cis-(R'2PC2H4PR'2)PdH(SnR3) Complexes: Trapped **Intermediates in the Palladium-Catalyzed** Hydrostannation of Alkynes†

Roman Trebbe, Frank Schager, Richard Goddard, and Klaus-Richard Pörschke*

Max-Planck-Institut für Kohlenforschung, Postfach 101353, 45466 Mülheim an der Ruhr, Germany

Received October 12, 1999

The complexes $(R'_2PC_2H_4PR'_2)Pd(C_2H_4)$ $(R' = {}^{i}Pr, {}^{t}Bu)$ react with R_3SnH $(R = Me, {}^{n}Bu)$ by displacement of the ethene ligand and oxidative addition of the Sn-H bond to generate the chelating phosphane stabilized cis PdII hydrido stannyl complexes (R'2PC2H4PR'2)PdH(SnR3) $(R' = {}^{i}Pr(1), {}^{t}Bu(2))$. Complex **1a** $(R' = {}^{i}Pr, R = Me)$, containing the smallest substituents, is only transiently formed but has been detected at -80 °C by NMR spectroscopy. It reacts further with Me₃SnH, even at −120 °C, by eliminating hydrogen to give (dippe)Pd(SnMe₃)₂ (3). In contrast, the isolated (dippe)PdH(SnnBu₃) (1b) is briefly stable at ambient temperature, whereas the sterically encumbered species (dtbpe)PdH(SnR₃) (R = Me (2a), ⁿBu (2b)) are stable well above 100 °C. The molecular structure of 2a has been determined by X-ray crystallography. Complex **2a** reacts with 2 equiv of $C_2R''_2$ ($R'' = CO_2Me$) to give (d^tbpe)Pd- $(C_2R''_2)$ (4) and predominantly the corresponding (E)-vinylstannane (E)- $(R'')(H)C=C(SnMe_3)$ -(R") (E-5). Since 2a also catalyzes the hydrostannation of the alkyne, the cis Pd^{II} hydrido stannyl complexes 1a,b and 2a,b represent trapped intermediates in the Pd-catalyzed hydrostannation of alkynes. The existence of the complexes also sheds light on the mechanism of the Pd-catalyzed degradation of R₃SnH into Sn₂R₆ and H₂.

Introduction

Hydrostannation of alkynes1 provides a convenient route to the synthetically useful vinylstannanes.² The spontaneous reaction is thought to proceed either by an ionic or free radical *trans*-mechanism to generate (*Z*)vinylstannanes, which may eventually isomerize into the thermodynamically favored (E)-vinylstannanes. ^{3a} In contrast, the L₂Pd⁰-catalyzed hydrostannation of alkynes leads regio- and stereospecifically to the (E)-vinylstannanes.4 This reaction implies oxidative addition of R₃-Sn-H to Pd⁰ to generate a Pd^{II} hydrido stannyl intermediate,4a which then undergoes cis addition of either the Pd-H or Pd-Sn⁵ bond to the alkyne C≡C

Phillips, H. K. *Tetrahedron Lett.* **1990**, *31*, 6621. (5) Stannylpalladation of an alkyne has been proposed in: (a) Reference 4a. (b) Lautens, M.; Smith, N. D.; Ostrovsky, D. *J. Org.* Chem. 1997, 62, 8970.

bond, followed by reductive elimination of the (E)vinylstannane. The supposed cis PdII hydrido trialkylstannyl intermediates have so far remained elusive (Scheme 1).

In contrast, trans-(Ph₃P)₂PtH(SnMe₃) has been known for a long time. 6 Moreover, we recently reported that chelating phosphane stabilized (R'₂PC₂H₄PR'₂)Pd⁰ stannylene complexes react reversibly with weak acids such as water by HX addition across the Pd=Sn bond to give relatively stable $(R'_2PC_2H_4PR'_2)Pd(H)SnR_2X$ (A; R = $CH(SiMe_3)_2$, X = OH, OMe). While $(R'_2PC_2H_4PR'_2)Pd$ -(H)SnR₃-type complexes should be accessible from **A** by substituting R for X, a more direct and general synthetic route is the oxidative addition of R₃Sn-H to a suitable (R'₂PC₂H₄PR'₂)Pd⁰ starting complex. Here we report, for the first time, the synthesis and properties of *cis* Pd^{II} hydrido trialkylstannyl complexes, (R'2PC2H4PR'2)Pd- $(H)SnR_3.8$

Results and Discussion

When the yellow-brown solutions of (R'₂PC₂H₄PR'₂)- $Pd(C_2H_4)$ (R' = ⁱPr, ^tBu)⁹ in pentane are reacted with 1 equiv of R₃SnH (R = Me, nBu) at 20 °C, ethene is liberated. Subsequent cooling of the reaction mixtures to -30 or -78 °C affords colorless or beige crystals of

[†] Abbreviations: dippe, bis(diisopropylphosphino)ethane, iPr₂PC₂H₄P-¹Pr₂; d^tbpe, bis(di-tert-butylphosphino)ethane, ^tBu₂PC₂H₄P^tBu₂; dmad, dimethyl acetylenedicarboxylate.

⁽¹⁾ van der Kerk, G. J. M.; Noltes, J. C. J. Appl. Chem. 1959, 9,

^{(2) (}a) Pereyre, M.; Quintard, J.-P.; Rahm, A. *Tin in Organic Synthesis*; Butterworth: London, 1987. (b) Harrison, P. G. *Chemistry* of Tin; Blackie: Glasgow, U.K., 1989. (c) Davies, A. G. Organotin Chemistry; VCH: Weinheim, Germany, 1997.

^{(3) (}a) Leusink, A. J.; Budding, H. A.; Drenth, W. J. Organomet. Chem. 1968, 11, 541 and references therein. (b) Leusink, A. J.; Budding, H. A.; Marsman, J. W. J. Organomet. Chem. 1967, 9, 285. (c) Leusink, A. J.; Marsman, J. W. Recl. Trav. Chim. Pays-Bas 1965, *84*, 1123.

^{4) (}a) Ichinose, Y.; Oda, H.; Oshima, K.; Utimoto, K. *Bull. Chem. Soc. Jpn.* **1987**, *60*, 3468. (b) Kikukawa, K.; Umekawa, H.; Wada, F.; Matsuda, T. *Chem. Lett.* **1988**, 881. (c) Zhang, H. X.; Guibé, F.; Balavoine, G. *Tetrahedron Lett.* **1988**, *29*, 619. (d) Guibé, F. *Main Group Met. Chem.* **1989**, *12*, 437. Zhang, H. X.; Guibé, F.; Balavoine, G. *J. Org. Chem.* **1990**, *55*, 1857. (e) Miyake, H.; Yamamura, K. *Chem. Lett.* **1989**, 981. (f) Cochran, J. C.; Bronk, B. S.; Terrence, K. M.;

⁽⁶⁾ Akhtar, M.; Clark, H. C. J. Organomet. Chem. 1970, 22, 233.
(7) Schager, F.; Seevogel, K.; Pörschke, K.-R.; Kessler, M.; Krüger, C. J. Am. Chem. Soc. 1996, 118, 13075.

⁽⁸⁾ Trebbe, R. Dissertation, University of Düsseldorf, Düsseldorf,

⁽⁹⁾ Krause, J.; Bonrath, W.; Pörschke, K.-R. Organometallics 1992, 11. 1158.

Scheme 1

$$R'' = CN \\ CO_{2}R$$

$$R'' C = CR'' \\ H - SnR_{3}$$

$$R'' C = CR'' \\ R_{3}SnH$$

$$R'' C = CC \\ H \\ R'' C = CC \\ H \\ SnR_{3}$$

$$C = CC \\ H \\ R'' C = CC \\ H \\ SnR_{3}$$

$$C = CC \\$$

the (R'₂PC₂H₄PR'₂)PdH(SnR₃) complexes **1b** (42%), **2a** (87%), and **2b** (81%). Complex **1a** ($R' = {}^{i}Pr$, R = Me), in which the substituents are smallest, is unstable and has not been isolated. The reactions also proceed at -78 °C (eq 1). Remarkably, in all cases the ethene ligand of the

starting complexes is extruded and does not insert into either the Pd-H or Pd-Sn bond of the product complexes.

The isolated compounds differ considerably in their thermal properties. Complex 1b melts with slow decomposition below 20 °C. Complex 2a decomposes at 144 °C without melting, while 2b already melts at 52 °C but appears to decompose only at about 160 °C. Thus, thermal stability appears to increase with the bulk of the phosphane ($d^{i}ppe < d^{t}bpe$) and, interestingly, with increasing chain length of R (Me < ⁿBu). The melting points decrease with increase in chain length of R.

Complex 1a was observed and has been characterized by its NMR spectra when the reaction was performed at −78 °C. This complex reacts further with Me₃SnH, even at -120 °C, to yield (dippe)Pd(SnMe₃)₂ (3)¹⁰ and hydrogen (eq 1). The reaction probably proceeds through an octahedral [(dippe)Pd(H)₂(SnMe₃)₂] intermediate, which reductively eliminates the hydrogen. Considering that the known *cis, cis, trans*-L₂Pt(H)₂(SnR₃)₂ complexes, with L = phosphane, reversibly eliminate hydrogen,¹¹ we tentatively assume a similar structure for the [(dippe)Pd(H)₂(SnMe₃)₂] intermediate, although an *all*cis structure cannot be ruled out. The stability of 3 can be contrasted with the fact that in the presence of L_n-Pd complexes ($L = PPh_3$, for example) trialkylstannanes tend to catalytically eliminate hydrogen to give Sn₂R₆.¹² It would seem that the chelating dippe ligand in 3 stabilizes this type of complex so that reductive elimination of Sn₂R₆ is inhibited. It therefore follows that the transient complexes 1a and [(dippe)Pd(H)2(SnMe3)2] and isolable 3 serve as model intermediates in the Pdcatalyzed hydrogen elimination from R₃SnH to give $\mathrm{Sn_2R_6}$, giving weight to a mechanism involving a $\mathrm{Pd^0}$ \leftrightarrow Pd^{II} \leftrightarrow Pd^{IV} change in oxidation states (eq 2).

$$L_{2}Pd^{0} \xrightarrow{R_{3}SnH} \xrightarrow{L} \stackrel{\parallel}{\longrightarrow} \stackrel{SnMe_{3}}{\longrightarrow} \stackrel{R_{3}SnH}{\longleftarrow} \begin{bmatrix} & SnMe_{3} \\ & |_{IV} & H \\ & & |_{IV} & |_{$$

Spectroscopic Characterization of 1a,b and 2a,b.

In the EI mass spectra of the thermally stable d^tbpe complexes 2a,b, the molecular ions are observed, which characteristically fragment by loss of an R substituent to generate [(dtbpe)Pd(H)SnR₂]+. Further successive degradation affords [(dtbpe)Pd]+ as a prominent (2b) or the base ion (2a). Interestingly, M+ does not undergo RH elimination to give [(dtbpe)Pd=SnR₂]+, although HX elimination was observed for A.7 In the IR spectra the PdH stretching band of the dtbpe complexes 2a,b appears at 1837 cm⁻¹, and for the dippe derivative 1b it lies at an even lower wavenumber (1816 cm⁻¹).

Selected ¹H, ¹³C, and ³¹P NMR data of complexes 1a,b and 2a,b are listed in Table 1. The PdH resonances were found for **1a**,**b** at $\delta(H)$ -3.0 and for **2a**,**b** at $\delta(H)$ -4.0

⁽¹⁰⁾ Trebbe, R.; Goddard, R.; Pörschke, K.-R. Manuscript in preparation.

⁽¹¹⁾ Eaborn, C.; Pidcock, A.; Steele, B. R. *J. Chem. Soc., Dalton Trans.* **1975**, 809. Almeida, J. F.; Azizian, H.; Eaborn, C.; Pidcock, A. J. Organomet. Chem. 1981, 210, 121.

^{(12) (}a) Bumagin, N. A.; Gulevich, Yu. V.; Beletskaya, I. P. Izv. Akad. Nauk SSSR, Ser. Khim. **1982**, 2639; **1984**, 1137. (b) Mitchell, T. N.; Amamria, A.; Killing, H.; Rutschow, D. J. Organomet. Chem. 1986, 304, 257,

				-	
	δ(Η)		δ(C)	$\delta(\mathbf{P})^b$	
	$SnCH_n$	PdH	$SnCH_n$	P _{trans to Sn}	P _{cis to Sn}
1a ^b	С	−3.08 ² J(PH) 178, <1 ² J(SnH) 94	С	75.2 ² J(PP) 10 ² J(¹¹⁹ SnP) 1700	76.35 $^2 J(PP) 10$ $^2 J(SnP) \sim 50$
1b	0.81	−3.00 ² <i>J</i> (PH) 175, <1	14.6	76.1 ² <i>J</i> (PP) < 1	78.9 ² <i>J</i> (PP) < 1
	2 J(SnH) \sim 36	² <i>J</i> (¹¹⁹ SnH) 102	¹ <i>J</i> (¹¹⁹ SnC) 168	$^{2}J(^{119}\text{SnP})\ 1571$	² J(SnP) 61
2a	0.07	−3.98 ² <i>J</i> (PP) 4 ² <i>J</i> (PH) 171, <5	-2.4	94.9 ² <i>J</i> (PP) 4	95.6 ² <i>J</i> (PP) 4
	² J(SnH) 36	$^{2}J(^{119}SnH)$ 133	¹ J(SnC) 145	² J(¹¹⁹ SnP) 1789	² J(SnP) 51
2b	\sim 0.8 c	−3.92 ² <i>J</i> (PH) 167, <5	14.9	93.7 ² <i>J</i> (PP) <2	96.5 ² J(PP) <2
		² .J(¹¹⁹ SnH) 141	¹ .J(¹¹⁹ SnC) 164	² .J(¹¹⁹ SnP) 1603	² .J(SnP) 61

Table 1. Selected ¹H, ¹³C, and ³¹P NMR Data of Complexes 1a,b and 2a,b^a

and thus occur at somewhat lower field than for **A** (δ (H) -4.2 to -5.5). The signals appear as doublets due to strong ²*J*(PH)_{trans} coupling (²*J*(PH)_{cis} is insignificant). The additional ²J(SnH)_{cis} couplings are larger for the d^tbpe (2a, 133 Hz; 2b, 141 Hz) than for the dⁱppe complexes (1a, 94 Hz; 1b, 102 Hz) and larger for the SnⁿBu₃ than for the SnMe₃ derivatives, possibly reflecting the proximity of the substituents in the molecular structure. 13 The 1H and 13C signals of the SnR₃ groups are generally similar to those of R₃SnH, with the distinction that in **1b** and **2a,b** $\operatorname{Sn} CH_n$ is somewhat deshielded and the magnitudes of ¹J(SnC) are markedly smaller (145-168 Hz) than those of the free tin hydrides (~350 Hz).¹⁴ In the ³¹P NMR spectra two signals are observed for the inequivalent ³¹P nuclei, for which the coupling ² *J*(PP) is very small and is not always detected. The couplings ${}^{2}J(SnP)_{trans} = 1570-1790$ Hz and ${}^{2}J(Sn-1790)$ Hz and ${}^{2}J(Sn-1790)$ P_{cis} = 50-60 Hz are significantly different from those of A (\sim 2300 and 25-40 Hz). The NMR signals of the (R'2PC2H4PR'2)Pd moieties indicate that the complexes have C_s point symmetry. Although the NMR spectra are almost temperature independent between 20 and -80 °C, the ³¹P NMR spectra were best resolved at low temperature. As can be seen from the above data, replacing the oxygen substituents (X) in the SnR₂X groups by R leads to marked changes in the spectra.

Molecular Structure of (dtbpe)PdH(SnMe3) (2a). The molecular structure of **2a** has been determined by X-ray crystallography (Figure 1). Although the d^tbpe group was found to be disordered over two conformations in all the samples studied (see Experimental Section), the diffraction data are good ($R_{\text{int}} = 0.022$, for 30 399 reflections) and all non-H atoms, together with the hydrogen atom bonded to Pd, could be located and refined satisfactorily ($U_{\rm H} = 0.041(7)~{\rm Å}^2$). The Pd atom in 2a is coordinated in a distorted-square-planar fashion by the d^tbpe P atoms, the SnMe₃ substituent, and the hydride H atom. The bite angle of the chelating dtbpe ligand at 88.80(2)° falls within the range typically observed (86–89°) for $(R_2PC_2H_4PR_2)Pd$ complexes (R =

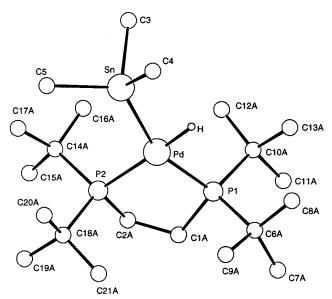


Figure 1. Molecular structure of 2a (H atoms, except for the hydride H atom, and one of the two conformations adopted by the dtbpe ligand are omitted for clarity). Selected bond distances (Å) and angles (deg): Pd-P1 = 2.349(1), Pd-P2 = 2.356(1), Pd-Sn = 2.6082(3), Pd-H = 2.6082(3)1.59(3); P1-Pd-P2 = 88.80(2), P1-Pd-Sn = 158.44(1), P2-Pd-Sn = 111.11(1), P1-Pd-H = 93(1), P2-Pd-H = 93(1), P2-Pd-H = 93(1), P3-Pd-H = 93(1),178(1), Sn-Pd-H = 67(1), Pd-Sn-C3 = 107.92(8), Pd-Sn-C4 = 120.51(6), Pd-Sn-C5 = 123.09(6).

ⁱPr,^{7,15-17} ^tBu¹⁰). The deviations of the P1-Pd-Sn angle (158.44(1)°) from linearity and P2-Pd-Sn angle (111.11-(1)°) from 90° are, however, larger than those for (dippe)- $Pd(H)Sn(OH)\{(CH(SiMe_3)_2\}_2 (A'; P-Pd-P = 87.5^\circ;$ $P_{trans}-Pd-Sn = 162.7^{\circ}; P_{cis}-Pd-Sn = 108.9^{\circ}),^{7} pre$ sumably a result of steric repulsion. The hydride H atom lies almost trans to P2 (P2-Pd-H = $178(1)^{\circ}$) but, because of the small P1-Pd-Sn angle, only makes an angle of 67° to Sn at the Pd atom. The resulting relatively short Sn···H distance (2.47(3) Å) is thus

^a Conditions: solvent THF-d₈, temperature 27 °C, if not indicated otherwise. Coupling constants are given in hertz. ^b Temperature -80 °C. ^c Partially obscured.

^{(13) (}a) The magnitude of the couplings $^2\emph{J}(^{119}SnH)_{cis}$ is substantially larger than for the SnR_2X compounds A $(10-45~Hz)^7$ and is directed opposite to ¹/(¹¹SnH) of the parent stannanes (Bu₃SnH, 1610 Hz; Me₃-SnH, 1740 Hz; {(Me₃Si)₂CH}₂(HO)SnH, 1991 Hz^{13b}). (b) Schager, F.; Goddard, R.; Seevogel, K.; Pörschke, K.-R. *Organometallics* **1998**, *17*,

⁽¹⁴⁾ Mitchell, T. N. J. Organomet. Chem. 1973, 59, 189.

^{(15) (}a) Krause, J.; Pluta, C.; Pörschke, K.-R.; Goddard, R. J. Chem. Soc., Chem. Commun. 1993, 1254. Krause, J.; Haack, K.-J.; Pörschke, Soc., Chem. Commun. 1993, 1234. Krause, J.; Haack, K.-J.; Poiscinke,
 K.-R.; Gabor, B.; Goddard, R.; Pluta, C.; Seevogel, K. J. Am. Chem.
 Soc. 1996, 118, 804. (b) Goddard, R.; Hopp, G.; Jolly, P. W.; Krüger,
 C.; Mynott, R.; Wirtz, C. J. Organomet. Chem. 1995, 486, 163.
 (16) Schager, F.; Bonrath, W.; Pörschke, K.-R.; Kessler, M.; Krüger,

C.; Seevogel, K. Organometallics 1997, 16, 4276. (17) Trebbe, R.; Goddard, R.; Rufinska, A.; Seevogel, K.; Pörschke,

K.-R. Organometallics 1999, 18, 2466.

probably not a result of a direct interaction but, rather, is due to the steric repulsion in the remainder of the molecule. Indeed, the Sn atom appears to be forced 0.36 A out of a mean plane through Pd, the two P atoms, and the H atom, and the Pd-Sn-C angles are significantly different (108-123°), with those C atoms nearest to the coordination plane of the Pd atom exhibiting the largest angles.

The bonds Pd-P1 (2.349(1) Å) (trans to Sn) and Pd-P2 (2.356(1) Å) (trans to H) are almost equal in length, but both are somewhat longer than those for A'.¹⁸ Similarly, the Pd-Sn bond length in **2a** at 2.6082(3) Å is also greater than that for A' 18 but is equal to that in $(d^tbpe)\overset{\smile}{P}d(SnMe_3)_2.^{10}$ The Pd-H distance is 1.59(3) Å and compares favorably with Pd-H distances found in other Pd hydrides (average 1.55(6) A).

Reactivity of (dtbpe)Pd(H)SnMe₃ (2a). The reactivity of **2a** has been studied in detail. Even on prolonged exposure, the compound is surprisingly inert toward water (12 h), ethene (6 h), or hydrogen (6 h) at ambient temperature. However, 2a reacts with CO in pentane or ether to afford (dtbpe)Pd(CO)217 by formal Me₃SnH elimination (the actual products are Sn₂Me₆ and H₂ under the reaction conditions). When a pentane solution of 2a is treated with ethyne for 1 h at 20 °C and the volatiles are evaporated under vacuum, a beige solid is left which consists of unreacted 2a and the ethyne adduct (d^tbpe)Pd(C_2H_2) (δ_P 91.3), among other unidentified components (eq 3).

The reaction (20 °C) of 2a and 2 equiv of the strongly electron withdrawing dimethyl acetylenedicarboxylate¹⁹ in diethyl ether or pentane affords, in the course of 1 h, a beige precipitate of (dtbpe)Pd(dmad) (4), which is poorly soluble at low temperature and thus is easily separated. The remaining solution contains, besides some residual 4, an isomeric mixture comprising mainly (E)- $(R'')(H)C=C(SnMe_3)(R'')$ (**E-5**, $R'' = CO_2Me$, cis adduct, 60%; $^3J(^{119}SnH)_{cis} = 53 \text{ Hz}),^{4f}$ together with a smaller amount of (Z)- $(R'')(H)C=C(SnMe_3)(R'')$ (**Z-5**, trans adduct, 40%; ${}^3J({}^{119}SnH)_{trans} = 93$ Hz) (eq 4). The

isomeric vinylstannanes are readily distinguishable on the basis of the characteristic Sn,H spin-spin couplings of their vinyl protons.^{3b} In contrast, the direct reaction of ⁿBu₃SnH with a slight excess of dmad (toluene-d₈, 20 °C, 1 h) leads exclusively to the formation of the corresponding *trans* adduct, (Z)-(R'')(H)C=C(SnⁿBu₃)-(R''), ²⁰ most likely by the ionic mechanism (Scheme 1), and the product does not isomerize within 1 week.

Since R₃SnH reacts directly with dmad to give exclusively the (Z)-vinylstannane, the formation of the (Z/Z)E)-vinylstannane isomer mixture in the presence of **2a** (eq 4) indicates that more than half of 2a reacts by alkyne insertion into the Pd-H or Pd-Sn bond to generate a PdII alkenyl intermediate, which by coupling of the substituents is converted into a Pd⁰ (E)-vinylstannane π -complex, from which **E-5** is displaced by dmad to give 4 (cf. Scheme 2). The remainder of 2a can undergo reductive Me₃SnH elimination, similar to the reactions shown in eq 3, and the generated [(dtbpe)Pd0] is trapped by dmad, also giving 4, while the eliminated Me₃SnH reacts directly with dmad to give the (Z)vinylstannane **Z-5**. The yields suggest that the rates of both stoichiometric reactions are about the same.

To determine whether the reaction of molar equivalents of Me₃SnH and dmad can be catalyzed by 2a to produce the (E)-vinylstannane E-5, a corresponding mixture of Me₃SnH and dmad, containing 2% of **2a**, was reacted at 20 °C for 2 days and the solution subsequently filtered to remove the precipitated 4. A 1:13 mixture of **E-5** (resulting from Pd catalysis) and **Z-5**

⁽¹⁸⁾ A': Pd-P1 = 2.294(2) Å, Pd-P2 = 2.322(2) Å, Pd-Sn1 = 2.294(2)2.575(1) Å. The shorter Pd-P bonds are most likely due to the fact that the structure was determined at room temperature.

⁽¹⁹⁾ For an early study on the Pd-catalyzed ⁿBu₃SnH addition to dmad, see ref 4c.

^{(20) (}a) For the (uncatalyzed) reaction of R_3SnH (R = Me, nBu) with neat diethyl acetylenedicarboxylate, see: Leusink, A. J.; Marsman, J. W.; Budding, H. A. Recl. Trav. Chim. Pays-Bas 1965, 84, 689. (b) The possibility of coordination of a carbonyl group to the R₃Sn^{IV} center in the intermediate cannot be neglected when discussing the mechanism of dmad hydrostannation.3c

(due to spontaneous reaction) was obtained, with a total yield of 80%. Thus, 5.7% of the original dmad was converted into **E-5**, corresponding to the formation of 2.8 molecules of **E-5** per Pd atom. Assuming that up to 0.6 molecule of E-5 per Pd atom is created by the stoichiometric reaction of 2a with dmad (eq 4), we estimate that the turnover number for catalytically produced **E-5** is 2.2. Although a much larger amount of the Z isomer **Z-5** is formed by the simultaneous uncatalyzed reaction of Me₃SnH and dmad, which outperforms the Pd catalysis, the reaction clearly shows that 2a can function as an intermediate in the Pd-catalyzed hydrostannation of dmad. The mechanism of the catalysis can thus be thought of as two stoichiometric reactions in which **2a** is consecutively converted into Pd^{II} alkenyl²¹ and Pd⁰ (E)-vinylstannane intermediates. The latter either reacts with Me₃SnH with re-formation of 2a, thereby closing the catalytic cycle, or reacts with dmad to give 4 (Scheme 2).

Complex 4 is very stable; it decomposes without melting only at about 200 °C, and solutions of the compound are stable at ambient temperature for a long period. In the EI mass spectrum of 4 a weak molecular ion is observed, which fragments by cleavage of the dmad ligand to give [(dtbpe)Pd]+ as base ion. The IR and NMR data of 4 are very similar to those of (dippe)-Pd(dmad).¹⁶ When **4** is reacted with Me₃SnH, the latter is catalytically decomposed into Sn₂Me₆ and H₂, and neither vinylstannane **Z/E-5** is formed. **4** is therefore not a catalyst for the hydrostannation of dmad, and formation of 4 represents loss of catalyst from the catalytic cycle (Scheme 2).

Conclusions

Whereas the spontaneous hydrostannation of alkynes affords (Z)-vinylstannanes, the L₂Pd⁰-catalyzed reaction leads regio- and stereospecifically to the (E)-vinylstannanes, but the exact course of the reaction is dependent on the nature of the phosphane ligands L₂. For example, while the monodentate phosphane complexes, such as Pd(PPh₃)₄,^{4a,e,f} are effective catalysts, the chelating phosphane derivative Pd(Ph₂PC₂H₄PPh₂)₂ is not.^{4d} Here we show that the chelating phosphane containing fragments $[(R'_2PC_2H_4PR'_2)Pd]$ $(R' = {}^{i}Pr, {}^{t}Bu)$ are best suited to stabilize intermediates such as the PdII hydrido stannyls, since the use of a chelating phosphane retards loss of one phosphane ligand. In addition, we find that the intermediates are the same for both the Pdcatalyzed degradation of R₃SnH into Sn₂R₆ and H₂ and the Pd-catalyzed hydrostannation of alkynes. The pres-

ence of the PdII hydrido stannyl intermediates in both reactions seems to imply a $Pd^0 \leftrightarrow Pd^{II} \leftrightarrow Pd^{IV}$ change in oxidation states and hence the existence of an additional octahedral PdIV intermediate.

Experimental Section

To exclude oxygen and moisture, all operations were conducted under an atmosphere of argon by using standard Schlenk techniques. For the NMR spectra solutions of the compounds in THF- d_8 were used if not indicated otherwise. Mass spectra were recorded at 70 eV and refer to 106Pd and ¹²⁰Sn. Details of the spectroscopic instruments are given in ref 16. **E-5** has been decribed elsewhere. 4f

(iPr₂PC₂H₄PiPr₂)Pd(H)SnMe₃ (1a). A solution of (dippe)-Pd(C₂H₄) (40 mg, 0.1 mmol) in 1 mL of THF-d₈ was treated with Me₃SnH (17 mg, 0.1 mmol) at −78 °C, and the ¹H and ³¹P NMR spectra were recorded within 1 h. The spectra revealed the presence of **1a**, $(d^{i}ppe)Pd(SnMe_{3})_{2}$ (δ_{P} 75.5), and unreacted (dippe)Pd(C₂H₄) (δ_P 62.7) in a 1:1:1 ratio among traces of other components. 1H NMR (300 MHz, -80 °C) and ³¹P NMR (121.5 MHz, -80 °C): see Table 1.

(iPr₂PC₂H₄PiPr₂)Pd(H)SnⁿBu₃ (1b). A yellow-brown solution of (dippe)Pd(C2H4) (397 mg, 1.00 mmol) in 10 mL of pentane was combined with ⁿBu₃SnH (0.27 mL, 1.00 mmol) at -30 °C. When the mixture was slowly warmed to ambient temperature, ethene evolved, and the mixture turned brown. After filtration to remove some insoluble impurities, the clear, brown solution was cooled to -78 °C to obtain off-white intergrown crystals, which were freed from the mother liquor, washed with some cold pentane, and dried under vacuum at -30 °C: yield 280 mg (42%); $C_{26}H_{60}P_2PdSn$ ($M_r = 659.8$). The compound liquefied at ambient temperature to form a dark brown oil, and thus no elemental analysis was performed. IR (KBr): 1816 cm⁻¹ (PdH). EI-MS: the compound decomposed. ¹H NMR (300 MHz, 27 °C; for PdH, see Table 1): δ 2.14 (4H, PCH and P'CH), 1.83, 1.81 (each 2H, PCH2 and P'CH2), 1.16, 1.14, 1.06, 1.06 (each 6H, Me), dippe; 1.55 (m, 6H, $C_{\beta}H_2$), 1.30 (m, 6H, $C_{\gamma}H_2$), 0.85 (t, 9H, Me), 0.81 (m, 6H, ${}^2J(SnH) \approx 34$ Hz, SnCH₂), SnⁿBu₃. ¹³C NMR (75.5 MHz, 27 °C): δ 26.8, 26.5 (each 2C, PCH and P'CH), 24.2, 22.2 (each m, 1C, PCH2 and P'CH₂); 20.7, 20.3, 19.2, 18.7 (each 2C, Me), dippe; 32.4 (3C, $^{2}J(SnC) = 8 \text{ Hz}, C_{\beta}H_{2}), 28.7 (3C, {}^{3}J(SnC) = 44 \text{ Hz}, C_{\gamma}H_{2}), 14.6$ $(m, 3C, {}^{1}J({}^{119}SnC) = 168 \text{ Hz}, SnCH_{2}), 14.3 (3C, Me), Sn^{n}Bu_{3}$ ³¹P NMR (121.5 MHz, 27 °C): see Table 1.

 $({}^tBu_2PC_2H_4P{}^tBu_2)Pd(H)SnMe_3$ (2a). The reaction was performed as for 1b by reacting (dtbpe)Pd(C2H4) (453 mg, 1.00 mmol) with Me₃SnH (0.13 mL, 1.00 mmol) at 20 °C. At -30°C colorless cubes crystallized, which were isolated as described above and dried under vacuum (20 °C): yield 515 mg (87%); mp 144 °C dec. IR (KBr): 1837 (PdH), 737 cm⁻¹ (SnMe₃). EI-MS (100 °C): m/e (%) 590 (M⁺, 9), 575 ([M - Me]⁺, 11), 424 ([(dtbpe)Pd]+, 100). 1H NMR (300 MHz, 27 °C; for SnMe₃ and PdH, see Table 1): δ 1.96 (4H, PCH₂ and P'CH₂), 1.26, 1.22 (each s, 18H, P^tBu_2 and P'^tBu_2), d^tbpe . ¹³C NMR (75.5 MHz, 27 °C; for SnMe₃, see Table 1): δ 35.0, 35.1 (each 2C, PC and P'C), 30.8, 30.7 (each s, 6C, PCMe₃ and P'CMe₃), ~26.7, \sim 23.6 (each 1C, PCH₂ and P'CH₂), d^tbpe. ³¹P NMR (121.5 MHz, -80 °C): see Table 1. Anal. Calcd for $C_{21}H_{50}P_2PdSn$ ($M_r =$ 589.7): C, 42.77; H, 8.55; P, 10.51; Pd, 18.05; Sn, 20.13. Found: C, 42.66; H, 8.59; P, 10.39; Pd, 17.98; Sn, 19.97.

(tBu2PC2H4PtBu2)PdH(SnnBu3) (2b). The reaction was performed as for **1b** by reacting (dtbpe)Pd(C₂H₄) (453 mg, 1.00 mmol) with ⁿBu₃SnH (0.27 mL, 1.00 mmol) at 20 °C. At -78 °C off-white intergrown crystals were obtained, which were isolated as described above and dried under vacuum (20 °C): yield 560 mg (78%); mp 52 °C. IR (KBr): 1837 cm⁻¹ (PdH). EI-MS (120 °C): m/e (%) 716 (M⁺, 4), 659 ([M - ${}^{n}Bu$]⁺, 33), 424 ([(dtbpe)Pd]+, 66). 1H NMR (300 MHz, 27 °C; for PdH, see Table 1): δ 1.97 (4H, PCH₂ and P'CH₂), 1.25 (36H, P^tBu₂ and $P'^{t}Bu_{2}$), $d^{t}bpe$; 1.56 (m, 6H, $C_{\beta}H_{2}$), 1.32 (m, 6H, $C_{\gamma}H_{2}$), 0.85 (t,

^{(21) (}a) Adduct formation of the L_2Pd^{II} hydrido stannyl with the alkyne probably creates the octahedral, formally Pd^{IV} intermediate \boldsymbol{B} or C, in which the alkyne ligand is coplanar with either the Pd-H (B) or Pd–Sn bond (C), followed by insertion, triggered by dissociation of the ligand L. $^{15a,21b-d}$ It still remains to be determined into which of these bonds alkyne insertion takes place. (b) Martinez, M.; Muller, G.; Panyella, D.; Rocamora, M.; Solans, X.; Font-Bardía, M. Organometallics **1995**, *14*, 5552. (c) Groen, J. H.; Delis, J. G. P.; van Leeuwen, P. W. N. M.; Vrieze, K. *Organometallics* **1997**, *16*, 68. (d) Yu, J.; Spencer, J. B. J. Am. Chem. Soc. 1997, 119, 5257.

9H, Me), 0.84 (m, 6H, SnCH₂), SnⁿBu₃. ¹³C NMR (50.3 MHz, 27 °C): $\delta \sim 34.9$ (4C, PC and P'C), 30.8, 30.6 (each s, 6C, PC Me_3 and P'C Me_3), ~ 26.8 , ~ 23.4 (each 1C, PCH₂ and P'CH₂), d^tbpe; 32.4 (3C, ²J(SnC) = 8 Hz, C_{β}H₂), 28.7 (3C, ³J(SnC) = 45 Hz, C_{β}H₂), 14.9 ("t", 3C, ¹J(¹¹⁹SnC) = 164 Hz, SnCH₂), 14.2 (s, 3C, Me), SnⁿBu₃. ³¹P NMR (121.5 MHz, -80 °C): See Table 1. Anal. Calcd for C₃₀H₆₈P₂PdSn (M_r = 715.9): C, 50.33; H, 9.57; P, 8.65; Pd, 14.86; Sn, 16.58. Found: C, 50.23; H, 9.49; P, 8.49; Pd, 14.95; Sn, 16.71.

 $(^tBu_2PC_2H_4P^tBu_2)Pd\{C_2(CO_2Me)_2\}$ (4). A light brown solution of 2a (590 mg, 1.00 mmol) in diethyl ether (10 mL) was combined with dmad (284 mg, 2.00 mmol) at 20 °C. When the mixture was stirred for 1 h, a beige solid precipitated, which was separated by filtration, washed with pentane (-30 °C), and dried under vacuum (20 °C): yield 440 mg (78%); mp 201 °C dec. IR (KBr): 1844 (C≡C + C=O), 1686, 1223 cm⁻¹ (CO₂Me). EI-MS (170 °C): m/e (%) 566 (M⁺, 1), 424 ([(d^tbpe)-Pd]⁺, 100). ¹H NMR (200 MHz, CDCl₃, 27 °C): δ 3.73 (6H, OMe), alkyne; 1.79 (m, 4H, PCH₂), 1.20 (d, 36H, ^tBu), d^tbpe. ¹³C NMR (50.3 MHz, CDCl₃, 27 °C): δ 168.4 ("t", 2C, ³J(PC) = 16 Hz, CO_2Me), 121.7 (d, 2C, ${}^2J(PC)_{trans} = 75$ Hz, C≡C), 51.5 (s, 2C, OMe), alkyne; 34.4 (m, 4C, PC), 30.1 (m, 12C, PCMe₃), 23.7 ("t", 2C, PCH₂), d^tbpe. ³¹P NMR (81 MHz, CDCl₃, 27 °C): δ 95.5. Anal. Calcd for $C_{24}H_{46}O_4P_2Pd$ ($M_r = 567.0$): C, 50.84; H, 8.18; O, 11.29; P, 10.93; Pd, 18.77. Found: C, 51.02; H, 8.12; P, 10.82; Pd, 18.56.

Stoichiometric Reaction of 2a with dmad. A solution of **2a** (590 mg, 1.00 mmol) and dmad (284 mg, 2.00 mmol) in diethyl ether or pentane (10 mL) was stirred for 1 h at 20 $^{\circ}$ C. Precipitated **4** was removed by filtration, and the solvent was evaporated under vacuum. NMR analysis of the residue indicated the presence of **Z/E-5** as a 40:60 isomeric mixture.

Reaction of dmad with Me₃SnH in the Presence of 2a. A solution of dmad (142 mg, 1.00 mmol) and Me₃SnH (165 mg, 1.00 mmol) in diethyl ether or pentane (10 mL) was combined with **2a** (12 mg, 0.02 mmol), and the mixture was stirred for 2 days at 20 °C. The mixture was worked up as described above. According to NMR analysis, 20% of the dmad was left unreacted and 80% was converted into a 13:1 mixture of **Z/E-5**.

NMR Data for Z-5. $C_9H_{16}O_4Sn~(M_r=306.9).$ ¹H NMR (300 MHz, 27 °C): δ 6.84 (1H, ³J(¹¹⁹SnH)_{trans} = 93 Hz, =CH-), 3.76, 3.74 (each 3H, CO₂Me), 0.24 (9H, ²J(¹¹⁹SnH) = 58 Hz, SnMe₃). ¹³C NMR (75.5 MHz, 27 °C): δ 172.1, 167.5 (each 1C, CO_2 -Me), 161.4 (1C, =CSn), 134.6 (1C, =CH), 52.1, 52.0 (each 1C, Me), -6.7 (3C, ¹J(¹¹⁹SnC) = 386 Hz, SnMe₃).

Crystal Structure Determination of 2a. Crystal data: $C_{21}H_{50}P_2PdSn$, $M_r = 589.64$, light brown prism, crystal size $0.35 \times 0.41 \times 0.57$ mm, a = 8.164(2) Å, b = 18.358(1) Å, c =18.803(1) Å, $\beta = 94.77(1)^{\circ}$, U = 2808.4(6) Å³, T = 100 K, monoclinic, $P2_1/n$ (No. 14), Z = 4, $d_{calcd} = 1.40 \text{ g cm}^{-3}$, $\mu = 1.65$ mm⁻¹; Siemens SMART diffractometer, λ (Mo K α) = 0.710 73 A; 30 399 measured reflections, spherical absorption correction $(T_{\min} = 0.398 \text{ 46}; T_{\max} = 0.414 \text{ 59}), 9951 \text{ unique}, 8096 \text{ (gt) with}$ $I > 2.0\sigma(F_0^2)$. The structure was solved by direct methods (SHELXS-97)²² and refined by full-matrix least squares $(SHELXL-97)^{22b}$ on F_0^2 for all data with Chebyshev weights to R = 0.030 (gt) and $R_w = 0.067$ (all data): 212 parameters, S = 1.03, d^tbpe ligand disordered over two conformations (C atoms isotropic, 50:50), H atom attached to Pd isotropic ($U_{\rm H}$ $= 0.041(7) \text{ Å}^{2}$), remaining H riding, maximum shift/error 0.004, residual $\rho_{\text{max}} = 0.728 \text{ e Å}^{-3}$.

Acknowledgment. This paper is dedicated to Professor Dirk Walther on the occasion of his 60th birthday. We thank the Fonds der Chemischen Industrie for financial support.

Supporting Information Available: Tables of X-ray data collection information, atom coordinates and thermal parameters, and bond lengths and angles for **2a**. This material is available free of charge via the Internet at http://pubs.acs.org.

OM9908128

^{(22) (}a) Sheldrick, G. M. *Acta Crystallogr., Sect. A* **1990**, *46*, 467. (b) Sheldrick, G. M. University of Göttingen, Göttingen, Germany, 1997