Synthesis and Characterization of Fe,Co-Mixed Metal Polynuclear Complexes with C4H and C4 Ligands Derived from Butadiynyl (X = H) and Butadiynediyl Iron Complexes (X = Fp*), Fp*-C=C-C=C-X [Fp* = (*η***5-C5Me5)Fe(CO)2]: Transformation of the C4(H) Cluster Frameworks via Valence Isomerization and 1,2-H Shift of the Carbon Linkages**

Min-Chul Chung, Aizoh Sakurai, Munetaka Akita,* and Yoshihiko Moro-oka*

Research Laboratory of Resources Utilization, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan

Received June 28, 1999

Sequential addition of $Co_2(CO)_8$ and $Fe_2(CO)_9$ to $Fp^{\ast}-C\equiv C-C\equiv C-X$ (X = H (1), Fp^{*} (2)) affords a variety of Fe,Co mixed metal cluster compounds resulting from a combination of (1) addition of a Co₂ fragment to the C=C bonds, (2) reorganization of the cluster framework including metal-metal bond formation, (3) replacement of metal fragments and transfer of metal fragments, (4) valence isomerization of the $C_4(H)$ linkage, and (5) 1,2-H shift of the C4H ligand.

Polynuclear metal complexes bearing linear carbon allotropes (C_n) as a ligand¹⁻⁴ have been a subject of our recent research activities.^{2,3} Such synthetic studies should provide information on structural aspects of carbide (C*n*) species adsorbed on a heterogeneous metal

(2) (a) Akita, M.; Moro-oka, Y. *Bull. Chem. Soc. Jpn.* **1995**, *68*, 420. (b) Fe2: Akita, M.; Terada, M.; Oyama, S.; Moro-oka, Y. *Organometallics* **1990**, *9*, 816. (c) Akita, M.; Terada, M.; Oyama, S.; Sugimoto, S.; Moro-oka, Y. *Organometallics* **1991**, *10*, 1561. (d) Akita, M.; Terada, M.; Moro-oka, Y. *Organometallics* **1991**, *10*, 2961. (e) Mn: Akita, M.; Ishii, N.; Tanaka, M.; Moro-oka, Y. *Organometallics* **1994**, *13*, 258. (f) Akita, M.; Takabuchi, A.; Terada, M.; Ishii, N.; Tanaka, M.; Moro-oka, Y. *Organometallics* **1994**, *13*, 2516. (g) Terada, M.; Masaki, Y.; Tanaka, M.; Akita, M.; Moro-oka, Y. *J. Chem. Soc., Chem. Commun.* **1995**, 1611. (h) Akita, M.; Kato, S.; Terada, M.; Masaki, Y.; Tanaka, M.; Moro-oka, Y. *Organometallics* **1997**, *16*, 2392. (i) Akita, M.; Chung, M.-C.; Sakurai, A.; Sugimoto, S.; Terada, M.; Tanaka, M.; Moro-oka, Y. *Organometallics* **1997**, *16*, 4882. (j) Sakurai, A.; Akita, M.; Morooka, Y. *Organometallics* **1999**, *18*, 3241.

(3) (a) Akita, M.; Terada, M.; Moro-oka, Y. *Organometallics* **1992**, *11*, 1825. (b) Akita, M.; Terada, M.; Moro-oka, Y. *Organometallics* **1992**, *11*, 3468. (c) Akita, M.; Sugimoto, S.; Terada, M.; Moro-oka, Y.
J. Am. Chem. Soc. **1992**, *114*, 7581. (d) Akita, M.; Sugimoto, S.;
Takabuchi, A.; Tanaka, M.; Moro-oka, Y. *Organometallics* **1993**, *12*, 2925. (e) Akita, M.; Terada, M.; Ishii, N.; Tanaka, M.; Hirakawa, H.; Moro-oka, Y. *J. Organomet. Chem.* **1994**, *473*, 175. (f) Akita, M.;
Hirakawa, H.; Tanaka, M.; Moro-oka, Y. *J. Organomet. Chem.* **1995**,
485, C14. (g) Akita, M.; Hirakawa, H.; Sakaki, K.; Moro-oka, Y. *Organometallics* 1995, 14, 2775. (h) Akita, M.; Chung, M.-C.; Terada, M.; Miyauti, M.; Tanaka, M.; Moro-oka, Y. *J. Organomet. Chem.*
1998, 565, 49. (i) Akita, M.; Sakurai, A.; Moro-oka, Y. *J. Organomet. Chem.*
1998, 565 Y.; Akita, M.; Moro-oka, Y. *J. Chem. Soc., Chem. Commun.* **1997**, 1557.

catalyst surface. The carbide intermediate, which should be formed at an early stage of catalytic transformation of carbon monoxide and hydrocarbons, is a key species for not only construction of carbon skeletons but also deactivation of the catalyst. 5 In previous papers, we reported synthesis and properties of polymetallic C2H*^x* complexes $(x = 0, 1)$ derived from the ethynyl $(Fp^*$ C=C-H) and ethynediyl complexes (Fp*-C=C-Fp*).³ In addition to features common to those of polynuclear acetylide cluster compounds, notable features peculiar to the simple C2H*^x* system have been observed. Recently our research targets are extended to polymetallic systems with longer carbon rods.^{2i,j,3h} Herein we disclose the results of classical cluster formation reactions of the butadiynyl and butadiynediyl iron complexes, $Fp^* - C \equiv C - C \equiv C - H$ (**1**) and $Fp^* - C \equiv C - C \equiv C - Fp^*$ (**2**),

^{(1) (}a) Beck, W.; Niemer, B.; Wieser, M. *Angew. Chem., Int. Ed. Engl.* **1993**, *32*, 923. (b) Lang, H. *Angew. Chem., Int. Ed. Engl.* **1994**, *33*, 547. (c) Bunz, U. *Angew. Chem., Int. Ed. Engl.* **1996**, *35*, 969. (d) Penfold, B. R.; Robinson, B. H. *Acc. Chem. Res.* **1973**, *6*, 73.

^{(4) (}a) See references cited in ref 2i. For polynuclear $C_4(H)$ complexes, see: (b) Adams, C. J.; Bruce, M. I.; Skelton, B. W.; White A. H. *J. Organomet. Chem.* **1993**, *450*, C9. (c) Adams, C. J.; Bruce, M. I.; Horn, E.; Skelton, B. W.; Tiekink, E. R. T.; White A. H. *J. Chem. Soc., Dalton Trans.* **1993**, 3299. (d) Guillemot, M.; Toupet, L.; Lapinte, C. *Organometallics* **1998**, *17*, 1928. (e) Weyland, T.; Costuas, K,; Mari, A.; Halet, J.-F.; Lapinte, C. *Organometallics* **1998**, *17*, 5569. (f) Bartik, T.; Weng, W.; Ramsden, J. A.; Szafert, S.; Falloon, S. B.; Arif, A. M.; Gladysz, J. A. *J. Am. Chem. Soc.* **1998**, *120*, 11071. See also: (g) Bruce, M. I.; Kelly, B. D.; Skelton, B. W.; White, A. H. *J. Chem. Soc., Dalton Trans.* **1999**, 847.

⁽⁵⁾ Somorjai. G. A. *Introduction to Surface Science Chemistry and Catalysis*; Wiley-Interscience: New York, 1994. (6) (a) *Comprehensive Organometallic Chemistry*; Wilkinson, G.,

Abel, E. W., Stone, F. G. A., Eds.; Pergamon: Oxford, 1982; Vol. 5, Chapter 34. (b) *Comprehensive Organometallic Chemistry II*; Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.; Pergamon: Oxford, 1995; Vol. 8, Chapter 1.

with $Co_2(CO)$ ₈ leading to adducts with the tetrahedral C_2C_0 core. Simple adduct formation with the tetrahedral C_2Co_2 core⁶ is followed by formation of a variety of Fe,Co mixed metal cluster compounds via a combination of (i) metal fragment addition and (ii) 1,2-H shift and valence isomerization of the carbon linkages upon further treatment with $Fe₂(CO)₉$ and thermolysis. A few reactions with molybdenum species⁷ will be also described.

Results and Discussion

Adduct Formation with $Co₂(CO)₈$. Adducts obtained by interaction of 1 and 2 with $Co_2(CO)_8$ are summarized in Scheme 1. Reaction of the butadiynyl complex 1 with $Co_2(CO)_8$ readily proceeded with gas evolution (CO) to give adducts **3** and **4** in a stepwise manner. The reaction sites were readily determined by the change of the $\equiv C-H$ coupling constants. Upon coordination of 1 equiv of the dicobalt species, the ${}^{1}J_{\text{C-H}}$ value decreased from 252 Hz (**1**) to 224 Hz (**3**; cf. **4**: 219 Hz), indicating a considerable change of the hybridization of the terminal \equiv CH carbon atom, and a significant shift of the \equiv CH ¹H NMR signal (δ _H 1.42 (**1**) \rightarrow 6.02 (**3**)) was also noted. Thus the initial reaction took place at the less sterically congested $C\equiv C-H$ moiety. However, the 13 C NMR chemical shifts of the C₄H bridge could not be assigned completely, because they appeared in the similar, rather narrow range (δ _C 79-132 (3); 81-129 (**4**); cf. 53-107 (**1**)). The structures of **³** and **⁴** were characterized by X-ray crystallography (see below).

A 1:1 reaction of the butadiynediyl complex **2** with $Co_2(CO)$ ₈ also afforded the 1:1 adduct 5, which was readily characterized by (1) inequivalent Cp^{*} signals ($δ$ _H 1.86, 1.94 in CDCl3) and (2) the presence of only terminal CO stretching vibrations. The structure with the tetrahedral C_2C_0 core was determined by X-ray crystallography (see below). In contrast to the reaction of the ethynediyl complex, $Fp^* - C \equiv C - Fp^*$, leading to an μ_3 -acetylide cluster-type compound,^{3a} 5 did not undergo decarbonylation to give an analogous cluster compound. The steric congestion in the ethynediyl complex bearing the bulky Fp* groups at both ends of the C_2 bridge should be released by decarbonylation associated with metal-metal bond formation to form a compact cluster compound. But, in the case of **5** bearing the less bulky $C\equiv\stackrel{\textstyle\frown}{C}-Fp^*$ group as a substituent, no severe steric congestion was present so as to induce decarbonylation. Attempted thermal and photochemical decarbonylation of **5** resulted in the formation of an intractable mixture of products.

In contrast to the reaction of **1**, treatment of **2** with an excess amount of $Co_2(CO)_8$ or treatment of an isolated sample of 5 with $Co_2(CO)_8$ did not afford a 1:2 adduct analogous to **4** (**6**) but orange product **7** with no 1H NMR signal. The simple 13C NMR spectrum of **7** indicated a symmetrical structure, and the hexacobalt buta-2-yne-1,4-diylidyne structure8 was characterized by its spectroscopic data (FD-MS and IR) and comparison of its crystallographic parameters with those of the previously reported data for an authentic sample.⁹ In accord with the formulation, the residual part was isolated as Fp*-Co(CO)₄,^{3e} a sole detectable organome-
tallic byproduct. Although we also examined reaction tallic byproduct. Although we also examined reaction (7) (a) Klinger, R. J.; Butler, W.; Curtis, M. D. *J. Am. Chem. Soc.* of **1** with a slight excess amount of Co₂(CO)₈, no evidence

¹⁹⁷⁵, *98*, 4645. (b) Curtis, M. D. *Polyhedron* **1987**, *6*, 759. (c) Winter,

M. J. *Adv. Organomet. Chem.* **1989**, *29*, 101. (8) Seyferth, D. *Adv. Organomet. Chem.* **1976**, *14*, 97.

Downloaded by CARLI CONSORTIUM on June 30, 2009

 $(CO)_2$ $\frac{0}{0}$ $\log (CO)_2$ $\mathscr{M}_{\sim}^{\text{C}}$ CO FeCp' Cp*F ∩∩ õ $(CO)_2$ $\rm \widetilde{({\rm CO})}_2$ + $Co₂(CO)₈$ Α $Fp*-Co(CO)₄$ c≡c-C buta-1,3-diyne-1,4-diyl buta-2-yne-1.4-divlidyne

Scheme 2

for **6** was obtained even by 1H NMR monitoring of a reaction mixture. This means that, as soon as **6** is formed, it is trapped by $Co_2(CO)_8$ to give 7 probably by way of an acetylide cluster type intermediate **A** (Scheme 2).25 Because the sum of the number of carbonyl ligands in the products (30: $7 + 2 \times Fp^* - Co(CO)_4$) is larger than that in the adduct $(28: A + 2 \times Co_2(CO)_{8})$, **7** should be formed by a multistep process involving CO transfer in addition to adduct formation with a $Co₂$ fragment and elimination of $Fp^* - Co(CO)_4$. The structural change of the C4 bridge can be viewed as valence isomerization from a "buta-1,3-diyne-1,4-diyl" species (**2**) to a "buta-2-yne-1,4-diylidyne" species (**7**) induced by addition of two dicobalt species and elimination of Fe-Co species, which occur at both the ends of the C_4 bridge in a simultaneous manner. Although adduct formation and subsequent acetylide cluster formation may be possible for related diynyl complexes, $M-C\equiv C-C\equiv C-R$,¹⁰ this

type of valence isomerization is not feasible for them. This is a reactivity peculiar to polyynediyl complexes

Molecular structures of adducts **3**, **4**, and **5** were determined by X-ray crystallography.¹¹ As generally observed for $(\mu - \eta^2 \cdot \eta^2 - R - C = C - R) \text{Co}_2(CO)_6$ -type compounds, (1) they contain tetrahedral C_2C_0 cores with C \equiv C interatomic distances of 1.35(1) (3), 1.336(5) (Fe $-$ C=C), 1.331(5) (C=C-H) (4), and 1.332(5) Å (5), C-Co distances of $1.94-2.06$ Å, and Co-Co distances of 2.46-2.48 Å and (2) the linear $Fe-C\equiv C-C\equiv C-H(0r)Fe$ linkages are bent away from the dicobalt moiety with the $C\equiv C-C(Fe)$ angles of 138-150°. The parameters are comparable to those reported for a typical organic analogue: (*µ*-Bu^{*t*}-C≡C-Bu³)Co₂(CO)₆ (C≡C, 1.341(3) Å;
C-Co 1.982-1.988(2) Å; /C≡C-C; 144.1(2)° 144.8-C-Co, 1.982-1.988(2) Å; ∠C≡C-C: 144.1(2)°, 144.8- $(2)^\circ$).¹² Upon coordination, the C=C bonds are elongated by ca. 0.13-0.20 Å when compared with those in **¹** (Fe-C=C, 1.207(5); C=C-H, 1.153(6) Å) and **2** (1.197(4) Å).³ⁱ In addition, the Fe-C= bonds in the Fe-(C=C)Co₂ parts in **4** (1.996(4) Å) and **5** (1.990(4) Å) are longer than

(12) (a) Gregson, D.; Howard, J. A. K. *Acta Crystallgr.* **1983**, *C39*, **1024**. (b) Johnson, B. F. G.; Lewis, J.; Raithby, P. R.; Wilikinson, D. L. J. *Organomet. Chem.* **1991**, *408*, C9. (c) Magnus, P.; Becker, D. P. *J Chem. Soc., Chem. Commun.* **1985**, 640.

(13) (a) *Comprehensive Organometallic Chemistry II*; Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.; Pergamon: Oxford, 1995; Vol. 10, Chapter 3. (b) Shriver, D. F.; Kaesz, H.: Adams, R. D. *The Chemistry of Metal Clust*

(14) (a) See ref 14a. (b) Seyferth, D.; Hoke, J. B.; Rhingold, A. L.; Cowie, M.; Hunter, A. H. *Organometallics* **1988**, *7*, 2163. (c) Bruce, M. I.; Kousantonis, G. A.; Tiekink, E. R. T. *J. Organomet. Chem.* **1991**, *408*, 77. (d) Carty, A. J.; Taylor, N. J.; Sappa, E.; Tiripicchio, A.; Tiripicchio-Camellini, M. *Organometallics* **1991**, *10*, 1907. (e) Green, M.; Marsden, K.; Salter, I. D.; Stone, F. G. A.; Woodward, P. *J. Chem. Soc., Chem. Commun.* **1983**, 446. (f) Chi, Y.; Lee, G.-H.; Peng, S.-M.; Liu, B.-J. *Polyhedron* **1989**, *8*, 2003. (g) Martinetti, A.; Sappa, E.; Tiripicchio, A.; Tiripicchio-Camellini, M. *J. Organomet. Chem.* **1980**, 197, 335. (h) Hwang, D.-K.; Chi, Y.; Peng, S.-M.; Lee, G.-H. *Organo-metallics*, **1990**, 9, 2709. (i) Hwang, D.-K.; Chi, Y.; Peng, S.-M.; Lee, G.-H. *J. Organonetallics* **1990**, 9, 2709. (i) Hwang, D.-K.; Chi, Y.; Peng, S. 15 and 3a.

(15) (a) Sappa, E.; Tiripicchio, A.; Braunstein, P. *Chem. Rev.* **1983**, *83*, 203. (b) Sappa, E.; Tiripicchio, A.; Carty, A. J.; Toogood, G. E. *Prog. Inorg. Chem.* **1987**, *35*, 437. (c) Raithby, P. R.; Rosales, M. J. *Adv. Inorg. Chem. Radiochem.* **1985**, *29*, 169.

(16) Kousantonis, G. A.; Selegue, J. P.; Wang, J.-G. *Organometallics* **1992**, *11*, 2704.

:.17) Spiked triangular ||-type cluster compounds: (a) Roland, E
Vahrenkamp, H. *Organometallics* **1983**, *2*, 1048. (b) Bruce, M. I.;
Humphrey, M. G.; Matisons, J. G.; Roy, S. K.; Swincer, A. G. *Aust. J. Chem.* **1984**, *37*, 1955. (c) Bruce, M. I.; Horn, E.; Matisons, J. G.; Snow, M. R. *Aust. J. Chem.* **1984**, *37*, 1163. (d) Bernhart, W.; Vahrenkamp, H. *J. Organomet. Chem.* **1988**, *355*, 427. ⊥-type: (e) Weatherell, C.; Taylor, N. J.; Carty, A. J.; Sappa, E.; Tiripicchio, A. *J. Organomet. Chem. 1985, 291, C9. (f) Ewing, P.; Farrugia, L. J. Organometallics*
1989, *8, 1246. (g) Farrugia, L. J. Organometallics 1990, 9, 105. (h)
Farrugia, L. J.; MacDonald, N.; Reacock, R. D. <i>J. Chem. Soc., Chem. Commun.* **1991**, 163.

(18) Lanfranchi, M.; Tiripicchio, A.; Sappa, E.; MacLaughlin, S. A.; Carty, A. J. *J. Chem. Soc., Chem. Commun.* **1982**, 538.

⁽⁹⁾ Dellaca, R. J.; Penfold, B. R.; Robinson, R. H.; Robinson, W. T.; Spencer, J. L. *Inorg. Chem.* **1970**, *9*, 2204.

^{(10) (}a) Deeming, A. J.; Felix, M. S. B.; Bates, P. A.; Hursthouse, M. B. *J. Chem. Soc., Chem. Commun.* **1987**, 461. (b) Bruce, M. I.; Kousantonis, G. A.; Tiekink, E. R. T. *J. Organomet. Chem.* **1991**, *408*, 77. (c) Werth, A.; Dehnicke, K.; Fenske, D.; Baum, G. *Z. Anorg. Allg. Chem.* **1990**, *591*, 125. (d) Bobbie, B. J.; Taylor, N. J.; Carty, A. J. *J. Chem. Soc., Chem. Commun.* **1991**, 1511. (e) Forsyth, C. M.; Nolan, S. P.; Stern, C. L.; Marks, T. J.; Rheingold, A. L. *Organometallics* **1993**,
12, 3618. (f) Werner, H.; Gevert, O.; Steinert, P.; Wolf, J. *Organome-
<i>tallics* **1995**, *14*, 1786. (g) Rosenthal, U.; Pulst, S.; Arndt, P.; Oh Tillack, A.; Baumann, W.; Kempe, R.; Burlakov, V. V. *Organometallics* **1995**, *14*, 2961. (h) Rosenthal, U.; Pulst, S.; Arndt, P.; Baumann, W.; Tillack, A.; Kempe, R. *Z. Naturforsch., B* **1995**, *50*, 368. (i) Rosenthal, U.; Pulst, S.; Arndt, P.; Baumann, W.; Tillack, A.; Kempe, R. *Z. Naturforsch., B* **1995**, *50*, 377. (j) Maekawa, M.; Munakata, M.; Kuroda-Sowa, T.; Hachiya, K. *Inorg. Chim. Acta* **1995**, *231*, 213. (k) Maekawa, M.; Munakata, M.; Kuroda-Sowa, T.; Hachiya, K. *Polyhedron* **1995**, *14*, 2879. (l) Blenkiron, P.; Corrigan, J. F.; Pilette, D.; Taylor, N. J.; Carty, A. J. Carty, A. J. Carty, A. J.; Taylor, N. J.; Taylor, N. J.; Thewalt, *metallics* **1996**, *15*, 3935. (o) Blenkiron, P.; Enright, G. D.; Carty, A. J. *J. Chem. Soc., Chem. Commun.* **1997**, 483. (p) Carty, A. J.; Hogarth, G.; Enright, G.; Frapper, G. *J. Chem. Soc., Chem. Commun.* **1997**, 1883. (q) Gauss, C.; Veghini, D.; Berke, H. *Chem. Ber.* **1997**, *130*, 183. (r) Yamazaki, S.; Deeming, A. J.; Speel, D. M. *Organometallics* **1998**, *17*, 75. Polynuclear diynyl complexes: (s) Chi, Y.; Carty, A. J.; Blenkiron, Pilette, D.; Taylor, N. J.; Carty, A. J. *Can. J. Chem*. **1996**, *74*, 2349.
(u) Blenkiron, P.; Enright, G. D.; Low, P.; Corrigan, J. F.; Taylor, N.
J.; Chi, Y.; Saillard, J.-Y.; Carty, A. J. *Organometallics* **1998**, *17*

⁽¹¹⁾ Due to the limitation of the space, details of crystallographic results of **³**-**5**, **⁸**-**11**, **¹³**, **¹⁴**, and **¹⁵** are included in the Supporting Information. Cell parameters were as follows. **3**: monoclinic, $a = 6.772$ (2) Å, $b = 14.443(2)$ Å, $c = 12.077(2)$ Å, $\beta = 91.920(1)$ °, $V = 1180.6(4)$ Å³. **4**: triclinic, $a = 11.157(2)$ Å, $b = 16.808(3)$ Å, $c = 9.152(3)$ Å, $\alpha =$ 91.48(2)°, $β = 111.65(2)°$, $γ = 91.23(2)°$, $V = 1593(1)$ Å³. **5**: triclinic, *a*

= 11.983(2) Å, *b* = 14.399(4) Å, *c* = 11.912(3) Å, α = 114.04(2)°, $β =$

91.45(2)°, $γ = 73.71(2)°$, $V = 1792.5(8)$ Å³, **8**; monoclin 91.45(2)°, *γ* = 73.71(2)°, *V* = 1792.5(8) Å³. **8**: monoclinic, *a* = 7.864(2)
Å, *b* = 27.080(3) Å, *c* = 13.436(2) Å, *β* = 103.84(2)°, *V* = 2778.1(8) Å³.
9: orthorhombic, *a* = 17.700(7) Å, *b* = 33.617(3) Å, **9**: orthorhombic, $a = 17.700(7)$ Å, $b = 33.617(3)$ Å, $c = 12.877(1)$ Å, $V = 7663(2)$ Å³. **10**: monoclinic, $a = 9.827(2)$ Å, $b = 20.945(18)$ Å, $c = 17.389(4)$ Å, $\beta = 102.46(2)$ °, $V = 3495(2)$ Å³. **11**: monoclinic, a *V* = 4609(5) Å³. **14**: monoclinic, $a = 8.889(6)$ Å, $b = 20.99(5)$ Å, $c = 14.98(2)$ Å, $\beta = 95.41(7)$ °, $V = 2782(5)$ Å³. **15**: triclinic, $a = 12.802(7)$ Å, $b = 15.657(6)$ Å, $c = 6.976(2)$ Å, $\alpha = 98.27(4)$ °, $\beta = 91.2$

those in the free Fe $-C\equiv C$ moieties (1.907(4) (1), 1.933-(4) (**2**), 1.902(9) (**3**), and 1.908(4) Å (**5**)) by ca. 0.08 Å, presumably because the *η*1-acetylide ligand is replaced by a ligand with poor π -accepting ability (the C_2Co_2 core). The noncoordinated $-C\equiv C-$ parts in **3** and **5** retain the linear structures.

Cluster Structure Expansion by Treatment with Fe₂(CO)₉. The resulting adducts $3-5$ were further subjected to reaction with $Fe₂(CO)₉$ in the hope of forming higher nuclearity cluster compounds.¹³

(i) 1:1 Adducts 3 and 5. Reaction of **3** afforded a cluster compound **8** containing single sets of Cp* signals ⁽¹H and ¹³C NMR). The ¹³C NMR signals for the C_4 linkage (δ_c 200.0, 163.3, 137.6, 101.6) in the lower field indicated that **8** was an acetylide cluster, and its molecular structure was confirmed by X-ray crystallography.¹¹ The acetylide part, $C4 \equiv C3 - C2 \equiv C1 - Fp*(Fe1)$ (C4-C3, 1.28(1); C3-C2, 1.370(9); C2-C1, 1.19(1); C1-Fe1, 1.936(8) A), interacts with the $Fe₂Co$ triangle (Co1-Fe2, 2.625(2); Co1-Fe3, 2.627(1); Fe2-Fe3, 2.474(2) Å) in an essentially symmetrical manner as indicated by the C3-C4 part located almost equidistant from Fe2 and Fe3 (C3-Fe2, 2.127(6); C3-Fe3, 2.143(8); C4-Fe2, 2.020(7); C4-Fe3, 1.995(7) Å), and the coordination mode can be described as μ_3 - η ¹(Co1): η ²(Fe2): η ²(Fe3)", a typical coordination mode of trinuclear *µ*3-acetylide cluster compounds where the $C\equiv C$ vector is located perpendicular to the M-M vector *^π*-bonded to the acetylide ligand.^{14,15} A μ -C=C-SiMe₃ derivative was reported and structurally characterized by Seyferth.14b Formation of **8** can be explained in terms of a sequence of reactions: (i) addition of a mononuclear species Fe- $(CO)_n$ leading to an intermediate with an FeC₀₂ triangle, (ii) elimination of $HCo(CO)_n$, leaving a dinuclear μ -acetylide complex, $(\mu - \eta^1 \cdot \eta^2 - C\equiv C - C\equiv C - Fp^*)\text{FeCo(CO)}\tau$, and (iii) further addition of an Fe(CO)*ⁿ* species, giving rise to the trinuclear cluster core of **8**. A similar mechanism was proposed for a tetranuclear dicarbide cluster compound.16

In contrast to the reaction of the μ -C₄H complex **3** mentioned above, treatment of 5 with Fe₂(CO)₉ resulted in formation of tetranuclear "spiked triangular" cluster compound **⁹** (Co1-Fe3, 2.543(1); Co1-Co2, 2.606(1); Co1-Fe1, 2.5795(9); Co2-Fe3, 2.4744(9) Å) with the $-C\equiv C-\mathrm{Fp}^*$ pendant moiety (C2-C1-Fe1). The structure of 9 was determined by X-ray crystallography.¹¹ Structures of tetranuclear μ -acetylide cluster compounds with the spiked triangular metal array are divided into parallel (||) and perpendicular (⊥) types on the basis of the relative orientation of the acetylide $C\equiv C$ bond with respect to the basal M₃ triangle.¹⁷ Because in complex **⁹** the C1-C2 bond is arranged

almost parallel to the Co1-Co2 vector, the coordination structure of the core part is described as a ||-type structure. A closely related tetranuclear C_2H complex, $(Cp*Fe)Co₂Ru(CO)₁₀(μ_4 (||)-C₂H),^{3f} was reported by us,$ and its parameters for the Fe-C \equiv C part involved in the cluster part (Fe-C=, 1.917(5); C=C, 1.340(6) Å) are comparable to those in **9** (C1-Fe1, 1.957(4); C1-C2, 1.338(6) Å).

(ii) 1:2 Adduct 4. Treatment of the μ -C₄ complex **4** with $Fe₂(CO)₉$ in benzene at room temperature afforded two products **10** and **11** after fractional crystallization.

The yellow major product **10** contained a $(\mu$ -C=C-H)- $Co_2(CO)_6$ partial structure as suggested by the characteristic ¹³C NMR signal for the \equiv C-H moiety (δ _C 77.2 (d, $J = 223$ Hz)). The molecular structure of **10** was determined by X-ray crystallography (Figure 1a and Table 1). As a result, complex **10** turned out to arise from formal oxidative addition of the $Fe1-C1 \equiv$ bond in **4** to an Fe(CO)_n species. The tetrametallic Fe_2Co_2 part constitutes a spiked triangular metal array, and the FeCo2 triangle contains two Co-to-Fe dative bonds as judged by the electron counting at Fe2. No significant difference in the bond lengths are observed between the covalent and dative Co-Fe bonds (cf. **⁸** Co1-Fe2, 2.625(2); Co1-Fe3, 2.627(1) Å; and **⁹** Co1-Fe1, 2.5795- (9); Co1-Fe3, 2.543(1) Å). The C=C- ligand with the C-C separation of 1.32(1) Å interacts only with the $FeCo₂$ triangular part just like an acetylide ligand in trinuclear *µ*3-acetylide cluster compounds, and the Fe1-C1 separation $(3.48(1)$ Å) indicates a nonbonding interaction between them. All metal centers are coordinatively saturated, when the dative bonds are taken into account.

The minor product **11** was not soluble in organic solvents enough to afford a satisfactory 13C NMR spectrum and was then characterized by X-ray crystallography (Figure 1b and Table 1). The composition, $Cp*Fe_2Co_4(\mu-C_4H)(CO)_{16}$, is the same as that of the major product **10**, but the structure is completely different from **10**. Complex **11** consists of two trinuclear Fe₂Co and Co₃ cluster parts, which are bridged by an isomeric C4H bridge formed via 1,2-H shift of the butadiynyl linkage. The resulting C_4H linkage interacts with the Fe₂Co part as a μ_3 - η ¹(Fe1): η ¹(Fe2): η ²(Co1)allenylidene ligand, and the C4 atom is incorporated as a part of the μ_3 -alkylidynetricobalt structure.⁸ In accord with this description, (1) the C1-C2 and C2–C3 lengths fall in the range of $C(sp)=C(sp^2)$ bond lengths and the C3-C4 length (1.45(2) Å) indicates its single bond character, (2) the $Fe1-Fe2-C1-C2$ plane is located perpendicular to the C2-C3-C4-H1 plane in a manner similar to the situation in an organic allene molecule, (3) the C4 atom is located almost equidistant from the three cobalt atoms $(C4-C_02-4, 2.45-2.48 \text{ A})$, and (4) the $=C-H$ ¹H NMR signal is observed in the olefinic proton region. Thus complex **11** can be described as a hexanuclear *µ*4-buta-1,2-dien-1-yliden-4-ylidyne complex.

Both of complexes **10** and **11** result from formal addition of an $Fe(CO)_2$ fragment to 4, but they are not interconverted with each other under the conditions when they are formed. A plausible formation mechanism (Scheme 3) involves a common intermediate **B** with a spiked triangular metal array, which should be

^{(19) (}a) Beanan, L. R.; Rahman, Z. A.; Keisterm J. B. *Organome-tallics* **1983**, *2*, 1062. (b) Beanan, L. R.; Keisterm J. B. *Organometallics* **1985**, *4*, 1713. (c) Granozzi, G.; Tondello, E.; Bertoncello, R.; Aime, S.; Osella, D. *Inorg. Chem.* **1985**, *24*, 57. (c) Lentz, D.; Michael, H. *Chem. Ber.* **1988**, *121*, 1413. (d) Nuel, D.; Mathieu, R. *Organometallics* **1988**, *7*, 16. (e) Deeming, A. J.; Manning, P. J. *Philos. Trans. R. Soc. London, Ser. A* **1982**, *308*, 59.

⁽²⁰⁾ See ref 1h and references therein.

^{(21) (}a) Blohm, R. F.; Gladfelter, W. L. *Organometallics* **1985**, *4*, 45. (b) Sappa, E.; Tiripicchio, A.; Tiripicchio-Camellini, M. *J. Organomet. Chem.* **1983**, *246*, 287.

⁽²²⁾ King, R. B. *Organomet. Synth*. **1965**, *1*, 93.

(23) Curtis, M. D.; Hay, M. S. *Inorg. Synth*. **1990**, *28*, 150.

(24) Madach, T.; Vahrenkamp, H. *Chem. Ber.* **1980**, *113*, 1675.

(25) Bruce, M. I.; Halet, J. F.;

Figure 1. Molecular structures of (a) **10** and (b) **11** and (c) an overview and (d) an expanded view of the core part of **13** drawn at the 30% probability level.

Table 1. Selected Interatomic Distances (in Å) for 10, 11, and 13

formed by interaction of an $Fe(CO)_n$ species with the Co1-Co2 part and the terminal Fp* group in **⁴**. Fe1-C1 bond cleavage would lead to the μ_3 -acetylide cluster **10**, a formal oxidative addition product,

Scheme 3

whereas Co transfer from the $Fe₂Co₂$ part to the $Co₂$ part associated with 1,2-H shift would produce complex **11**.

Complex **10** turned out to decompose under thermal conditions (in refluxing benzene). When a benzene solution of **10** was refluxed for 1 h, purple complex **12** was isolated from a reaction mixture. The reaction of **4** with $Fe₂(CO)₉$ in refluxing benzene also produced 12. The characterization of **12** as a trinuclear μ_3 -vinylidene cluster is based on the two ¹³C NMR signals, δ _C 73.2 (d, $J = 219$ Hz) and δ_C 271.6 (s), which indicates the presence of a $(\mu$ -C=C-H)Co₂(CO)₆ partial structure and a quarternary *µ*3-vinylidene carbon atom, respectively. The ¹H NMR signals at δ _H 6.58 and 7.40 can be assigned to the \equiv CH and \equiv CH protons. The structure was also confirmed by preliminary X-ray crystallography, although the structure could not be refined satisfactorily owing to the low quality of the crystal. Complex **12**

should be formed by homolysis of the Fe-Fe bond in **10** followed by H-abstraction at C2.

Formation of Heptanuclear μ -C₄H Cluster Com**pound 13 by Thermolysis of 4.** To attempt further functionalization of the $C_4(H)$ bridge, the resulting Co_2 adducts **3**, **4**, and **5** were subjected to thermolysis and photolysis. Although most of the reactions gave an inseparable, complicated mixture of products, thermolysis of **4** produced a dark yellow complex **13** (Scheme 1). A 1H NMR spectrum of **13** contained a deshielded signal (*δ*^H 9.31) in addition to a pair of Cp* signals indicating formation of a higher nuclearity cluster compound with two Cp*Fe units. Because no characterizable ¹³C NMR spectrum was obtained due to its low solubility in organic solvents, it was subjected to X-ray crystallography (Figure 1c,d), which revealed a heptanuclear structure with the C₄H bridge, $Cp_{2}Fe_{2}Co_{5}(\mu-C_{4}H)$ - $(CO)_{14}.$

The overall structure can be viewed as a fused form of three partial structures: a tetranuclear acetylide cluster structure with the butterfly metal array (**C**),18 a trinuclear dimetallo- π -allyl structure (**D**),¹⁹ and a dinuclear *µ*-vinylidene structure (**E**) ²⁰ (Chart 1). As for the **C**-type structure, examples of acetylide cluster compounds are rather limited compared to vinylidene complexes.21 One of characteristic features is migration of the terminal hydrogen atom to the *â*-carbon atom, and its ¹H NMR signal was located in a lower field (δ _C 9.31). Similar deshielding was reported for related compounds.18 In accord with the analysis of the structure, the C-C distances are comparable to those in typical examples of each component (Chart 1), although the $C3-C4$ distance is slightly longer than the $C=C$ distance of dinuclear *µ*-vinylidene complexes due to *π*-conjugation with the adjacent unsaturated system (**D**). Complex **13** is a coordinatively saturated species with 108 CVE.

Comparison of the compositions of **4** and **13** suggests that **13** may be formed by interaction of **4** with Cp*FeCo- (CO)*ⁿ* species, which arises from thermal decomposition of **4**. But treatment of an isolated sample of **4** with Fp^* -Co(CO)₄ did not afford **13**.

Interaction with Molybdenum Species (Scheme 4). Reaction of the butadiynyl complex **1** with the coordinatively unsaturated dimolybdenum species, Mo2Cp2(CO)4, afforded the adduct **14** with the tetrahedral C_2Mo_2 core in a manner similar to the reactions with alkynes⁷ and the ethynyl complex, $Fp^{\ast}-C\equiv C-H^{3d}$ The reaction of the butadiynediyl complex **2** with Mo2Cp2(CO)4 also gave the same product **14** after replacement of the Fp* group by a hydrogen atom probably due to the steric repulsion between the Fp* group and the dimolybdenum fragment. The structural parameters of the C_2Mo_2 core characterized by X-ray crystallography ¹¹ (C-C, 1.32(1); C-Mo, 2.161-2.234- (9); Mo-Mo, 2.963(2) Å; Mo-C-O angle and Mo \cdots CO

distance for the semibridging CO: 168.8(8)° (the other angles, $166-178.4(10)^\circ$) and $2.859(9)$ Å, respectively) are similar to the above-mentioned derivatives.^{3d,7} Treatment of **1** with the heterobimetallic species, CpMoCo- $(CO)_7$, also produced the adduct 15. The structural parameters for the coordinated acetylide part are 1.41- (1) Å (C=C), 2.01(1), and 2.02(1) Å (=C-Co) and 2.14-(1) and 2.20(1) Å (\equiv C-Mo).

Although the Mo₂ adduct 14 did not further react with an excess amount of $Mo₂CD₂(CO)₄$ due to the congestion around the free C=C part, reaction with $Co_2(CO)_8$ resulted in adduct formation to give the acetylide cluster type compound **16**. The steric congestion around the C2Co2 moiety is released by decarbonylation associated with metal-metal bond formation.

Experimental Section

General Procedures. All manipulations were carried out under an inert atmosphere by using standard Schlenk tube techniques. THF and benzene (Na-K alloy) and CH_2Cl_2 (CaH₂) were treated with appropriate drying agents, distilled, and stored under argon. ${}^{1}\text{H}$ and ${}^{13}\text{C}$ NMR spectra were recorded on Bruker AC-200 (1H, 200 MHz) and JEOL EX400 (1H, 400 MHz; 13C, 100 MHz) spectrometers. Solvents for NMR measurements containing 0.5% TMS were dried over molecular sieves, degassed, distilled under reduced pressure, and stored under Ar. IR and FD-MS spectra were obtained on a JASCO FT/IR 5300 spectrometer and a Hitachi M80 mass spectrometer, respectively. Complexes **1** and **2** were prepared according to the published procedures.²ⁱ Co₂(CO)₈ was purchased and used as received, and $Fe_2(CO)_9$,²² $Mo_2CD_2(CO)_4$,²³ and CpMoCo- $(CO)7^{24}$ were prepared by the established methods.

Interaction of 1 with Co₂(CO)₈: (i) Synthesis of 3. A THF solution (35 mL) of **1** (399 mg, 1.35 mmol) and $Co_2(CO)_8$ (448 mg, 1.31 mmol) was stirred for 1 h at room temperature. Upon dissolution, the mixture turned dark green with gas evolution. The volatiles were removed under reduced pressure, and the residue was extracted with CH_2Cl_2 and passed through an alumina plug. Crystallization from CH_2Cl_2 -hexane gave **3** (592 mg, 1.01 mmol, 70% yield) as dark green crystals. 1H NMR (CDCl₃): δ _H 6.02 (1H, s, ≡CH), 1.85 (15H, s, Cp^{*}). ¹³C NMR (CDCl₃): *δ*_C 213.8 (s, Fe-CO), 200.3 (br s, Co-CO), 132.2, 106.7 (s \times 2, Fe-C=C), 97.5 (s, C_5Me_5), 78.9 (d, ²J = 32 Hz, *C*=CH), 70.2 (d, *J* = 224 Hz, C=CH), 9.8 (q, *J* = 128 Hz, C₅Me₅). IR (KBr): 2086, 2053, 2013, 1999, 1967 cm⁻¹; (CH₂-Cl₂) 2088, 2048, 2019, 1973 cm⁻¹. Anal. Calcd for C₂₂H₁₆O₈-FeCo2: C, 45.40; H, 2.77. Found: C, 45.45; H, 2.95.

(ii) Synthesis of 4. Reaction of **1** (264 mg, 0.89 mmol) and Co2(CO)8 (834 mg, 2,45 mmol; 2.75 equiv) in THF (35 mL) as described for **3** gave **4** (238 mg, 0.32 mmol, 37% yield) as dark

green crystals. ¹H NMR (CDCl₃): δ _H 6.86 (1H, s, \equiv CH), 1.80 (15H, s, Cp^{*}). ¹³C NMR (CDCl₃): δ _C 215.2 (s, Fe-CO), 201.9, 199.3 (br s \times 2, Co–CO), 129.5, 115.4, 90.0 (s \times 3, Fe–C=C– C=), 97.9 (s, C_5Me_5), 81.3 (d, $J = 219$ Hz, C=CH), 9.3 (q, $J =$ 128 Hz, C5*Me*5). IR (KBr): 2095, 2056, 2024, 2007, 1994, 1970, 1957 cm⁻¹. Anal. Calcd for C₂₈H₁₆O₁₄FeCo₄: C, 38.74; H, 1.86. Found: C, 38.20; H, 2.00.

Interaction of 2 with Co₂(CO)₈: (i) Synthesis of 5. Reaction of **2** (91 mg, 0.17 mmol) with $Co_2(CO)_8$ (58 mg, 0.17 mmol) in THF (10 mL) for 2 h at room temperature followed by workup as described above afforded **5** (96 mg, 0.12 mmol, 69% yield) as dark yellow powders. ¹H NMR (CDCl₃): δ _H 1.86, 1.94 (15H \times 2, s \times 2, Cp^{*}). ¹³C NMR (CDCl₃): δ _C 215.7, 214.4 $(s \times 2, Fe-CO)$, 203.0 (br s, Co–CO), 118.2, 110.7, 105.8, 100.2 $(s \times 4, \text{Fe}-\text{C} \equiv \text{C}-\text{C} \equiv \text{C}-\text{Fe})$, 97.7, 97.2 (s \times 2, C_5 Me₅), 10.0, 9.9 (q \times 2, $J = 129$ Hz, C₅*Me*₅). IR (KBr): 2059, 2013, 1988, 1967 cm⁻¹. Anal. Calcd for $C_{34}H_{30}O_{10}Fe_2Co_2$: C, 49.31; H, 3.65. Found: C, 48.96; H, 3.26.

(ii) Formation of 7. Treatment of a THF solution (10 mL) of **2** (94 mg, 0.17 mmol) with $Co_2(CO)_8$ (408 mg, 1.19 mmol) for 1.5 h at room temperature gave **7** (97 mg, 0.11 mmol, 62% yield) as orange crystals, which were characterized by X-ray crystallography. Chromatographic separation of the supernatant gave $Fp^* - Co(CO)_4$.

Reaction of 3 with Fe₂(CO)₉ To Give 8. A THF solution (30 mL) of **3** (132 mg, 0.23 mmol) and Fe₂(CO)₉ (412 mg, 1.13 mmol) was stirred for 19 h at ambient temperature. The mixture gradually turned brown. Then the volatiles were removed under reduced pressure, and the resultant residue was extracted with CH_2Cl_2 and passed through an alumina plug. Crystallization from CH₂Cl₂-hexanes gave 8 as brown crystals (90 mg, 0.13 mmol, 55% yield). 1H NMR (CDCl3): *δ*^H 1.89 (15H, s, Cp^{*}). ¹³C NMR (CD₂Cl₂): δ _C 213.7, 212.5, 211.8 $(s \times 3, M\text{-CO})$, 200.0, 163.3, 137.6, 101.6 $(s \times 4, Fe\text{-}C\text{=}C\text{-}$ C=C-Co), 98.5 (s, C_5Me_5), 10.0 (q, $J = 129$ Hz, C_5Me_5). IR (CH₂Cl₂): 2047, 2037, 2019 cm⁻¹. FD-MS: $m/z = 718$ (M⁺). Anal. Calcd for $C_{25}H_{15}O_{11}Fe_3Co$: C, 41.83; H, 2.09. Found: C, 41.75; H, 2.11.

Reaction of 5 with Fe₂(CO)₉ To Give 9. A mixture of 5 $(110 \text{ mg}, 0.13 \text{ mmol})$ and $Fe₂(CO)₉$ (509 mg, 1.39 mmol) dissolved in THF (20 mL) was stirred for 55 h at room temperature. The reaction mixture turned orange with gas evolution. Workup as described above (extraction with ether) gave **9** as orange crystals (64 mg, 0.055 mmol, 42% yield). 1H NMR (CDCl₃): δ_H 1.90, 1.95 (15H × 2, s × 2, Cp^{*}). ¹³C NMR (CDCl₃): δ_c 214.4, 214.0, 211.9 (s \times 3, M-CO), 126.4, 112.2, 102.5, 98.8 (s \times 4, Fe-C=C-C=C-Fe), 97.8, 97.4 (s \times 2, *C*₅Me₅), 9.89, 9.95 (q \times 2, *J* = 129 Hz, C₅*Me*₅). IR (KBr): 2065, 2016, 1970, 1940, 1821 cm⁻¹. Anal. Calcd for C₄₂H₃₀O₁₂Fe₂-Co2: C, 45.97; H, 3.62. Found: C, 45.98; H, 3.33.

Reaction of 4 with $Fe₂(CO)₉$ **To Give 10 and 11.** A benzene solution (30 mL) of 4 (366 mg, 0.43 mmol) and Fe₂- $(CO)₉$ (459 mg, 0.97 mmol) was stirred for 30 min at room temperature. Workup as described above gave **10** as yellow crystals (269 mg, 0.27 mmol, 65% yield). Concentration and cooling of the supernatant solution gave **11** (83 mg, 0.084 mmol, 20% yield) as purple crystals. **10**: ¹H NMR (CDCl₃): *δ*H 6.70 (1H, s, CH), 1.87 (15H, s, Cp^{*}). ¹³C NMR (CDCl₃): *δ*c 250.6 (*µ*-CO), 208.8 (s, Fe-CO), 201.0, 198.8 (br s, Co-CO), 175.1, 103.6 (s, C4H), 97.8 (s, *C*5Me5), 81.5 (s, C4H), 77.2 (d, *J* $=$ 223 Hz, \equiv CH), 10.0 (q, J = 129 Hz, C₅*Me*₅). IR (KBr): 2098, 2061, 2027, 2016, 2007, 1954, 1820 cm⁻¹; (CH₂Cl₂) 2096, 2086, 2063, 2032, 1976, 1819 cm⁻¹. FD-MS: $m/z = 980$ (M⁺). Anal. Calcd for $C_{30}H_{16}O_{16}Fe_2Co_4$: C, 36.77; H, 1.65. Found: C, 36.46; H, 1.96. **11**: ¹H NMR (CDCl₃): δ_H 8.83 (1H, s, CH), 1.76 (15H, s, Cp*). IR (KBr): 2097, 2054, 2006, 1956, 1859, 1809 cm-1. FD-MS: $m/z = 980$ (M⁺).

Formation of 12. (i) Thermolysis of 4 in the Presence of Fe₂(CO)₉. A benzene solution (25 mL) of 4 (196 mg, 0.23 mmol) and $Fe₂(CO)₉$ (240 mg, 0.66 mmol) was refluxed for 1 h. Removal of the volatiles, extraction with CH_2Cl_2 , filtration through an alumina pad, and crystallization from CH_2Cl_2 hexane gave **12** (45 mg, 0.059 mmol, 26% yield) as purple brown crystals.

(ii) Thermolysis of 10. Refluxing a benzene solution (15 mL) of **10** (50 mg, 0.051 mmol) for 1 h followed by workup as described above gave **12** (10 mg, 0.013 mmol, 26% yield). **12**: ¹H NMR (CDCl₃): $δ$ _H 7.33 (1H, s), 6.58 (1H, s). ¹³C NMR (CDCl₃): *δ*_C 271.6 (s, C=), 210.2 (s, Fe-CO), ~200 (br, Co-CO), 166.4 (s, $C=CH$), 131.2 (d, $J=166$ Hz, $=CH$), 73.2 (d, J $= 219$ Hz, \equiv CH). IR (KBr): 2106, 2090, 2043, 1988, 1636 cm⁻¹. FD-MS: $m/z = 762$ (M⁺). Anal. Calcd for C₁₉H₄O₁₅Cl₂FeCo₄ (**12**'CH2Cl2): C, 28.36; H, 0.63. Found: C, 28.37; H, 0.26.

Thermolysis of 4 To Give 13. A benzene solution (50 mL) of **4** (864 mg, 1.00 mmol) was refluxed for 3 h. Workup as described above gave **13** as dark yellow crystals (119 mg, 0.11 mmol, 11% yield). ¹H NMR (CDCl₃): δ_H 9.31 (1H, s, CH), 1.97, 1.82 (15H \times 2, s \times 2, Cp^{*}). IR (KBr): 2056, 2014, 1831 cm⁻¹; (CH₂Cl₂) 2059, 2014, 1831 cm⁻¹. FD-MS: $m/z = 1118$ (M⁺). Anal. Calcd for C₃₉H₃₃O₁₄Cl₂Fe₂Co₅ (13·CH₂Cl₂): C, 38.94; H, 2.77; Cl, 5.89. Found: C, 38.71; H, 2.71; Cl, 5.24.

Reaction of 1 with Mo₂Cp₂(CO)₄ To Give 14. A CH₂Cl₂ solution (25 mL) of 1 (304 mg, 1.03 mmol) and $Mo_2CD_2(CO)_4$ (418 mg, 0.963 mmol) was stirred for 3 h at ambient temperature. After removal of the volatiles the residue was subjected to chromatographic separation on alumina. Elution with 1:3 CH_2Cl_2 -hexanes gave $Fp*_{2}$, **1**, and then a brick red band, from which **14** was isolated after removal of the eluent. **14** (563 mg, 0.77 mmol, 80% yield): ¹H NMR (CDCl₃): δ_H 5.27 (10H, s, Cp₂), 4.83 (1H, s, C₄H), 1.84 (15H, s, Cp^{*}). ¹³C NMR (CDCl₃): δ_C 231.1, 230.6, 214.9 (CO), 110.2, 109.8 (s \times 2, Fe-C=C), 96.9 (s, C_5Me_5), 92.8 (d, $J = 178$ Hz, Cp), 68.3 (d, $^2J = 5$ Hz, $C \equiv$ CH), 62.1 (d, $J = 211$ Hz, C=CH), 10.0 (q, $J = 129$ Hz, C₅*Me*₅). IR (KBr): 2079, 2008, 1969, 1964, 1918, 1910, 1834, 1817 cm-1. FD-MS: $m/z = 732$ (M⁺). Anal. Calcd for $C_{30}H_{26}O_6FeMo_2$: C, 49.34; H, 3.59. Found: C, 49.20; H, 3.59.

Reaction of 1 with CpMoCo(CO)₇ To Give 15. A benzene solution (10 mL) of **1** (72 mg, 0.24 mmol) and CpMoCo(CO)7 (84 mg, 0.20 mmol) was stirred for 1 h at 50 °C. After removal of the volatiles under reduced pressure, the residue was extracted with CH_2Cl_2 and filtered through an alumina pad. Chromatographic separation on alumina (eluted with CH_2Cl_2 hexanes, 1:3) gave $Fp*_{2}$, CpMoCo(CO)₇, and then a red brown band, from which **15** was isolated after removal of the eluent. **15** (64 mg, 0.098 mmol, 48% yield): ¹H NMR (CDCl₃): δ_H 5.51 (1H, s, C4H), 5.36 (5H, s, Cp), 1.84 (15H, s, Cp*). 13C NMR (CDCl₃): δ_C 228.5, 227.1 (s, Mo-CO), 214.5, 214.3 (s, Fe-CO), 120.9, 108.0 (s \times 2, Fe-C=C), 97.2 (s, *C*₅Me₅), 92.6 (d, *J* = 178 Hz, Cp), 77.8 (d, $^2J = 9$ Hz, *C*=CH), 70.6 (d, $J = 217$ Hz, C=CH), 9.8 (q, J = 128 Hz, C₅Me₅). IR (KBr) 2076, 2045, 2010, 1980, 1955, 1920 cm⁻¹. FD-MS: $m/z = 656$ (M⁺). Anal. Calcd for C26H21O9FeCoMo: C, 47.59; H, 3.23. Found: C, 47.28; H, 3.43.

Reaction of 14 with $Co_2(CO)_8$ **To Give 16.** A THF solution (15 mL) of **14** (100 mg, 0.137 mmol) and $Co_2(CO)_8$ (260 mg, 0.76 mmol) was stirred for 4 h at ambient temperature. After removal of the volatiles the residue was extracted with CH2Cl2 and passed through an alumina pad. Crystallization from CH2Cl2-hexane gave **¹⁶** (97 mg, 0.101 mmol, 74% yield) as red-gray plates. Despite several attempts, an analytically pure sample was not obtained. ¹H NMR (CDCl₃): $δ$ _H 5.55 (1H, s, C4H), 5.36 (10H, s, Cp2), 1.84 (15H, s, Cp*). 13C NMR (CDCl₃): *δ*_C 244.6 (m-CO), 231.4 (s, Mo-CO), 206.0 (s, Fe-CO), 201.3 (br s, Co-CO), 169.3, 122.2 (s, Fe-C=C), 96.9 (s, C_5Me_5), 92.8 (d, $J = 180$ Hz, Cp), 88.7 (d, $J = 210$ Hz, $C \equiv CH$), 44.4 (d, ² J = 4 Hz, *C*=CH), 9.4 (q, J = 129 Hz, C₅*Me*₅). IR (KBr): 2029, 2000, 1979, 1926, 1834, 1809 cm-1. FD-MS: $m/z = 960$ (M⁺).

Acknowledgment. We are grateful to the Ministry of Education, Science, Sports and Culture of the Japanese Government for financial support of this research.

Note Added in Proof. After submission of our manuscript, a paper that reported valence isomerization

of a C₄ linkage similar to the process $2 \rightarrow 7$ was published.25

Supporting Information Available: Details for crystal structure determination of complexes **³**-**5**, **⁸**-**11**, and **¹³**-**15**. This material is available free of charge via the Internet at http://pubs.acs.org.

OM990494C