂S₂: C, 59.40; H, 4.44. Found: C, 59.48; H, 4.79. The tetrafluoroborate salt of 1 was prepared in a similar fashion.

¹H NMR (CD₂Cl₂): δ 7.56–7.26 (m, 28H, Ph), 7.14–6.98 (m, 24H, Ph), 6.78–6.43 (m, 18H, Ph), 2.30–2.00 (m, 8H, CH₂), 1.02 (broad, 4H, CH₂). IR: 3053, 1563, 1482, 1436, 1268, 1222, 1149, 1102, 1029, 997, 878, 820, 692, 636. FAB MS (Magic Bullet): *m*/*z* 979.2 (Pd(dppe)₂Ph), 902.2 (Pd(dppe)₂), 581.1 (Pd-(dppe)Ph), 553.0, 504.0 (Pd(dppe)), 475.1, 427.0, 399.9, 367.0, 290.9, 263.1, 212.9, 183.1.

Method 2. [Pd(dppe)(Ph)(I)] (74 mg, 0.1 mmol) was dissolved in 1 mL of CH_2Cl_2 . Dppe (21 mg, 0.05 mmol) was added to the yellow solution as a solution in 1 mL of CH_2Cl_2 , and the reaction mixture was stirred for 20 min. The solution was filtered and crystallized by adding Et_2O and cooling to -25 °C. The crude product was obtained as 64 mg (68% yield) of yellow solid. The bromide salt of **1** was prepared in a similar way and used for X-ray crystallography.

[(Pd(dppe)(Me))₂(μ -dppe)]X₂ (X = OTf, BAr'₄) (2) Method **1.** [Pd(dppe)(Me)(PMes₂H)]OTf^{10a} (77 mg, 0.08 mmol) was dissolved in 2 mL of CH₂Cl₂. Dppe (17 mg, 0.04 mmol) was added to the yellow solution as a solid, and the reaction mixture was allowed to stir for 20 min. Precipitation of white solid started immediately after the addition of the dppe. The solution was decanted, and the solid residue was washed with Et₂O (4 × 5 mL) and dried in a vacuum to give the product as 51 mg (71% yield) of insoluble off-white solid. Anal. Calcd for C₈₂H₇₈F₆O₆P₆Pd₂S₂: C, 56.73; H, 4.53. Found: C, 57.01; H, 4.65. IR: 3054, 2966, 2895, 1482, 1436, 1272, 1223, 1150, 1102, 1030, 748, 696, 636.

Method 2. To a solution of [Pd(dppe)(Me)(Cl)] (111 mg, 0.20 mmol) in 3 mL of CH_2Cl_2 was added AgOTf (52 mg, 0.20 mmol). The solution was allowed to stand for 5 min and filtered, and then dppe (40 mg, 0.10 mmol) was added. After an additional 5 min, a white solid precipitated. The solution was decanted, and the solid residue was washed with 3 × 10 mL of Et₂O and dried. Then K(BAr'₄) (361 mg, 0.40 mmol) was added as a solution in 3 mL of THF. The slurry was stirred for 2 days and filtered. Petroleum ether was added, and cooling to -25 °C gave the crude product as a yellow oil, which could

not be obtained analytically pure by recrystallization. ¹H NMR (CDCl₃): δ 7.80–6.80 (m, 70H), 2.40–1.95 (m, 8H, CH₂), 0.65 (m, 4H, CH₂), 0.30 (m, 6H, Me).

[(Pd(dppe)(Ph))₂(μ -dppp)][OTf]₂ (3). [Pd(dppe)(Ph)-(PMes₂H)]OTf^{10a} (88 mg, 0.09 mmol) was dissolved in 2 mL of CH₂Cl₂. Dppp (19 mg, 0.05 mmol) was added to the yellow solution as a solid, and the reaction mixture was allowed to stir for 20 min. The solution was filtered, Et₂O was added, and cooling to -25 °C afforded the product as 81 mg (99% yield) of off-white solid. Anal. Calcd for C₉₃H₈₄F₆O₆P₆Pd₂S₂: C, 59.59; H, 4.52. Found: C, 59.76; H, 4.74. ¹H NMR ((CD₃)₂-CO): δ 7.61–7.05 (m, 55H, Ph), 6.88–6.81 (m, 7H, Ph), 6.64–6.59 (m, 2H, Ph), 6.41–6.36 (m, 3H, Ph), 6.24–6.18 (m, 3H, Ph), 2.36–2.22 (br m, 8H, CH₂), 0.76 (br m, 6H, CH₂). IR: 3059, 3024, 2922, 2849, 1600, 1492, 1452, 1028, 906, 756, 697.

Crystallographic Structural Determination. A summary of the crystallographic data is given in Table 2. A suitable crystal was selected and mounted in a nitrogen-flushed, thinwalled glass capillary. The unit-cell parameters were obtained by the least-squares refinement of the angular settings of 24 reflections ($15^{\circ} \le 2\theta \le 25^{\circ}$). No evidence of symmetry higher than triclinic was observed in either the photographic or diffraction data. E-statistics suggest the centrosymmetric space group option, $P\overline{1}$, which yielded chemically reasonable and computationally stable results of refinement. The structure was solved by direct methods, completed by subsequent difference Fourier syntheses, and refined by full-matrix, leastsquares procedures. No absorption corrections were required because there was less than 10% variation in the integrated ψ -scan intensities. The molecule lies on a crystallographic inversion center and cocrystallized with two molecules of THF. All non-hydrogen atoms were refined with anisotropic displacement parameters, and hydrogen atoms were treated as idealized contributions. All phenyl rings were refined as rigid planar bodies to conserve a reasonable data-to-parameter ratio. All software and sources of the scattering factors are contained in the SHELXTL (5.10) program library.²¹

Acknowledgment. We thank the NSF Career Program, DuPont, and Union Carbide (Innovation Recognition Program) for partial support, and the Department of Education for a GAANN fellowship for M.A.Z. The University of Delaware thanks the NSF (CHE-9628768) for their support of the purchase of the CCD-based diffractometer.

Supporting Information Available: Details of the crystal structure determinations. This material is available free of charge via the Internet at http://pubs.acs.org.

⁽¹⁹⁾ Brookhart, M.; Grant, B.; Volpe, A. F., Jr. *Organometallics* **1992**, *11*, 3920–3922.

⁽²⁰⁾ Moser, W. R.; Wang, A. W.; Kjeldahl, N. R. J. Am. Chem. Soc. 1988, 110, 2816–2820.

OM990378+

⁽²¹⁾ Sheldrick, G. Siemens XRD; Madison, WI.