5395

Cleavage of Cyclodimethylsiloxanes by Dialkylaluminum Hydrides and the Nature of the Siloxyaluminum **Products**

C. Niamh McMahon,^{1a} Simon G. Bott,^{1b} Lawrence B. Alemany,^{1a} Herbert W. Roesky,^{1c} and Andrew R. Barron*,^{1a}

Department of Chemistry, Rice University, Houston, Texas 77005, Department of Chemistry, University of Houston, Houston, Texas 77204, and Institut für Anorganische Chemie der Universität Göttingen, 37077 Göttingen, Germany

Received August 9, 1999

The interaction of R_2AlH with cyclic siloxanes leads to rupture of the silicon-oxygen framework and yields aluminum polysiloxides. The room-temperature reaction of R₂AlH with $(Me_2SiO)_3$ yields the asymmetrical siloxide compounds $R_2Al(\mu$ -OSiMe₂H)(μ -OSiMe₂OSiMe₂-OSIMe₂-OS H)AlR₂, $R = {}^{t}Bu$ (1), ${}^{i}Bu$ (2). In contrast, the reaction of (${}^{t}Bu$)₂AlH with (Me₂SiO)₃ or (Me₂- SiO_{5} in refluxing toluene yields $[({}^{t}Bu)_{2}Al(\mu - OSiMe_{2}H)]_{2}$ (4), as does the reaction of $Al({}^{t}Bu)_{3}$ with $(Me_2SiO)_3$. $Me_2Al(\mu$ -OSiMe_2H)(μ -OSiMe_2OSiMe_2H)AlMe_2 (3) is formed from the reaction of Me₂AlH with (Me₂SiO)₃ in hexane when using a reagent Si:Al ratio of 0.5; higher Si:Al ratios result in the formation of the siloxide-bridged compound Me₂Al(µ-OSiMe₂H)AlMe₂- $(\mu$ -OSiMe₂O)Me₂Al $(\mu$ -OSiMe₂H)AlMe₂ (**5**). The asymmetrical polysiloxide compound (^tBu)₂Al- $(\mu$ -OSiMe₂H) $(\mu$ -OSiMe₂OSiMe₂OSiMe₂H)Al(^tBu)₂ (**6**) is formed from the reaction of (^tBu)₂AlH with $(Me_2SiO)_4$, while compound 5 and its isobutyl analogue (7) are formed with Me_2AlH and $(^{1}Bu)_{2}AlH$, respectively. Reaction of $R_{2}AlH$ with $(Me_{2}SiO)_{5}$ yields the siloxide-bridged compounds $R_2Al(\mu$ -OSiMe₂H)AlR₂(μ -OSiMe₂OSiMe₂O)R₂Al(μ -OSiMe₂H)AlR₂, R = ^tBu (8) and ⁱBu (9). If the reaction of (^tBu)₂AlH with (Me₂SiO)₅ is carried out in the presence of THF, then (^tBu)₂Al(*u*-OSiMe₂H)Al(^tBu)₂(*u*-OSiMe₂OSiMe₂O)Al(^tBu)₂(THF) (**10**) may be isolated. The reaction of Me₂AlH with (Me₂SiO)₅ yields compound **5**. The symmetric siloxide [('Bu)₂Al- $(\mu$ -OSiMe₃)]₂ (11) is formed from the reaction of (^tBu)₂AlH with (Me₃Si)₂O. The reaction of the noncyclic siloxane Me₃Si(OSiMe₂)₂OSiMe₃ yields a mixture of ('Bu)₂Al(µ-OSiMe₂H)(µ-OSiMe₃)Al(^tBu)₂ (**12**) and (^tBu)₂Al(μ -OSiMe₂H)(μ -OSiMe₃OSiMe₃)Al(^tBu)₂ (**13**). A combination of ¹H, ¹³C, ²⁷Al, and ²⁹Si NMR allow for characterization of all compounds. In addition, the ²⁹Si NMR spectra of compounds 1-3 and 6 exhibit unusual ³J(Si-H) coupling (1.0 Hz), and the Al₂O₂ core is found to exhibit a large deshielding effect on adjacent silicon. The molecular structures of compounds 1, 4, 8, 10, 11, and 12 have been determined by X-ray crystallography. The reaction pathway for the cleavage of polysiloxanes is discussed.

Introduction

In 1959 Jenkner reported² that the reaction between AlEt₃ and $(Me_2SiO)_n$ yielded, upon hydrolysis, ethylsubstituted polysiloxanes, presumably via alkylation of the Si-O-Si linkage. It was subsequently shown that a similar reaction occurred via the formation of aluminum-containing species, eq 1.³

$$AlEt_3 + (MeHSiO)_n \rightarrow Et_2Al(OSiHMeEt)$$
 (1)

We have shown that the products from the cleavage of poly(diorganosiloxanes) with AlMe₃ are dimeric aluminum siloxides (I) resulting from methyl transfer from aluminum to silicon.⁴ Similar results were subsequently reported by Mulhaupt et al.⁵ In both cases no silicon-

(4) Apblett, A. W.; Barron, A. R. Organometallics 1990, 9, 2137.

containing side products were isolated, all the siloxane being consumed in the reaction. This is in contrast to the results reported by Bissinger et al.⁶ for the asymmetric cleavage of (RH₂Si)₂O by Me₂AlCl, in which chlorosilanes are formed as side products (eq 2). Similar results were observed for the cleavage of (RH₂Si)₂O and $(R_2HSi)_2O$ with AlX₃ (X = Cl, Br, I).⁷

10.1021/om990642z CCC: \$18.00 © 1999 American Chemical Society Publication on Web 12/06/1999

^{*} To whom correspondence should be addressed (http://python. rice.edu/~arb/Barron.html).

^{(1) (}a) Rice University. (b) University of Houston. (c) Universität Göttingen.

⁽²⁾ Jenkner, H. Z. Naturforsch. 1959, 14, 133.

⁽³⁾ Aishima, I.; Sakurai, H.; Takashi, H.; Hirotsu, Y.; Hamada, T. US Patent 3,661,878, 1972.

⁽⁵⁾ Mulhaupt, R.; Calabrese, J.; Ittel, S. D. Organometallics 1991, 10. 3403.

^{(6) (}a) Bissinger, P.: Paul, P.; Riede, J.; Schmidbaur, H. *Chem. Ber.* **1993**, *126*, 2579. (b) Schmidbaur, H. *Angew. Chem.* **1965**, *77*, 206.
(7) Bissinger, P.; Mikulcik, P.; Riede, J.; Schier, A.; Schmidbaur, H.

J. Organomet. Chem. 1993, 446, 37.

The elimination of Me_2SiCl_2 and the dichlorosiloxane, (Me_2ClSi)₂O, from the reaction of $AlCl_3$ with (Me_2SiO)₃ and (Me_2SiO)₄, respectively,⁸ resulted in the formation of a trialuminum siloxide compound (**II**) in which the Si:O ratio is less than unity.^{9,10} An extension of this

concept was recently reported by Wehmschulte and Power,¹¹ in which the reaction of the sterically demanding alkylaluminum dihydride $[(Mes^*)Al(H)(\mu-H)]_2$ with $(Me_2SiO)_3$ yields the alumoxane $[(Mes^*)Al(\mu-O)]_4$.¹² Although this alumoxane shows no activity in Kaminskytype¹³ metallocene polymerization catalysis, there have been several reports of the synthesis of catalytically active siloxy-substituted methylalumoxanes via the cleavage of poly(organosiloxanes): two methods have been employed to this end. First, the reaction of methylalumoxane (MAO) with poly(organosiloxanes) results in increased solubility of the MAO.14 Second, hydrolysis of [Me₂Al(µ-OSiR₂Me)]₂ yields stable, soluble, siloxysubstituted methylalumoxanes.¹⁵ This latter method was previously published as part of a study in the preparation of siloxy-substituted alumoxanes.^{16,17}

Despite the beneficial (and detrimental¹⁸) potential application of the cleavage of poly(diorganosiloxanes) with aluminum alkyls and hydrides and the structural characterization of the final products,^{4–7} there is little understanding of the pathway involved in this conceptually simple reaction. To gain a better understanding of the reaction steps and attempt to isolate intermediates on going from the poly(diorganosiloxane) and the

(12) Mes^{*} = C_6H_2 -2-4-6-^tBu₃.

(13) For a reviews of metallocene catalysis, see: (a) Bochman, M., J. Chem. Soc., Dalton Trans. **1996**, 255. (b) Kaminsky, W. J. Chem. Soc., Dalton Trans. **1998**, 1413.

(14) Sangokoya, S. A. US Patent 5,391,529, 1995.

(15) Smith, Ğ, M.; Malpass, D. B.; Palmaka, S. W. US Patent 5,731,451, 1998.

(16) Apblett, A. W.; Barron, A. R. *Ceram. Trans.* **1991**, 35. (17) Landry, C. C.; Davis, J. A.; Apblett, A. W.; Barron, A. R. *J.*

(17) Landry, C. C.; Davis, J. A.; Apblett, A. W.; Barron, A. R. *J. Mater. Chem.* **1993**, *3*, 567. aluminum siloxide (**I**), we have investigated the reactivity of dialkylaluminum hydrides R_2AlH ($R = {}^{t}Bu$, ${}^{i}Bu$, Me) with cyclic siloxanes (Me₂SiO)_n (n = 3, 4, 5).

Results and Discussion

Reaction of R₂AlH with (Me₂SiO)₃. Reaction of R₂-AlH (R = ^tBu, ⁱBu, Me) with (Me₂SiO)₃ in hexane yields after 3 days at room temperature the asymmetrical siloxide compounds R₂Al(μ -OSiMe₂H)(μ -OSiMe₂OSiMe₂-H)AlR₂, R = ^tBu (1), ⁱBu (2), Me (3); see Scheme 1. It should be noted that compound **3** is formed only if the Si:Al ratio is 0.5 (see below). Compounds 1–3 have been characterized by mass spectrometry and IR and NMR spectroscopy (Tables 1 and 2); see Scheme 1 for assignments. The mass spectrometries of compounds 1–3 are all consistent with the formulated structures, while the molecular structure of compound **1** in the solid state has been confirmed by X-ray crystallography (see below).

The IR spectra of compounds 1-3 each show a band consistent with a ν_{Si-H} stretch [2149 cm⁻¹ (1), 2150 cm⁻¹ (2), 2145 cm⁻¹ (3)]. Unfortunately the resolution is insufficient to resolve the two chemically distinct Si–H groups present in each compound. However, the ¹H NMR spectra of 1 and 2 (Table 1) each show two distinct septets, in the range 4.9–4.7 ppm, due to silicon hydrides, confirming the presence of two magnetically inequivalent OSiMe₂H atoms. These septets overlap in the spectrum of 3 but can be partially resolved by a change of solvent from CDCl₃ to C₆D₆.

Through a combination of ¹H, ¹³C, and ²⁹Si NMR spectroscopy (see Tables 1 and 2) the structures of compounds 1-3 may be assigned unambiguously. The ¹H NMR spectra of **1**-**3** show a singlet and two doublets in the $Si-CH_3$ region of the spectra. This is consistent with the presence of one OSiMe₂O and two OSiMe₂H groups in each compound. Unfortunately, we are unable to differentiate between $OSiMe_2H_{(a)}$ and $OSiMe_2H_{(c)}$; see Scheme 1 for assignment. As is common with aluminum alkyls, it is difficult to observe the ¹³C NMR spectra for the carbon directly bonded to the aluminum due to the quadrupolar broadening effect of the latter. The ¹³C NMR spectra of compounds 1-3 show resonances for three $Si - CH_3$ species, two with ${}^{1}J(Si - C)$ coupling of ca. 60 Hz and one with ca. 72 Hz. In comparing the ¹³C NMR spectrum of $[(^{t}Bu)_{2}Al(\mu - OSiMe_{2}H)]_{2}$ (see below), which has only an OSiMe₂H group with a corresponding ${}^{1}J$ (Si–C) value of 59 Hz, we can differentiate between an OSiMe₂H and an OSiMe₂O group in compounds 1-3 (see Table 2).

In the ²⁹Si{¹H} NMR spectrum of compounds **1**–**3** three peaks are observed corresponding to three distinct silicon environments (e.g., Figure 1a). The ¹H-coupled ²⁹Si spectra of **1**–**3** allow for the assignment of each silicon environment and the connectivity of the siloxane backbone. For example, in **2** (Figure 1b) the two doublets of septets centered at 3.74 and –4.76 ppm are consistent with couplings to Si–H [¹J(Si–H) = 206–209 Hz] and Si–CH₃ [²J(Si–H) \approx 7 Hz]. The resonance of OS*i*_(b)-(CH₃)₂O (–9.66 ppm) shows a rare ³J(Si–H) coupling of 1.0 Hz (see Figure 1c). This allows us to conclude that one of the OSiMe₂H groups is next to the OSiMe₂O_(b) group, while one is isolated from the siloxane chain by the Al₂O₂ core. The deshielding of the Si nucleus in OSi-(CH₃)₂H caused by the proximity to the Al₂O₂ core

⁽⁸⁾ In both reactions other dichlorosiloxanes were observed as minor products.

^{(9) (}a) Zhdanov, A. A.; Andriaov, K. A.; Bogdanova, A. A. *Izvest. Akad. Nauk, SSSR., Otdel., Khim. Nauk.* **1961**, 1261. (b) Ouchinnikov, Y. E.; Astapova, T. V.; Laurukhin, B. D.; Shklover, V. E.; Stuchkov, Y. T.; Zhdanov, A. A. *Zh. Struk. Khim.* **1986**, *27*, 120.

⁽¹⁰⁾ We have recently isolated and structurally characterized the gallium analogue: McMahon, C. N.; Obrey, S. J.; Keys, A.; Bott, S. G.; Barron, A. R. Submitted for publication.

⁽¹¹⁾ Wehmschulte, R. J.; Power, P. P. J. Am. Chem. Soc. **1997**, *119*, 8387.

⁽¹⁸⁾ It is widely known that reactions of AlR_3 result in leaching silicon grease, primeraly (Me2SiO)_n from joints of stopcocks, see: Eisch, J. J. In *Comprehensive Organometallic Chemistry*; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon: Oxford, U.K., 1986; Vol. 1, p 668.

Scheme 1. Summary of Reactions of (Me₂SiO)₃ with R₂AlH^a

^{*a*} (a) Hexane, room temp, Si:Al = 1:2 for R = Me, (b) toluene, reflux w, ('Bu)₂AlH, (c) toluene, reflux, (d) hexane, room temp, Si:Al > 1.1.

Figure 1. ²⁹Si{¹H} (a) and ²⁹Si (b) NMR spectra for (ⁱBu)₂Al(μ -OSiMe₂H)(μ -OSiMe₂OSiMe₂H)Al(ⁱBu)₂ (**2**) showing the presence of three distinct silicon environments. An expanded view of the resonance of O*Si*(CH₃)₂O_(b) shows a rare ³*J*(Si–H) coupling of 1.0 Hz (c, inset).

allows us to distinguish Si_(a) (δ 3.74 ppm) from Si_(c) (δ –4.76 ppm). We have previously observed this downfield shift for other aluminum siloxides (Al–O–Si) versus their siloxane (Si–O–Si) homologues.⁴ The ²⁷Al NMR

resonances for all compounds are all within four-coordinate range.

The molecular structure of compound 1 is shown in Figure 2; selected bond lengths and angles are given in Table 3. The structure consists of a planar Al₂O₂ core with asymmetric siloxide-bridging units and confirms the NMR assignment discussed above. The Al–O and Al-C distances in compound **1** (see Table 3) are within the ranges reported previously: 1.7-2.0 and 1.90-2.01 Å, respectively.¹⁹ The Si–O distances to the siloxide oxygen are comparable to other siloxide compounds,²⁰ while those in the siloxane (see Table 3) are within the range reported for alkoxysilanes and disiloxanes.²¹ It is interesting to note the difference in the orientation of the substituents on the siloxides. The O(2)-Si(2)-O(3)–Si(3) chain adopts a staggered *anti* conformation, with the methyl groups attached to Si(2) positioned symmetrically on either side of the chain; see Figure 2. Although the Al–O–Si angles about O(2) are close to equivalent (see Table 3), those around O(1) show a significant asymmetry, i.e., Al(1)-O(1)-Si(1) = 119.2-(3)°, Al(2)–O(1)–Si(1) = 142.6(3)°, $\Delta = 23.4^{\circ}$. A similar distortion has been observed previously in the structure of $[Me_2Al(\mu - OSiMe_2Ph)]_2$ ($\Delta = 4.3^\circ$), but the magnitude observed in compound 1 is significantly larger. This

⁽¹⁹⁾ See for example: (a) Haaland, A. In *Coordination Chemistry of Aluminum*; Robinson G. H., Ed.; VCH: New York, 1993; Chapter I. (b) Oliver, J. P.; Kumar, R. *Polyhedron* **1990**, *9*, 409.

⁽²⁰⁾ See for example: (a) Hursthouse, M. B.; Hossain, M. A. Polyhedron **1984**, *3*, 95. (b) Hursthouse, M. B.; Motevalli, M.; Sanganee, M.; Sullivan, A. J. Chem. Soc., Chem. Commun. **1991**, 1709. (c) Motevalli, M.; Sanganee, M.; Savage, P. D.; Shah, S.; Sullivan, A. J. Chem. Soc., Chem. Commun. **1993**, 1132.

^{(21) (}a) Almemmingen, A.; Bastiansen, O.; Ewing, V.; Hedberg, K.; Traetteberg, M. Acta Chem. Scand. **1963**, *17*, 2455. (b) Airey, W.; Glidewell, C.; Rankin, D. W. H.; Robiette, A. G.; Sheldrick, G. M.; Cruickshank, D. W. J. Trans. Faraday Soc. **1970**, *66*, 551. (c) Airey, W.; Glidewell, C.; Robiette, A. G.; Sheldrick, G. M. J. Mol. Struct. **1971**, *8*, 423. (d) Morosin, B.; Harrah, L. A. Acta Crystallogr., Sect. B **1981**, *37*, 579.

			1 41	JIE I.	II and "C INNIC Data	a (230 K)		
compound		1]	H NMR ^b		assignment ^c	130	C NMR ^d	assignment ^c
1	4.89	sept	$^{3}J(H-H) = 3.0$	1H	$Si_{(a)}-H$ or $Si_{(c)}-H$	32.7		$C(CH_3)_3$
	4.73	sept	$^{3}J(H-H) = 3.0$	1H	$Si_{(a)} - H$ or $Si_{(c)} - H$	3.7	${}^{1}J(Si-C) = 72$	$Si_{(b)}(CH_3)_2$
	0.99	S		36H	$C(CH_3)_3$	2.8	$^{1}J(Si-C) = 59$	$\operatorname{Si}_{(a)}(CH_3)_2 \text{ or } \operatorname{Si}_{(c)}(CH_3)_2$
	0.48	d	$^{3}J(H-H) = 3.0$	6H	$Si_{(a)}(CH_3)_2$ or $Si_{(c)}(CH_3)_2$	0.9	${}^{1}J(Si-C) = 60$	$\operatorname{Si}_{(a)}(CH_3)_2 \text{ or } \operatorname{Si}_{(c)}(CH_3)_2$
	0.38	s	2 7/77 77) 0.0	6H	$Si_{(b)}(CH_3)_2$			
	0.22	d	$^{3}J(H-H) = 3.0$	6H	$\operatorname{Si}_{(a)}(CH_3)_2 \text{ or } \operatorname{Si}_{(c)}(CH_3)_2$	00.1		
Z	4.78	sept	$^{3}J(H-H) = 3.0$		$S_{1(a)}$ -Hor $S_{1(c)}$ -H	29.1		$CH_2CH(CH_3)_2$
	4.71	sept	${}^{3}J(H-H) = 2.7$ ${}^{3}I(H-H) = 6.7$		$SI_{(a)} - H OF SI_{(c)} - H$	20.3	$1 I(S_i - C) = 72$	$CH_2CH(CH_3)_2$ Since (CH_2).
	0.92	d	3 $I(H-H) = 6.6$	411 24H	$CH_2CH(CH_3)_2$ $CH_2CH(CH_3)_2$	2.0	J(SI-C) = 72 $\frac{1}{I}(Si-C) = 59$	$Si_{(b)}(CH_3)_2$ Si $(CH_3)_2$ or Si $(CH_3)_3$
	0.32	d	3 <i>I</i> (H-H) = 3.0	6H	$Si_{(C}(CH_2))$ or $Si_{(C}(CH_2))$	0.9	J(Si - C) = 55 $\frac{1}{I}(Si - C) = 60$	$Si_{(a)}(CH_{2})_{2}$ or $Si_{(c)}(CH_{2})_{2}$
	0.01	s	5(11 11) 0.0	6H	$Si(a)(CH_2)_2$ Si(b)(CH_2)_2	0.0	5(51 C) 00	B1(a)(C113)2 01 B1(c)(C113)2
	0.20	d	3 $I(H-H) = 2.7$	6H	$Si_{(0)}(CH_3)_2$ or $Si_{(2)}(CH_3)_2$			
	-0.03	d	${}^{3}J(H-H) = 6.9$	8H	$CH_2CH(CH_3)_2$			
3	4.69	d, sept	$^{3}J(H-H) = 3.0$	2H	$Si_{(a)}$ -H and $Si_{(c)}$ -H	1.2	${}^{1}J(Si-C) = 72$	$Si_{(b)}(CH_3)_2$
	0.29	d	$^{3}J(H-H) = 3.0$	6H	$Si_{(a)}(CH_3)_2$ or $Si_{(c)}(CH_3)_2$	0.9	$^{1}J(Si-C) = 59$	$Si_{(a)}(CH_3)_2$ or $Si_{(c)}(CH_3)_2$
	0.19	d	$^{3}J(H-H) = 3.0$	6H	$Si_{(a)}(CH_3)_2$ or $Si_{(c)}(CH_3)_2$	0.35	$^{1}J(Si-C) = 59$	$Si_{(a)}(CH_3)_2$ or $Si_{(c)}(CH_3)_2$
	0.16	S		6H	$Si_{(b)}(CH_3)_2$			
	-0.79	S		12H	$C(CH_3)$			
4	4.86	sept	$^{3}J(H-H) = 3.0$	2H	Si-H	32.5	4	$C(CH)_3$
	1.01	S	0 7/77 77) 0 0	36H	$C(CH_3)_3$	2.4	$^{1}J(Si-C) = 59$	$Si(CH_3)_2$
_	0.47	d	${}^{3}J(H-H) = 3.0$	12H	$Si(CH_3)_2$	4.04	1 (() () ()	
5	4.70	sept	$^{3}J(H-H) = 3.0$	2H	$Si_{(a)} - H$	1.61	$^{1}J(Si-C) = 72$	$Si_{(b)}(CH_3)_2$
	0.32	S	3 1/11 11) 0.0	6H	$S1_{(b)}(CH_3)_2$	0.25	$^{1}J(S_{1}-C) = 58$	$S1_{(a)}(CH_3)_2$
	0.29	a	$^{\circ}J(H-H) = 3.0$	12H 94U	$SI_{(a)}(CH_3)_2$			
ß	-0.74	s d cont	3 I(U - U) - 20	2411 911	$(C\Pi_3)$	297		$C(C\mathbf{H})$
U	4.05	u, sept	J(11-11) = 3.0	211 36H	$C(CH_{a})_{a}$	32.7 A 1	1 $I(Si-C) = 72$	Si_{4} (CH ₂) or Si_{4} (CH ₂)
	0.42	s		6H	$Si_{(CH_3)_3}$ or $Si_{(CH_3)_3}$	2.9	$^{1} I(\text{Si}-\text{C}) = 59$	$Si_{(b)}(CH_3)_2$ or $Si_{(c)}(CH_3)_2$
	0.32	d	3 $J(H-H) = 3.0$	6H	$Si_{(b)}(CH_3)_2$ or $Si_{(c)}(CH_3)_2$ Si _(a) (CH ₃) ₂ or Si _(d) (CH ₃) ₂	1.3	${}^{1}J(Si-C) = 74$	$Si_{(a)}(CH_3)_2$ or $Si_{(a)}(CH_3)_2$
	0.20	d	$^{3}J(H-H) = 3.0$	6H	$Si_{(a)}(CH_3)_2$ or $Si_{(d)}(CH_3)_2$	1.0	${}^{1}J(Si-C) = 59$	$Si_{(a)}(CH_3)_2$ or $Si_{(d)}(CH_3)_2$
	0.13	S		6H	$Si_{(b)}(CH_3)_2$ or $Si_{(c)}(CH_3)_2$			
7	4.83	sept	$^{3}J(H-H) = 3.0$	2H	$\operatorname{Si}_{(a)} - H$	29.3, 29.0		$CH_2CH(CH_3)_2$
	1.84	m	$^{3}J(H-H) = 7.0$	8H	$CH_2CH(CH_3)_2$	26.4		$CH_2CH(CH_3)_2$
	0.94	d	$^{3}J(H-H) = 6.5$	48H	$CH_2CH(CH_3)_2$	3.0	$^{1}J(Si-C) = 72$	$Si_{(b)}(CH_3)_2$
	0.40	S		6H	$Si_{(b)}(CH_3)_2$	1.2	$^{1}J(Si-C) = 58$	$Si_{(a)}(CH_3)_2$
	0.39	d	${}^{3}J(H-H) = 3.0$	12H	$Si_{(a)}(CH_3)_2$			
	0.03	d	${}^{3}J(H-H) = 7.0$	16H	$CH_2CH(CH_3)_2$	04.4h		
8	4.91	sept	$^{\circ}J(H-H) = 3.0$	2H	$Si_{(a)}-H$	31.1^{b}		$C(CH_3)_3$
	1.01	S	3 <i>I</i> (II II) - 2 0	/2H	$C(CH_3)_3$	2.8 ^b	e	$SI_{(a)}(CH_3)_2 \text{ or } SI_{(b)}(CH_3)_2$
	0.51	a	$^{\circ}J(H-H) = 3.0$	12H 19U	$SI_{(a)}(CH_3)_2$	1.75	е	$SI_{(a)}(CH_3)_2$ or $SI_{(b)}(CH_3)_2$
9	0.5 1 81	s d	3 (H-H) = 3.0	2H	SI(b)(C113)2 Si(-H)	29 2 29 0		$CH_{0}CH(CH_{0})_{0}$
3	1.01	m	3 <i>I</i> (H-H) = 6.6	8H	$CH_{a}CH(CH_{a})_{a}$	26 3		$CH_0 CH (CH_0)_0$
	0.92	d	3 $J(H-H) = 6.6$	48H	$CH_2CH(CH_3)_2$	24.7		$CH_2CH(CH_2)_2$
	0.37	d	${}^{3}J(H-H) = 3.0$	12H	$Si_{(2)}(CH_3)_2$	2.7	${}^{1}J(Si-C) = 72$	$Si_{\rm III}(CH_3)_2$
	0.30	S		12H	$Si_{(h)}(CH_3)_2$	1.1	$^{1}J(Si-C) = 58$	$Si_{(a)}(CH_3)_2$
	-0.2	d	$^{3}J(H-H) = 7.0$	16H	$CH_2CH(CH_3)_2$			
10	4.90	sept	$^{3}J(H-H) = 3.0$	1H	$Si_{(a)}-H$	72.4		0 <i>C</i> H ₂
	4.20	m		4H	OCH ₂ (THF)	32.9		$C(CH_3)_3$
	2.08	m		4H	OCH_2CH_2 (THF)	31.5		$C(CH_3)_3$
	1.00	S		36H	$C(CH_3)_3$	25.0	1 7 (2) (2) (2)	OCH_2CH_2
	0.86	S	3 1/11 11) 0.0	18H	$C(CH_3)_3$	4.7	$^{1}J(Si-C) = 71$	$\operatorname{Si}_{(b)}(CH_3)_2 \text{ or } \operatorname{Si}_{(c)}(CH_3)_2$
	0.48	d	$^{3}J(H-H) = 3.0$	6H	$Si_{(a)}(CH_3)_2$	3.4	$^{1}J(Si-C) = 59$	$Si_{(a)}(CH_3)_2$
	0.41	S		6H	$S1_{(b)}(CH_3)_2$ or $S1_{(c)}(CH_3)_2$	3.0	$^{1}J(S_{1}-C) = 74$	$S1_{(b)}(CH_3)_2 \text{ or } S1_{(c)}(CH_3)_2$
11	0.07	S		26H	$SI_{(b)}(CH_3)_2$ of $SI_{(c)}(CH_3)_2$	22.0		C(CH)
11	1.07	5		30H 18H	$Si(CH_3)_3$	53.0	1 I(Si - C) = 50	Si(CH _a) _a
19	1 89	sont	3 (H-H) = 3.0	1011 1H	$Si(CH3)_3$ Si($-H$ or Si($-H$	327	J(51 C) = 33	$C(CH_{a})_{a}$
1.	0.48	d d	3 $J(H-H) = 3.0$	12H	$\operatorname{Si}_{(a)}(CH_2)_2 \text{ or } \operatorname{Si}_{(a)}(CH_2)_2$	5.3	${}^{1}J(Si-C) = 60$	$Si_{(a)}(CH_{a})_{a}$ or $Si_{(a)}(CH_{a})_{a}$
	0.37	s.	5(11 11) = 0.0	6H	$Si_{(2)}(CH_3)_2$ or $Si_{(2)}(CH_3)_2$	2.9	$^{1}J(Si-C) = 59$	$Si_{(a)}(CH_3)_2 \text{ or } Si_{(c)}(CH_3)_2$
13	4.90	sept	${}^{3}J(H-H) = 3.0$	1H	$Si_{(a)} - H$ or $Si_{(c)} - H$	32.7	5(21 0) 00	$C(CH_3)_3$
	1.00	S		36H	$C(CH_3)_3$	4.4	${}^{1}J(Si-C) = 59$	$Si_{(a)}(CH_3)_2$ or $Si_{(c)}(CH_3)_2$
	0.99	S		36H	$C(CH_3)_3$	4.2	$^{1}J(Si-C) = 73$	Si _(b) (<i>C</i> H ₃) ₂
	0.41	S		9H	$Si_{(b)}(CH_3)_2$	3.0	$^{1}J(Si-C) = 59$	Si _(a) (CH ₃) ₂ or Si _(c) (CH ₃) ₂
	0.13	S		9H	$Si_{(c)}(CH_3)_3$			

Table 1. ¹H and ¹³C NMR Data (298 K)^a

^{*a*} 250 MHz; shift in ppm relative to SiMe₄ (external), coupling constants in Hz. ^{*b*} CDCl₃. ^{*c*} For key to assignments see Schemes 1–4. ^{*d*} C₆D₆. ^{*e*} Not detected.

distortion is clearly steric in nature, i.e., as a consequence of a ^tBu····Me steric repulsion. A similar distortion is observed in $[({}^{t}Bu)_{2}Al(\mu \text{-}OSiMe_{2}H)]_{2}$; see below. The O(2)–Si(2)–O(3) and Si(2)–O(3)–Si(3) bond angles are within the ranges previously observed.^{22–24} Reaction of $(Me_2SiO)_3$ with $({}^{t}Bu)_2AlH$ in refluxing toluene yields the symmetric siloxide dimer $[({}^{t}Bu)_2Al (\mu$ -OSiMe₂H)]₂ (**4**); see Scheme 1. As with compounds **1**-**3**, the IR spectrum of **4** has a single resonance for the ν_{Si-H} stretch (2157 cm⁻¹). The ¹H, ¹³C, and ²⁹Si NMR

compound			²⁹ Si NMR ^{b,c}		assignment ^d
1	5.17	d.sept	1 $J(Si-H) = 207$	2 $J(Si-H) = 7.1$	Si _(a) -H
-	-3.86	d.sept	1 $J(Si - H) = 207$	${}^{2}J(Si-H) = 7.1$	$Si_{(a)}$ -H
	-8.1	sept.d	${}^{2}J(Si-H) = 7.1$	${}^{3}J(Si-H) = 1.5$	Si _(b) Me ₂
2	3.74	d.sept	${}^{1}J(Si-H) = 209$	${}^{2}J(Si-H) = 7.2$	$Si_{(a)}-H$
	-4.76	d.sept	${}^{1}J(\text{Si}-\text{H}) = 206$	${}^{2}J(Si-H) = 7.1$	$Si_{(c)}-H$
	-9.66	sept.d	$^{2}J(Si-H) = 7.2$	${}^{3}J(Si-H) = 1.0$	Si _(b) Me ₂
3	4.08	d,sept	$^{1}J(Si-H) = 209$	$^{2}J(Si-H) = 7.2$	Si _(a) -H
	-4.73	d,sept	${}^{1}J(Si-H) = 206$	$^{2}J(Si-H) = 7.1$	$Si_{(c)}-H$
	-9.97	sept,d	$^{2}J(Si-H) = 7.2$	$^{3}J(Si-H) = 0.9$	Si _(b) Me ₂
4	5.5	d,sept	${}^{1}J(Si-H) = 207$	$^{2}J(Si-H) = 7.1$	Si-H
5	4.66	d,sept	${}^{1}J(\text{Si}-\text{H}) = 210$	$^{2}J(Si-H) = 7.1$	Si _(a) -H
	-3.65	sept	$^{2}J(\text{Si}-\text{H}) = 7.3$		Si _(b) Me ₂
6	5.16	d,sept	${}^{1}J(\text{Si}-\text{H}) = 207$	$^{2}J(Si-H) = 7.1$	Si _(a) -H
	-6.38	d,sept	${}^{1}J(Si-H) = 205$	${}^{2}J(\text{Si}-\text{H}) = 7.1$	Si _(d) -H
	-9.43	sept	${}^{2}J(\text{Si}-\text{H}) = 7.2$		$Si_{(b)}Me_2$
	-17.19	sept,d	$^{2}J(Si-H) = 7.3$	${}^{3}J(\text{Si}-\text{H}) = 0.9$	$Si_{(c)}Me_2$
7	4.77	d,sept	$^{1}J(Si-H) = 209$	$^{2}J(Si-H) = 7.1$	$Si_{(a)}-H$
	-4.74	sept	$^{2}J(Si-H) = 7.2$		$Si_{(b)}Me_2$
8	5.23	d,sept	$^{1}J(Si-H) = 208$	$^{2}J(Si-H) = 7.0$	$Si_{(a)}-H$
	-11.51	sept	$^{2}J(Si-H) = 7.1$		Si _(b) Me ₂
9	4.25	d,sept	$^{1}J(Si-H) = 209$	$^{2}J(Si-H) = 7.2$	$Si_{(a)}-H$
	-12.06	sept	$^{2}J(Si-H) = 7.2$		$Si_{(b)}Me_2$
10	4.96	d,sept	$^{1}J(Si-H) = 207$	${}^{2}J(\text{Si}-\text{H}) = 7.1$	$\rm Si_{(a)}-H$
	-12.21	sept	$^{2}J(\text{Si}-\text{H}) = 7.2$		$Si_{(b)}Me_2$
	-24.26	sept	$^{2}J(\text{Si}-\text{H}) = 7.2$		$Si_{(c)}Me_2$
11	18.5	decet			SiMe ₃
12	18.93	decet	$^{2}J(\text{Si}-\text{H}) = 6.6$		Si _(b) Me ₂
4.0	5.23	d,sept	$^{1}J(\text{Si}-\text{H}) = 207.2$	$^{2}J(Si-H) = 7.0$	Si _(a) -H
13	10.3	decet	$^{2}J(Si-H) = 6.7$		Si _(a) Me ₂
	5.16	d,sept	$^{1}J(Si-H) = 207.1$	$^{2}J(Si-H) = 7.0$	Si _(c) -H
	-10.24	sept	$^{2}J(Si-H) = 7.1$		$Si_{(b)}Me_2$

^a Chemical shift in ppm relative to SiMe₄ (external), coupling constants in Hz. ^b CDCl₃ solution. ^c Where multiple coupling occurs, the greater coupling constant is described first; for example, the description "d, sept" indicates the larger coupling is the doublet, the smaller a septet. ^d For key to assignments see Schemes 1-4.

Figure 2. Molecular structure of $({}^{t}Bu)_{2}Al(\mu - OSiMe_{2}H)(\mu - OSiMe_{2}H)$ OSiMe₂OSiMe₂H)Al(^tBu)₂ (1). Thermal ellipsoids shown at the 20% level. Non-siloxide hydrogen atoms are omitted, and only one of the disordered positions of the methyl groups attached to Si(3) is shown, for clarity.

shifts observed for the single siloxide environment are consistent with the previous assignments on compounds

Table 3. Selected Bond Lengths (Å) and Angles (deg) in $({}^{t}Bu)_{2}Al(\mu - OSiMe_{2}H)$ - $(\mu - OSiMe_2OSiMe_2H)Al(^tBu)_2$ (1)

•			
Al(1)-O(1)	1.884(5)	Al(1)-O(2)	1.883(4)
Al(1) - C(11)	2.013(7)	Al(1)-C(15)	2.012(8)
Al(2)-O(1)	1.867(4)	Al(2)-O(2)	1.888(5)
Al(2)-C(21)	2.002(7)	Al(2)-C(25)	2.027(8)
Si(1) - O(1)	1.683(4)	Si(2)-O(2)	1.664(5)
Si(2)-O(3)	1.614(6)	Si(3)-O(3)	1.636(6)
O(1) - AI(1) - O(2)	81.9(2)	O(1) - AI(1) - C(11)	109.3(3)
O(1) - Al(1) - C(15)	115.2(3)	O(2) - Al(1) - C(11)	113.9(3)
O(2) - Al(1) - C(15)	112.6(3)	C(11) - Al(1) - C(15)	118.4(3)
O(1) - Al(2) - O(2)	82.3(2)	O(1) - Al(2) - C(21)	111.2(3)
O(1) - Al(2) - C(25)	113.7(3)	O(2) - Al(2) - C(21)	116.1(3)
O(2) - Al(2) - C(25)	112.5(3)	C(21) - Al(2) - C(25)	116.4(3)
Al(1) - O(1) - Al(2)	98.1(2)	Al(1) - O(1) - Si(1)	119.2(3)
Al(2) - O(1) - Si(1)	142.6(3)	Al(1) - O(2) - Al(2)	97.4(2)
Al(1) - O(2) - Si(2)	134.2(3)	Al(2) - O(2) - Si(2)	127.5(3)
O(2) - Si(2) - O(3)	106.3(3)	Si(2)-O(3)-Si(3)	149.9(4)

1-3 (see Tables 1 and 2). The molecular structure of $[(^{t}Bu)_{2}Al(\mu - OSiMe_{2}H)]_{2}$ (4) was confirmed by X-ray crystallography, and its structure is shown in Figure 3; selected bond lengths and angles are given in Table 4. The quality of the data was insufficient to make any but a cursory commentary on its overall structure (see Experimental Section). The siloxide hydrogens are positioned in an anti conformation in a manner similar to the phenyl rings in [Me₂Al(µ-OSiMe₂Ph)]₂.⁴ It is interesting to note that the distortion observed about the dimethylsiloxide (OSiMe₂H) group in the structure of compound **1** is also seen in compound **4**, i.e., $\Delta(Al O-Si) = 28^{\circ}$ and 16° .

Compound 4 is also formed albeit in low yield from the reaction of Al(^tBu)₃ with (Me₂SiO)₃; see Experimental Section. The formation of a Si-H moiety is presum-

⁽²²⁾ Brisdon, B. J.; Mahon, M. F.; Molloy, K. C.; Schofield, P. J. J. Organomet. Chem. 1994, 465, 145.

⁽²³⁾ Hossain, M. A.; Hursthouse, M. B.; Ibrahim, A.; Mazid, M.;

Sullivan, A. C. J. Chem. Soc., Dalton Trans. 1989, 2347.
 (24) Herrmann, W. A.; Stumpf, A. W.; Priermeier, T.; Bogdanovic,
 S.; Dufaud, V.; Basset, J.-M. Angew. Chem., Int. Ed. Engl. 1996, 35, 2803.

H

S_{1(a)}

Me^{Me}

Table 4. Selected Bond Lengths (Å) and Angles (deg) in $[({}^{\mathsf{B}}\mathbf{u})_2Al(\mu-OSiMe_2H)_{1-x}(\mu-OSiMe_3)_x]_2$ (x = 0, 0.5, 1)

(4). Thermal ellipsoids are shown at the 20% level. Nonsiloxide hydrogen atoms are omitted, and only one of the disordered positions of the methyl groups attached to Si-(1) is shown, for clarity.

ably derived via b-hydrogen transfer from the aluminum *tert*-butyl group. Similar reactions have been previously reported for $AlEt_3$.² On the basis of the ¹H NMR of the reaction mixture, it appears that compound **4** is one of two aluminum siloxide containing products that are formed; however, we have been unable to characterize the second product.

As noted above, the reaction of Me₂AlH with (Me₂- SiO_3 forms compound **3** only when a Si:Al ratio of 0.5 is used in the reaction. If higher Si:Al ratios are employed, the product isolated is the tetra-aluminum siloxide-bridged compound, [Me₂Al(µ-OSiMe₂H)AlMe₂- $(\mu$ -OSiMe₂O)Me₂Al(μ -OSiMe₂H)AlMe₂] (**5**); see Scheme 1. As 5 is a liquid, an X-ray structural characterization is not possible, but the presence of a M^+ – Me peak in the MS, the IR spectrum, and a comparison of the NMR to related, structurally characterized compounds (see below) are sufficient to determine uniquely the molecular structure. The IR and ¹H NMR spectra of 5 exhibit single resonances (2147 cm^{-1} and 4.70 ppm, respectively) for the siloxane Si-H. The ¹H, ¹³C, and ²⁹Si NMR shifts observed for the single OSiMe₂H environment are consistent with our previous assignments for compounds 1–4 (see Tables 1 and 2). However, the ²⁹Si NMR peak for the central $OSiMe_2O$ group in 5 (-3.65 ppm) is significantly downfield of $OSiMe_2O(b)$ compounds 1-3(ca. -8 to -10 ppm) due to the added effect of a second Al_2O_2 group.

Reaction of R₂AlH with (Me₂SiO)₄. Reaction of (^tBu)₂AlH with (Me₂SiO)₄ in hexane yields after 3 days at room temperature the asymmetrical siloxide compound (^tBu)₂Al(μ -OSiMe₂H)(μ -OSiMe₂OSiMe₂OSiMe₂-H)Al(^tBu)₂ (**6**); see Scheme 2. The IR spectrum of compound **6** is similar to that of compound **1**, and a combination of ¹H, ¹³C, and ²⁹Si NMR spectroscopy is necessary for the structure of compound **6** to be assigned

 $\bar{R} R$

R

Me Me

Me

Si_(a)

Η

Me1,

unambiguously; see Tables 1 and 2. The presence of four distinct resonances in the ²⁹Si NMR spectrum of compound **6** implies the asymmetric species rather than the symmetrical siloxide (**III**). The deshielding effect of the

Al₂O₂ core diminishes as its distance from the silicon nucleus increases, cf. OSiMe₂O(b) (-9.43 ppm), which is next to the Al₂O₂ core, versus OSiMe₂O(c) (-17.19 ppm), which has an intervening OSiMe₂ group. The ³*J*(Si-H) coupling is again seen in the ²⁹Si NMR spectrum of **6**. The ¹H NMR spectral resolution did not allow us to observe this coupling in the ²⁹Si satellites of the Si_(d)-H septet.

The reaction of Me₂AlH with (Me₂SiO)₄ yields the same product as formed with (Me₂SiO)₃ with high Si: Al ratios, i.e., compound **5**; see above. In contrast, (ⁱBu)₂-Al(μ -OSiMe₂H)Al(ⁱBu)₂(μ -OSiMe₂O)(ⁱBu)₂Al(μ -OSiMe₂-H)Al(ⁱBu)₂ (**7**) is the only product isolated from the reaction of (ⁱBu)₂AlH with (Me₂SiO)₄ (Scheme 2). As

Scheme 3. Summary of Reactions of (Me₂SiO)₃ with R₂AlH^a

 a (a) Hexane, room temp, (b) hexane, room temp, (c) hexane in the presence of THF.

Figure 4. Molecular structure of $({}^{t}Bu)_{2}Al(\mu - OSiMe_{2}H)Al-({}^{t}Bu)_{2}(\mu - OSiMe_{2}OSiMe_{2}O)({}^{t}Bu)_{2}Al(\mu - OSiMe_{2}H)Al({}^{t}Bu)_{2}$ (**8**). Thermal ellipsoids are shown at the 20% level. Non-siloxide hydrogen atoms are omitted for clarity.

expected, compound **7** is spectroscopically similar to compound **5**; see Tables 1 and 2. The methyl groups on each isobutyl ligand are diastereotopic, caused by prochiral inequivalence. Thus two signals are observed for $CH_2CH(CH_3)_2$ in the ¹³C NMR spectrum. However, to see the corresponding doublet of doublets in the ¹H NMR spectrum for two inequivalent $CH_2CH(CH_3)_2$, the spectrum must be collected in C_6D_6 [1.21, 1.20 ppm, J(H-H) = 6.5, 6.5 Hz]. It is assumed that accidental overlap accounts for the single doublet observed for **7** in CDCl₃ (as reported in Table 1).

Reaction of R₂AlH with (Me₂SiO)₅. The reaction of R₂AlH (R = ^tBu, ⁱBu) with (Me₂SiO)₅ yields the siloxide-bridged compounds [R₂Al(μ -OSiMe₂H)AlR₂(μ -OSiMe₂OSiMe₂O)R₂Al(μ -OSiMe₂H)AlR₂], R = ^tBu, (8) and ⁱBu (9). The reaction with Me_2AlH again yields compound 5; see Scheme 3.

The molecular structure of **8**, as determined by X-ray crystallography, is shown in Figure 4; selected bond lengths and angles are given in Table 5. The structure consists of two Al_2O_2 cycles connected by a symmetric disiloxide unit. Similar bridging $-OSiR_2OSiR_2O-$ units have been previously observed in both transition metal and main group chemistry (**IV**).²⁵ It is interesting to note the orientation of the two Al_2O_2 cycles with respect to the O-Si-O-Si-O bridge; the structure is that of Al_2O_2 steps. The O(2)–Si(2)–O(3)–Si(3)–O(4) chain adopts a staggered *anti* conformation. The O(2)–Si(2)–O(3) bond angle in **8** is significantly larger than those in compound **1**, although the Si(2)–O(3)–Si(3) angle is unchanged as compared to compound **1**.

On the basis of a comparison of the NMR spectra, compounds **8** and **9** are clearly isostructural. The IR spectra of compounds **8** and **9** each show a band consistent with a $\nu_{\text{Si-H}}$ stretch [2146 cm⁻¹ (8), 2151 cm⁻¹ (9)]. The ¹H NMR spectra each show a single septet due to two equivalent silicon hydrides. On the basis of the ¹H, ¹³C, and ²⁹Si NMR spectroscopy the structures of compounds **8** and **9** observed in the solid state (see

⁽²⁵⁾ Gosink, H.-J.; Roesky, H. W.; Schmidt, H.-G.; Noltemeyer, M.; Irmer, E.; Herbst-Irmer, R. *Organometallics* **1994**, *13*, 3420.

Table 5. Selected Bond Lengths (Å) and Angles (deg) in (^tBu)₂Al(µ-OSiMe₂H)Al(^tBu)₂-(µ-OSiMe₂H)Al(^tBu)₂ (8)

V*	0.01111021	-)(= 4)2 (0)	
Al(1)-O(1)	1.869(4)	Al(1)-O(2)	1.922(3)
Al(1) - C(11)	2.026(6)	Al(1)-C(15)	2.014(6)
Al(2) - O(1)	1.873(3)	Al(2) - O(2)	1.896(4)
Al(2) - C(21)	2.026(6)	Al(2)-C(25)	1.991(5)
Al(3)-O(4)	1.895(4)	Al(3)-O(5)	1.870(4)
Al(3)-C(31)	2.017(4)	Al(3)-C(35)	2.007(5)
Al(4)-O(4)	1.918(4)	Al(4)-O(5)	1.872(4)
Al(4)-C(41)	1.993(4)	Al(4)-C(45)	2.040(5)
Si(1)-O(1)	1.672(4)	Si(2)-O(2)	1.668(3)
Si(2)-O(3)	1.638(3)	Si(3)-O(3)	1.633(3)
Si(3)-O(4)	1.674(4)	Si(4)-O(5)	1.676(4)
O(1) = A I(1) = O(2)	82 7(1)	O(1) = A(1) = C(11)	114 9(2)
O(1) - Al(1) - C(15)	108 0(2)	O(2) - A I(1) - C(11)	112.0(2)
O(2) - Al(1) - C(15)	1184(2)	C(11) - Al(1) - C(15)	116.2(2)
O(1) - Al(2) - O(2)	83 3(1)	O(1) - Al(2) - C(21)	110.2(2) 110.0(2)
O(1) - Al(2) - C(25)	114.6(2)	O(2) - Al(2) - C(21)	110.0(2) 114 7(2)
O(2) - Al(2) - C(25)	110.7(2)	C(21) - Al(2) - C(25)	118.5(2)
O(4) - Al(3) - O(5)	83 2(2)	O(4) - Al(3) - C(31)	113.0(2)
O(4) - Al(3) - C(35)	116.3(2)	O(5) - Al(3) - C(31)	114.1(2)
O(5) - Al(3) - C(35)	108.3(2)	C(31) - Al(3) - C(35)	117.1(2)
O(4) - Al(4) - O(5)	82.5(2)	O(4) - Al(4) - C(41)	109.8(2)
O(4) - Al(4) - C(45)	118.6(2)	O(5) - Al(4) - C(41)	116.0(2)
O(5) - Al(4) - C(45)	108.0(2)	C(41) - Al(4) - C(45)	117.2(2)
Al(1) - O(1) - Al(2)	98.0(2)	Al(1) - O(1) - Si(1)	143.6(2)
Al(2) - O(1) - Si(1)	118.5(2)	Al(1) - O(2) - Al(2)	95.4(1)
Al(1) - O(2) - Si(2)	124.2(2)	Al(2) - O(2) - Si(2)	139.6(1)
Al(3) - O(4) - Al(2)	95.6(2)	Al(3) - O(4) - Si(3)	129.0(2)
Al(4) - O(4) - Si(3)	135.3(2)	Al(3) - O(5) - Al(4)	98.0(2)
Al(3) - O(5) - Si(4)	142.6(2)	Al(4) - O(5) - Si(4)	119.3(2)
Si(2) - O(3) - Si(3)	149.3(2)	O(2) - Si(2) - O(3)	110.8(2)
O(3) - Si(4) - O(4)	111.3(2)		

above) are retained in solution. In particular, the ²⁹Si (proton-coupled) NMR spectrum shows a septet due to the bridging OSiMe₂O groups and a doublet of septets for the OSiMe₂H end groups. The absence of a ³J(Si–H) coupling precludes the presence of an OSiMe₂OSiMe₂H group. It is interesting to note that there is no evidence for hindered rotation about the central O–SiMe₂–O–SiMe₂–O bridge, as all methyl groups are equivalent in the ¹H and ¹³C NMR spectra.

If the reaction of $({}^{t}Bu)_{2}AlH$ with $(Me_{2}SiO)_{5}$ is carried out in the presence of THF, $({}^{t}Bu)_{2}Al(\mu$ -OSiMe₂H)Al(${}^{t}Bu)_{2}$ - $(\mu$ -OSiMe₂OSiMe₂O)Al(${}^{t}Bu)_{2}$ (THF) (**10**) may be isolated (Scheme 3). However, addition of THF to compound **8** does not form compound **10**, indicating that compound **10** is not a simple Lewis base cleavage product.

The molecular structure of compound **10** is shown in Figure 5; selected bond lengths and angles are given in Table 6. The structure consists of an Al_2O_2 cycle bridged to a mono-aluminum center through a disiloxide unit. The planar aluminum dimer is also bridged by a OSiMe₂H moiety. All distances are within their expected ranges. It is interesting to note the differences between compounds **8** and **10** as evidenced by the orientation of the Al_2O_2 cycles with respect to the O-Si-O-Si-O bridge. The O(2)-Si(2)-O(3)-Si(3)-O(4) chain in compound **10** adopts a *gauche* conformation as compared to the *anti* conformation observed in compound **8**.

Reaction of ('Bu)₂AlH with Linear Siloxanes. To gain further understanding of the reaction of dialkylaluminum hydrides with cyclic siloxanes, we have investigated the reaction of ('Bu)₂AlH with the linear siloxanes (Me₃Si)₂O and Me₃Si(OSiMe₂)₂OSiMe₃.

Reaction of $({}^{t}Bu)_{2}AlH$ with an excess of $(Me_{3}Si)_{2}O$ resulted in the formation of the symmetric siloxide product $[({}^{t}Bu)_{2}Al(\mu$ -OSiMe₃)]₂ (**11**). The NMR spectro-

Figure 5. Molecular structure of $({}^{t}Bu)_{2}Al(\mu-OSiMe_{2}H)Al-({}^{t}Bu)_{2}(\mu-OSiMe_{2}OSiMe_{2}O)Al({}^{t}Bu)_{2}(THF)$ (**10**). Thermal ellipsoids are shown at the 20% level. Non-siloxide hydrogen atoms are omitted for clarity.

Table 6. Selected Bond Lengths (A) and Angles	5
(deg) in (^t Bu) ₂ Al(µ-OSiMe ₂ H)Al(^t Bu) ₂ -	
(u-OSiMe ₂ OSiMe ₂ O)Al(^t Bu) ₂ (THF) (10)	

N			- /
Al(1)-O(1)	1.874(8)	Al(1)-O(2)	1.885(8)
Al(1) - C(11)	2.02(1)	Al(1)-C(15)	1.00(1)
Al(2)-O(1)	1.885(8)	Al(2)-O(2)	1.895(8)
Al(2)-C(21)	1.98(2)	Al(2)-C(25)	2.03(1)
Al(3)-O(4)	1.724(9)	Al(3)-O(5)	1.94(1)
Al(3)-O(31)	1.98(2)	Al(3)-C(35)	1.97(1)
Si(1)-O(1)	1.684(8)	Si(2)-O(2)	1.674(8)
Si(2)-O(3)	1.622(8)	Si(3)-O(3)	1.647(8)
Si(3)-O(4)	1.589(9)		
O(1) - AI(1) - O(2)	82.8(3)	O(1) - AI(1) - C(11)	110.6(5)
O(1) - Al(1) - C(15)	113.9(5)	O(2) - Al(1) - C(11)	116.3(5)
O(2) - Al(1) - C(15)	111.7(5)	C(11) - Al(1) - C(15)	116.9(5)
O(1) - Al(2) - O(2)	82.3(3)	O(1) - Al(2) - C(21)	110.0(5)
O(1)-Al(2)-C(25)	113.7(5)	O(2)-Al(2)-C(21)	115.9(5)
O(2)-Al(2)-C(25)	111.1(5)	C(21)-Al(2)-C(25)	118.4(6)
O(4) - Al(3) - O(5)	96.9(4)	O(4) - Al(3) - C(31)	113.7(6)
O(4)-Al(3)-C(35)	110.6(5)	O(5)-Al(3)-C(31)	105.3(6)
O(5)-Al(3)-C(35)	107.0(5)	C(31)-Al(3)-C(35)	120.4(6)
Al(1) - O(1) - Al(2)	97.5(4)	Al(1) - O(1) - Si(1)	120.6(5)
Al(2) - O(1) - Si(1)	141.9(5)	Al(1) - O(2) - Al(2)	96.8(4)
Al(1) - O(2) - Si(2)	136.6(5)	Al(2)-O(2)-Si(2)	126.4(4)
Si(2)-O(3)-Si(3)	142.1(5)	Al(3)-O(4)-Si(3)	160.4(5)
O(2) - Si(2) - O(3)	106.2(4)	O(3) - Si(4) - O(4)	110.7(4)

scopic characterization of compound **11** is given in Tables 1 and 2. It is worth noting the similarity of the ²⁹Si NMR spectrum of compound **11** (18.5 ppm) to that of its methyl analogue, $[Me_2Al(\mu-OSiMe_3)]_2$ (19.0 ppm), that has been previously prepared.^{4,5,26} The molecular structure of $[(^{t}Bu)_2Al(\mu-OSiMe_3)]_2$ (**11**), as determined by X-ray crystallography, is shown in Figure 6; selected bond lengths are given in Table 4.

The reaction of the noncyclic siloxane $Me_3Si(OSiMe_2)_2$ -OSiMe₃ with (^tBu)₂AlH yields a mixture of (^tBu)₂Al(μ -OSiMe₂H)(μ -OSiMe₃)Al(^tBu)₂ (**12**) and (^tBu)₂Al(μ -OSi-Me₂H)(μ -OSiMe₂OSiMe₃)Al(^tBu)₂ (**13**); see Scheme 4 and the Experimental Section. Compounds **12** and **13** could

Figure 6. Molecular structures of $[({}^{t}Bu)_{2}Al(\mu - OSiMe_{3})]_{2}$ (**11**). Thermal ellipsoids are shown at the 30% level. Hydrogen atoms are omitted for clarity.

Scheme 4. Reaction of Me₃Si(OSiMe₂)₂OSiMe₃ with (^tBu)₂AlH

not be fully separated by fractional crystallization (see below). However, the ¹H, ¹³C, and ²⁹Si NMR spectra allow full spectral assignment. For example, the ²⁹Si-¹H} NMR spectrum of the reaction mixture shows five distinct silicon peaks. The proton-coupled ²⁹Si NMR spectrum allows these to be assigned to two OSiMe₃ groups, two OSiMe₂H groups, and a single OSiMe₂O environment. The absence of a ${}^{3}J(Si-H)$ coupling precludes the OSiMe₂O being adjacent to a OSiMe₂H group; therefore an OSiMe₂OSiMe₃ must be present in one product. By comparison of the chemical shifts to compounds discussed above and similar siloxane species, such as HMe₂SiOSiMe₂OSiMe₃ and Me₃Si(OSiMe₂)₂-OSiMe₃, we can again use the deshielding effect of Al_2O_2 to determine that only one $OSiMe_3$ is next to an Al_2O_2 core and thus distinguish OSi(b)Me3 (compound 12) from OSi_(c)Me₃ (compound 13). Only separation of these species would allow unambiguous assignments OSi(a)-Me₂H (compound 12) and OSi_(c)Me₂H (compound 13); see Scheme 4 for assignments.

Although compound **13** could not be isolated in a pure form, a few crystals of (${}^{t}Bu)_{2}Al(\mu$ -OSiMe₂H)(μ -OSiMe₃)-Al(${}^{t}Bu)_{2}$ (**12**) were isolated, and the structure was determined by X-ray crystallography. The molecular structure is shown in Figure 7; selected bond lengths and angles are given in Table 4.

How Do Aluminum Hydrides React with Dimethylsiloxanes? Part of the rationale for this study was furthering the understanding of the reaction path-

Figure 7. Molecular structures of $({}^{t}Bu)_{2}Al(\mu$ -OSiMe₃)(μ -OSiMe₂H)Al(${}^{t}Bu)_{2}$ (**12**). Thermal ellipsoids are shown at the 30% level. Hydrogen atoms are omitted for clarity.

way involved in the cleavage of siloxanes by aluminum reagents, especially hydrides. On the basis of the observation of multiple siloxane side products, we have previously proposed that the reaction of AlMe₃ with $(Me_2SiO)_3$ and $(Me_2SiO)_n$ occurs via the direct removal of a "Me₂SiO" from the siloxane chain.⁴ On the basis of the work described herein, such a random clipping of the siloxane chain is clearly not an acceptable mechanism. However, the proposal^{2,4} that the first step of the reaction involves the coordination of the siloxane to the aluminum to form a Lewis acid—base complex is clearly significant.

We have recently demonstrated²⁷ that coordination of alcohols to aluminum results in the activation of the OH group dramatically increasing its Brönsted acidity, as measured by a decrease in pK_a of about 7! A similar β -substituent activation was also observed for the complexation of organic carbonyls to aluminum.²⁸ In each of these cases a simple measure of the activation was provided by the appropriate NMR spectrum of the ligand in comparing free and coordinated forms. For example, complexation of water ($\delta = 3.36$ ppm in Et₂O) to an aluminum trialkyl results in a significant downfield shift to 7.75-8.15 ppm (depending on the identity of the alkyl substituent²⁹). With regard to siloxanes we have previously reported that the ²⁹Si NMR resonance for $(Me_2SiO)_3$ (-9.6 ppm) is shifted downfield upon coordination to aluminum in Me₃Al(Me₂SiO)₃ (-5.4 ppm³⁰). Thus, it is reasonable to propose that coordination of a siloxane to aluminum results in the increased electrophilicity of the adjacent silicon atoms (V) and hence increase its receptivity to hydride attack.

To develop a rational description of the hydride transfer reactions in cyclic siloxanes and polysiloxanes, it is best to first consider the simplest disiloxane, (Me₃-

⁽²⁷⁾ McMahon, C. N.; Bott, S. G.; Barron, A. R. J. Chem. Soc., Dalton Trans. **1997**, 3129.

^{(28) (}a) Power, M. B.; Nash, J. R.; Healy, M. D.; Barron, A. R. Organometallics **1992**, *11*, 1830. (b) Power, M. B.; Bott, S. G.; Clark, D. L.; Atwood, J. L.; Barron, A. R. Organometallics **1990**, *9*, 3086. (c) Power, M. B.; Bott, S. G.; Atwood, J. L.; Barron, A. R. J. Am. Chem. Soc. **1990**, *112*, 3446.

⁽²⁹⁾ Boleslawski, M.; Serwatowski, J. J. Organomet. Chem. 1983, 255, 269.

⁽³⁰⁾ It should be noted that since Me₃Al(Me₂SiO)₃ is fluxional at room temperature, the observed NMR shift is a time average value of one uncomplexed and two complexed Si environments. Thus, the actual NMR shift of the "activated" silicon is actually closer to -3 ppm.

Si)₂O. Thus, as is shown in Scheme 5, the reaction of (Me₃Si)₂O with R₂AlH will occur via the initial formation of the activated Lewis acid-base complex; subsequent hydride transfer results in the formation of "R₂Al(OSiMe₃)" and Me₃SiH. Given our previous studies,^{27,31} it is far more likely that instead of a fourmembered transition state (see Scheme 5), the reaction will involve hydride attack from a second uncomplexed molecule of R₂AlH, via a six-membered transition state (VI) similar to that proposed for the hydrolysis of AlR₃ (VII)²⁷ and the alkylation of ketones (VIII).²⁸ However, for the sake of clarity all subsequent schemes will adopt the intramolecular hydride transfer with the caveat that in the absence of detailed kinetic data the molecularity of the hydride transfer transition state is as yet uncertain.

If we apply the pathway shown in Scheme 5 to the reaction between (Me₂SiO)₃ and R₂AlH, then complexation and hydride transfer will result in ring opening and the formation of "R2Al(OSiMe2OSiMe2OSiMe2H)"; see Scheme 6. Although coordination of additional R₂-AlH may, in theory, occur at any of the siloxane oxygens, steric hindrance suggests that the γ oxygen is most likely, i.e., that furthest from the R₂Al moiety. Coordination to the γ oxygen may result in hydride transfer to either the β or γ silicon. While the former is more likely on steric grounds and provides an adequate explanation of all subsequent products, we cannot rule out hydride transfer to the γ silicon. In fact such a process clearly occurs during the reaction of R₂AlH with $(Me_2SiO)_5$; see below. Hydride transfer to the β silicon results in the formation of two aluminum-containing products "R₂Al(OSiMe₂H)" and "R₂Al(OSiMe₂OSiMe₂H)"; see Scheme 6. These are clearly the two fragments required to construct compounds 1-3. As is shown in Scheme 5. Proposed Reaction Pathway for the Reaction of (Me₃Si)₂O with R₂AlH

Scheme 6, subsequent coordination of R_2AlH to the siloxane oxygen of " $R_2Al(OSiMe_2OSiMe_2H)$ " may result in hydrogen transfer to either silicon. Hydride transfer to the siloxide silicon results in the formation of compound **4**, while hydride transfer to the siloxane silicon provides the " $R_2Al(OSiMe_2O)AlR_2$ " fragment required for the formation of compound **5**. The absence of any evidence for the formation of the *tert*-butyl and isobutyl analogues of compound **5** may be explained on steric grounds. Thus, sterically hindered aluminum alkyl substituents favor the transition state for the formation of **1**–**3** since it minimizes any $Al-R\cdots R-Al$ interactions.

A similar reaction scheme may be proposed for the isolation of compound **6** from the reaction of $({}^{t}Bu)_{2}AlH$ with $(Me_{2}SiO)_{4}$. Initial formation of " $({}^{t}Bu)_{2}Al(OSiMe_{2}OSiMe_{2}OSiMe_{2}OSiMe_{2}H)$ " results from ring opening, while subsequent cleavage forms " $({}^{t}Bu)_{2}Al(OSiMe_{2}OSiMe_{2}H)$ " and " $({}^{t}Bu)_{2}Al(OSiMe_{2}H)$ ", which are the constituent fragments of compound **6**. We presume that with the reactions of $(Me_{2}SiO)_{4}$ with $({}^{t}Bu)_{2}AlH$ or $Me_{2}AlH$ further cleavage of the " $R_{2}Al(OSiMe_{2}OSiMe_{2}OSiMe_{2}H)$ " fragment is possible due to the lower steric interactions.

The absence of silanes other than Me₂SiH₂ and the exclusive formation of compounds 8 and 9 from the reactions of (Me₂SiO)₅ with (^tBu)₂AlH and (ⁱBu)₂AlH, respectively, suggests that once the siloxane ring has been opened, subsequent scission occurs exclusively from the OSiMe₂H termini. Initial ring opening of (Me₂-SiO)₅ will yield the "R₂Al(OSiMe₂)₄OSiMe₂H" fragment. If the subsequent chain scission occurred with the formation the "R₂Al(OSiMe₂OSiMe₂O)AlR₂" fragment, necessary for compounds 8 and 9, then the silane side product, HSiMe₂OSiMe₂OSiMe₂H, would be formed. We have not observed any such species. Thus, it would appear that the "R₂Al(OSiMe₂)₄OSiMe₂H" fragment is consecutively cleaved to form "R₂Al(OSiMe₂)₃OSiMe₂H" and "R₂Al(OSiMe₂)₂OSiMe₂H" along with the concurrent formation of the "R₂AlOSiMe₂H" fragment.

We may conclude that, in general, the reaction of R_2 -AlH with cyclic siloxanes (Me₂SiO)_n occurs via (a) ring cleavage, followed by (b) stepwise chain scission. Where long aluminum siloxide-siloxane chains are formed, e.g., "(^tBu)₂Al(OSiMe₂)_nOSiMe₂H", $n \ge 3$, chain scission occurs one silicon at a time, starting from the terminal

⁽³¹⁾ We have calculated that in the case of the hydrolysis of aluminum alkyls the activation energy required for the formation of a four-membered transition state (98 kJ mol⁻¹) is higher than ligand dissociation ($84-95 \text{ kJ mol}^{-1}$), Barron, A. R. Unpublished results.

Scheme 6. Proposed Pathway for the Formation of Compounds 1-5 from the Reaction of (Me₂SiO)₃ with R₂AlH

Published on December 6, 1999 on http://pubs.acs.org | doi: 10.1021/om990642z Downloaded by CARLI CONSORTIUM on June 30, 2009

silicon unit. In the case of low molecular weight noncyclic polysiloxanes [e.g., Me₃Si(OSiMe₂)_nOSiMe₃] initial chain cleavage most likely occurs at the chain termini, resulting in the formation of the aluminum siloxide fragment, "R₂Al(OSiMe₂H)", and a new hydride-terminated polysiloxane, Me₃Si(OSiMe₂)_{n-1}OSiMe₂H. However, with high molecular weight noncyclic polysiloxanes [e.g., Me₃Si(OSiMe₂)_nOSiMe₃, $n \rightarrow \infty$] initial chain cleavage is more likely to occur randomly along the polymer backbone. If this occurs, then an aluminum siloxide fragment, " $R_2Al(OSiMe_2)_mOSiMe_2H$ " ($m \ge 0$), and a new hydride-terminated polysiloxane, Me₃Si- $(OSiMe_2)_{n-m}OSiMe_2H$, will be formed. Subsequent chain scission will eventually yield siloxide compounds of the types described herein.

It is interesting to postulate that the cleavage of polysiloxanes with aluminum alkyls and hydrides is of a general reaction type and may be applied to related systems. In particular, it is possible that the reaction of Ga(^tBu)₃ with elemental sulfur (S₈), to form [(^tBu)₂Ga- $(\mu$ -SS^tBu)]₂,³² occurs in an analogous manner to that of R₂AlH with (Me₂SiO)₄. We are continuing our investigations in this area.

Experimental Section

Mass spectra were obtained on a Finnigan MAT 95 mass spectrometer operating with an electron beam energy of 70 eV for EI mass spectra. IR spectra (4000–400 cm⁻¹) were obtained using a Nicolet 760 FT-IR infrared spectrometer. IR samples were prepared as Nujol mulls between KBr plates unless otherwise stated. NMR spectra were obtained on Bruker AM-250 and Avance 200 spectrometers using (unless otherwise stated) benzene- d_6 solutions. Chemical shifts are reported relative to internal solvent resonances (1H and 13C) and external [Al(H₂O)₆]³⁺ (²⁷Al) and SiMe₄ (²⁹Si). The relaxation times for different Si environments in the ²⁹Si{¹H} spectrum are variable, precluding accurate integration. An optimum relaxation delay was determined to be 30 s.

Microanalyses were performed by Oneida Research Services, Inc., Whitesboro, NY. Molecular weight measurements were made in CH₂Cl₂ with the use of an instrument similar to that described by Clark.³³ The syntheses of (^tBu)₂AlH and Al(^tBu)₃ were performed according to modification of the literature methods.³⁴ Me₂AlH and (ⁱBu)₂AlH were generously donated by Akzo Nobel. All siloxanes were obtained from United Chemical Technologies or Aldrich and [except for (Me₂SiO)₄ and (Me₂-SiO)₅, which were dried prior to use] were used without further purification.

⁽³²⁾ Power, M. B.; Ziller, J. W.; Tyler, A. N.; Barron, A. R. Organometallics 1992, 11, 1055.

 ⁽³³⁾ Clark, E. P. Ind. Eng. Chem. Anal. Ed. 1941, 13, 820.
 (34) (a) Uhl, W. Z. Anorg. Allg. Chem. 1989, 570, 37. (b) Lehmkuhl,
 H.; Olbrysch, O.; Nehl, H. Liebigs Ann. Chem. 1973, 708. (c) Lehmkuhl, H.; Olbrysch, O. Liebigs Ann. Chem. 1973, 715.

('Bu)₂Al(μ -OSiMe₂H)(μ -OSiMe₂OSiMe₂H)Al('Bu)₂ (1). A solution of ('Bu)₂AlH (0.8 g, 5.7 mmol) in hexane (50 mL) and was added to (Me₂SiO)₃ (0.62 g, 2.8 mmol). The reaction was stirred for 4 days, filtered, and brought to dryness in vacuo. The product was recrystallized from hexane, and X-ray quality crystals were grown from a pentane solution (less than 10 mL) at -78 °C. Yield: 76%. Mp: 75 °C (subl). Anal. (calc, %): C 52.4 (52.1), H 11.2 (11.1). MS (EI, %): m/z 449 (M⁺ – 'Bu, 100), 393 (M⁺ – 2 'Bu, 32). IR (cm⁻¹): 2149 (s, Si–H), 1261 (s), 1052 (s, br), 906 (s), 821 (s, br).²⁷Al (CDCl₃): δ 128 ($W_{1/2}$ = 4066 Hz).

(ⁱBu)₂Al(μ -OSiMe₂H)(μ -OSiMe₂OSiMe₂H)Al(ⁱBu)₂ (2). A solution (2.75 wt %) of (ⁱBu)₂AlH (8.8 g, 9.0 mmol) in heptane was added to (Me₂SiO)₃ (1.0 g, 4.5 mmol), and the reaction was stirred for 3 days. The desired product was isolated as a colorless solid by removal of heptane in vacuo. Yield: 92%. Anal. (calc, %): C 51.9 (52.1) H: 11.3 (11.1). MS (EI, %): m/z 449 (M⁺ - ⁱBu, 70), 393 (M⁺ - 2 ⁱBu, 62), 337 (M⁺ - 3 ⁱBu, 27), 59 (OSiMe₂H, 70). IR (neat, cm⁻¹): 2955 (s), 2859 (s), 2150 (Si-H, s), 1462 (br s), 1399 (s), 1360 (s), 1319 (s), 1260 (s), 1180 (s). ²⁷Al (CDCl₃): δ 168 ($W_{1/2}$ = 7390 Hz).

(Me)₂Al(μ-OSiMe₂H)(μ-OSiMe₂OSiMe₂H)Al(Me)₂ (3). Neat Me₂AlH (0.4 g, 6.9 mmol) was added to (Me₂SiO)₃ (1.09 g, 4.9 mmol) in hexane (30 mL). The solution was stirred for 4 days. Removal of the solvent followed by vacuum distillation yielded a colorless liquid. Yield: 81%. Anal. (calc, %): C 36.1 (35.5), H 10.0 (9.5). MS (EI, %): m/z 323 (M⁺ – Me, 16), 249 (M⁺ – 2 Me – SiMe₂H, 24), 189 (M⁺ – 2 Me – 2 SiMe₂H, 100), 175 (Me₂Al₂O₂SiMe₂, 55). IR (neat, cm⁻¹): 2963 (s), 2933 (s), 2892 (s), 2145 (s, Si–H), 1419 (m), 1262 (s), 1195 (s), 1078 (s). ²⁷Al (CDCl₃): δ 150 ($W_{1/2}$ = 2880 Hz).

[('Bu)₂Al(μ -OSiMe₂H)]₂ (4). Method 1. To a toluene (200 mL) solution of (Me₂SiO)₃ (1.5 g, 6.8 mmol) was added Al('Bu)₃ (4.0 g, 20.2 mmol). The reaction was refluxed for 4 days. The toluene was removed in vacuo and repeated recrystallization with hexane at -23 °C yielded white crystals. Yield: 0.8 g, 18%.

Method 2. A mixture of (^tBu)₂AlH (0.3 g, 2.1 mmol) and (Me₂SiO)₃ (0.23 g, 1.0 mmol) was refluxed in toluene (100 mL) overnight. After removal of the volatiles under vacuum, the residue was recrystallized from hexane (10 mL) at -23 °C. Yield: 68%. Mp: >230 °C. Anal. (calc, %): C 36.0 (36.3), H 9.9 (9.5). MS (EI, %): m/z 375 (M⁺ – ^tBu, 20), 59 (^tBu + 2, 100). IR (cm⁻¹): 2157 (s, Si–H), 1260 (s), 1066 (m, br), 840 (s), 810 (s).

Me₂Al(µ-OSiMe₂H)AlMe₂(µ-OSiMe₂O)Me₂Al(µ-OSiMe₂H)-AlMe₂ (5). Method 1. Neat Me₂AlH (0.30 g, 5.1 mmol) was added to a hexane (30 mL) solution of (Me₂SiO)₃ (0.54 g, 2.4 mmol). The solution was stirred for 4 days. The solvent was removed under vacuum. Yield: 22%.

Method 2. Neat Me_2AlH (0.30 g, 5.1 mmol) was added to a hexane (30 mL) solution of $(Me_2SiO)_4$ (0.38 g, 1.3 mmol). The solution was stirred for 4 days. The solvent was removed, and two new products were present by ¹H NMR. The minor (undetermined) product was removed by distillation under vacuum, leaving the pure product. Yield: 90%.

Method 3. Neat Me₂AlH (0.55 g, 9.6 mmol) was added to (Me₂SiO)₅ (0.7 g, 1.9 mmol) in hexane (30 mL). After stirring for 4 days the volatiles were removed under vacuum to yield a colorless liquid. Yield: 68%. Anal. (calc, %): C 36.0 (35.9), H 9.5 (9.5). MS (EI, %): m/z 453 (M⁺ – Me, 2), 395 (M⁺ – Me – SiMe₂, 5), 381 (M⁺ – 2 Me – SiMe₂, 100), 321 (M⁺ – 2 Me – 2 SiMe₂H, 10), 175 (Me₂Al₂O₂SiMe₂, 18). IR (neat, cm⁻¹): 2931 (s), 2893 (m), 2147 (Si–H, s), 1418 (m), 1261 (s), 1200 (s), 910 (s). ²⁷Al (CDCl₃): δ 157 ($W_{1/2}$ = 3381 Hz).

(^t**Bu**)₂**Al**(μ -**OSiMe**₂**H**)(μ -**OSiMe**₂**OSiMe**₂**OSiMe**₂**H**)**A**I-(^t**Bu**)₂ (**6**). A hexane (50 mL) solution of (^t**Bu**)₂AlH (0.5 g, 3.6 mmol) was added to (Me₂SiO)₄ (0.52 g, 1.8 mmol). After stirring at room temperature for 4 days, the solution was filtered and brought to dryness in vacuo. The product was purified by recrystallized from hexane at -78 °C. Yield: 38%. Anal. (calc, %): C 50.0 (49.6), H 11.1 (10.8). MS (EI, %): m/z 523 (M⁺ – 'Bu, 100), 509 (M⁺ – 'Bu – Me, 10), 467 (M⁺ – 2 'Bu, 10), 307 (M⁺ – 3 'Bu – AlOSiMe₂H, 28). IR (cm⁻¹): 2145 (s, Si–H), 1474 (s), 1385 (m), 1263 (s), 1059 (br s).

(ⁱBu)₂Al(μ -OSiMe₂H)Al(ⁱBu)₂(μ -OSiMe₂O)(ⁱBu)₂Al(μ -O-SiMe₂H)Al(ⁱBu)₂ (7). A 2.75% solution of (ⁱBu)₂AlH (6.65 g, 2.3 mmol) in heptane was added to (Me₂SiO)₄ (1.0 g, 3.4 mmol), and the reaction was stirred for 4 days. The desired product was isolated by removal of heptane in vacuo and was a pure colorless oil. Yield: 50%. Anal. (calc, %): C 57.0 (56.7), H 11.3 (11.5). MS (EI, %): m/z 747 (M⁺ – ⁱBu, 40), 531 (M⁺ – 4 ⁱBu – 3 Me, 63). IR (neat, cm⁻¹): 2949 (s), 2868 (s), 2152 (s, br, Si–H), 1463 (s), 1400 (m), 1377 (m), 1363 (m), 1320 (m), 1262 (s), 1183 (s), 1079 (s, br).

('Bu)₂Al(μ -OSiMe₂H)Al('Bu)₂(μ -OSiMe₂OSiMe₂O)('Bu)₂-Al(μ -OSiMe₂H)Al('Bu)₂ (8). ('Bu)₂AlH (0.4 g, 0.94 mmol) was dissolved in hexane (50 mL) and added to (Me₂SiO)₅ (0.52 g, 1.4 mmol). The reaction was stirred for 4 days, filtered, and brought to dryness in vacuo. The crude residue showed unreacted (Me₂SiO)₅ and the desired product, which was purified by recrystallization from pentane at -78 °C. Yield: 44%. Mp: 185–187 °C. Anal. (calc, %): C 54.2 (54.6), H 11.2 (11.2). IR (cm⁻¹): 2160, 2146 (m, Si–H), 1259 (s), 1025 (s, br), 909 (s). ²⁷Al (CDCl₃): δ 148 ($W_{1/2}$ = 2200 Hz).

('Bu)₂Al(μ -OSiMe₂H)Al('Bu)₂(μ -OSiMe₂OSiMe₂O)('Bu)₂Al-(μ -OSiMe₂H)Al('Bu)₂ (9). A 2.75% solution of ('Bu)₂AlH (5.78 g, 6.0 mmol) in heptane was added to (Me₂SiO)₅ (1.0 g, 2.7 mmol), and the reaction was stirred for 3 days. Removal of the volatiles yielded a colorless oil. Yield: 84%. Anal. (calc, %): C 54.7 (54.6), H 11.4 (11.2). MS (EI, %): m/z 821 (M⁺ – ⁱBu, 42), 765 (M⁺ – 2 ⁱBu, 20), 605 (M⁺ – 4 ⁱBu – SiMe₂H, 100). IR (neat) (cm⁻¹): 2946 (s), 2866 (s), 2151 (s, SiH), 1462 (s), 1401 (m), 1362 (m), 1319 (m), 1264 (s), 1086 (s, br), 905 (s).

('Bu)₂Al(μ -OSiMe₂H)Al('Bu)₂(μ -OSiMe₂OSiMe₂O)Al('Bu)₂-(THF) (10). (Me₂SiO)₅ (0.52 g, 1.4 mmol) and ('Bu)₂AlH (0.4 g, 2.79 mmol) were added together neat, and hexane (ca. 20 mL) contaminated with THF was added. The reaction was stirred for 3 days. The solution was filtered and placed in the freezer, yielding a white solid. Upon recrystallization from hexane at -23 °C needlelike crystals formed. Yield: 66%. Mp: 124–127 °C. Anal. (calc, %): C 54.8 (55.4), H 11.0 (11.1). IR (cm⁻¹): 2141 (s, Si–H), 1262 (s), 1076 (s), 1025 (s), 914 (s), 834 (s, br).

[('Bu)₂Al(OSiMe₃)]₂ (11). To ('Bu)₂AlH (0.1 g, 0.69 mmol) was added a large excess of (Me₃Si)₂O (ca. 10 mL). The solution was initially clear; however, after stirring for 4 days a white precipitate had formed. The precipitate was filtered and dried in vacuo. Yield: 82%. Mp: >200 °C. Anal. (calc, %): C 35.4 (35.9), H 12.0 (11.8). MS (EI, %): m/z 403 (M⁺ – 'Bu, 100), 347 (M⁺ – 2 'Bu, 10). IR (cm⁻¹): 1257 (s), 843 (s), 810 (m), 769 (s). ²⁷Al (CDCl₃): δ 124 ($W_{1/2}$ = 2490 Hz).

('Bu)₂Al(μ -OSiMe₂H)(μ -OSiMe₃)Al('Bu)₂ (12) and ('Bu)₂-Al(μ -OSiMe₂H)(μ -OSiMe₂OSiMe₃)Al('Bu)₂ (13). Me₃Si(OSi-Me₂)₂OSiMe₃ (0.344 g, 1.1 mmol) was added neat to ('Bu)₂AlH (0.3 g, 0.7 mmol) in hexane (30 mL). The reaction was stirred for 3 days and brought to dryness in vacuo. The white sticky solid was recrystallized from hexane (ca. 5 mL) at -23 °C.

Crystallographic Studies. Crystals of compounds **1**, **4**, **8**, **10**, **11**, and **12** were sealed in a glass capillary under argon and mounted on the goniometer of an Enraf-Nonius CAD-4 (**8**), a Rigaku AFC-5S (**1**, **4**, and **10**), or a Bruker CCD SMART system (**11** and **12**), equipped with graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å) and corrected for Lorentz and polarization effects. Data collection and cell determinations were performed in a manner previously described.³⁵ The locations of the majority of non-hydrogen atoms were obtained by using either SIR (for **1**)³⁶ or SHELXS-86,³⁷ while the

⁽³⁵⁾ Mason, M. R.; Smith, J. M.; Bott, S. G.; Barron, A. R. J. Am. Chem. Soc. 1993, 115, 4971.

	Table 7. Summary of X-ray Diffractio	n Data
	$({}^tBu)_2A_l(\mu\text{-}OSiMe_2H)(\mu\text{-}OSiMe_2OSiMe_2H)A_l({}^tBu)_2A_l(\mu\text{-}OSiMe_2H)A_l(h)A$	$(1)_{2} (1) [(^{t}Bu)_{2}A_{1}(\mu - OSiMe_{2}H)]_{2} (4)$
empir formula	$C_{22}H_{56}A_{l2}O_{3}Si_{3}$	$C_{20}H_{50}A_{l2}O_2Si_2$
cryst size, mm	$0.24\times0.21\times0.17$	0.05 imes 0.06 imes 0.12
cryst syst	triclinic	monoclinic
space group	P_1	<i>C</i> 2
a, A	10.026(2)	16.527(3)
b, A	11.468(2)	11.100(2)
с, А	15.347(3)	8.835(2)
a, deg	96.67(3)	100 50/0
β , deg	90.56(3)	120.52(3)
γ , deg	1000 5(0)	1000 0/5
V, A ³	1638.3(6)	1396.3(5)
Σ $D(a a l a d) = \sigma/a m^3$	۵ 1 099	۵ 1 022
$D(\text{calcu}), \text{g/cm}^{-1}$	1.028	1.055
μ , chi tomp K	208	2.00
20 range deg	238 45-450	258 4.6-55.0
20 range, deg	4.5-45.0	4.0-33.0
no ind	4404	2012 9799
no obsd	4231 2561 (E > 4.0 g E)	2733 1917 (E > 4.0 g E)
no. obsu wajahting schome	$\begin{array}{c} 2301 (F_0 \geq 4.00 F_0) \\ \text{SUELVTL} & 0.1065 + 6.501 \end{array}$	$1217 (F_0 \ge 4.00 F_0)$ SLIELVTL 0.522 1.741
	0.084	0 105
R P	0.004	0.155
largest diff peak o Å-3	0.55	1.82
largest uni peak, e A	0.00	1.02
	$(^{t}Bu)_{2}Al(\mu$ -OSiMe ₂ H)Al($^{t}Bu)_{2}$ -	$(^{t}Bu)_{2}Al(\mu - OSiMe_{2}H)Al(^{t}Bu)_{2}-$
	$(\mu$ -OS1Me ₂ H)AI('Bu) ₂ (8)	$(\mu$ -OSIMe ₂ OSIMe ₂ O)AI(⁴ Bu) ₂ (THF) (10)
empir formula	$C_{48}H_{98}Al_4O_5Si_4$	$C_{34}H_{81}Al_3O_5Si_3$
cryst size, mm	0.15 imes 0.18 imes 0.25	0.11 imes 0.21 imes 0.22
cryst syst	triclinic	triclinic
space group	P1	P1
a, A	11.4925(9)	14.720(3)
b, A	15.125(1)	16.563(3)
с, А	17.958(2)	10.333(2)
α, deg	111.234(8)	91.51(3)
β , deg	101.612(7)	110.09(3)
γ , deg	98.867(7)	85.44(3)
V, A ³	2760.5(3)	2358.5(8)
	2	2
$D(\text{calcd}), \text{g/cm}^3$	1.058	1.04
μ , cm ⁻¹	2.00	1.90
temp, K	298	
20 range, deg	3.0-45.0	4.0-45.0
no. confected	7204	4078
no. ma	7204	4440
no. obsu	$3991 (F_0 \ge 0.00 F_0)$ $y_{c} = 0.04(E)^2 + \sigma(E)^2$	$2221 (F_0 > 4.00 F_0)$
	$W^{1} = 0.04(F_{0})^{2} + O(F_{0})^{2}$	SHELAIL 0.080, 10.023
к D	0.0451	0.093
$K_{\rm W}$ largest diff peak o Å ⁻³	0.0400	0.217
largest uni peak, e A	0.45	0.50
	$[(^{t}Bu)_{2}Al(\mu - OSiMe_{3})]_{2} (11) $ (^t E	$Bu)_2Al(\mu$ -OSiMe ₂ H)(μ -OSiMe ₃)Al($^tBu)_2$ (12)
empir formula	$C_{22}H_{54}Al_2O_2Si_2$	$C_{21}H_{52}Al_2O_2Si_2$
cryst size, mm	0.14 imes 0.11 imes 0.13	0.10 imes 0.23 imes 0.12
cryst syst	monoclinic	monoclinic
space group	$P2_1/n$	$P2_1/n$
a, À	9.594(2)	9.571(2)
b, Å	15.767(3)	15.903(3)
<i>c</i> , A	10.461(2)	10.375(2)
α, deg		
β , deg	109.82(5)	109.34(3)
γ , deg		
V, A^3	1488.7(5)	1489.5(2)
\angle $D(colod) = \pi/cm^3$	۲ 1 028	Z 1.00
D(calcu), g/cm ³	1.02	1.00
μ , cm Γ	1.92	1.90
temp, K	298 5 0 46 6	298 A.F. AQ.C.
20 range, deg	0.0 ⁻⁴ 0.0	4.3-40.6
no. collected	008U 9149	0/30
no. ina	2148	2150 929 ((E) > 4.0 (E))
no. obsd	$10/7 (F_0 \ge 4.0\sigma F_0)$	$822 (F_0 \ge 4.0\sigma F_0)$
weighting scheme	SHELAIL 0.208, 0.503	SHELAIL U.21, U.U
κ P	0.0911	0.100
$K_{\rm W}$	0.2391	0.54
largest uni peak, e A	0.01	0.34

able	7.	Summary	of X-ray	Diffraction	Data

remaining atomic coordinates were determined through the generation of difference Fourier maps using MolEN³⁸ or SHELXTL-93.39 Disorder was noted in several instances. One of the terminal SiMe₂H groups in compound 1 appeared on difference maps with three peaks bonded to the silicon in a tetrahedral arrangement, in which one peak was twice as large as the other two. These latter peaks refined well as halfoccupancy carbons, implying an interchange between one methyl and the hydride. It was possible to resolve only one of the two hydride positions, however. The SiMe₂H groups in compound **4** were disordered over two sites in a 1:1 ratio as a result of the deviation of the silicon atoms from the O(1)... O(1') vector due to the steric interactions between the SiMe₂H group and the aluminum tert-butyl substituents. It is interesting to note that there is no symmetry relationship between the two disordered sites. Although compounds 11 and 12, which differ only by replacement of a silicon methyl by a hydride, are isomrphous, the behavior of the SiMe₂X groups is different. In compound 11, the three carbon atoms (the molecule resides over a center of inversion) were located, while in compound 12, six equal positions were observed. These were refined as being 5/6 C and 1/6 H. All non-hydrogen atoms were treated with anisotropic thermal parameters, except in compound 10, for which sufficient data were available to treat only the Al, Si, O atoms and the C atoms of the THF ligand in this fashion. The hydrogen atoms attached to the silicons in compound 8 were located and refined with isotropic thermal parameters. All other hydrogen atoms were included with fixed thermal parameters and constrained to "ride" upon the appropriate atoms [d(C-H) = 0.95 Å]. A summary of cell parameters, data collection, and structure solution is given in Table 7. Scattering factors were taken from ref 40. The data for compound **4** were of very low precision due to a very weakly scattering crystal that also showed significant anisotropic decay. Accordingly, only the crystal data are reported for this compound.

Acknowledgment. Financial support for this work is provided by the National Science Foundation, the Robert A. Welch Foundation, and the Deutsche Forschungsgemeinschaft. Akzo Nobel is gratefully acknowledged for their generous gift of Me₂AlH. The Bruker CCD Smart System diffractometer was funded by the Robert A. Welch Foundation, and the Bruker Avance 200 NMR spectrometer was purchased with funds from ONR Grant N00014-96-1-1146. A.R.B. acknowledge the support of the Alexander von Humboldt Foundation for a Senior Scientist Fellowship.

Supporting Information Available: Full listings of bond lengths and angles, anisotropic thermal parameters, and hydrogen atom parameters. This material is available free of charge via the Internet at http://pubs.acs.org.

OM990642Z

⁽³⁶⁾ Burla, M. C.; Carnalli, M; Cascarano, G.; Giacovazzo, C.; Polidori, G.; Spagna, R.; Viterbo, D. J. Appl. Crystallogr. **1989**, 22, 389. (37) Sheldrick, G. M. Acta Crystallogr., A **1990**, 46, 467.

 ⁽³⁸⁾ Enraf-Nonius, MolEN, An Interactive Structure Solution Procedure, Enraf-Nonius: Delft, The Netherlands, 1990.
 (30) Sheldrick, C. M. Acta Crustallogr. 1990. 446, 467

⁽³⁹⁾ Sheldrick, G. M. Acta Crystallogr. 1990, A46, 467.

⁽⁴⁰⁾ International Tables for X-ray Crystallography; Kynoch Press: Birmingham, UK, 1974; Vol. IV, pp 99, 149.