Organometallic Compounds of the Lanthanides. 141.¹ Synthesis, Molecular Structure, and Solution Behavior of Some Lanthanum(III) and Ytterbium(II) Complexes Containing New Tridentate 1,2- and 1,3-Bis(2-(dimethylamino)ethyl)cyclopentadienyl Ligands[†]

Igor L. Fedushkin

G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina 49, 603600 Nizhny Novgorod GSP-445, Russian Federation

Sebastian Dechert and Herbert Schumann*

Institut für Anorganische und Analytische Chemie der Technischen Universität Berlin, Strasse des 17. Juni 135, D-10623 Berlin, Germany

Received May 15, 2000

 $K[C_5H_4(CH_2CH_2NMe_2)]$ reacts with 2-(dimethylamino)ethyl chloride in THF, forming an inseparable 1.5:1 mixture of isomeric 1,2- and 1,3-disubstituted bis((dimethylamino)ethyl)cyclopentadiene, which on deprotonation with KH gives a mixture of the corresponding potassium salts $K[1,2-C_5H_3(CH_2CH_2NMe_2)_2]$ ($K[1,2-D_0_2C_5H_3]$; 1) and $K[1,3-C_5H_3(CH_2CH_2-H_2)_2]$ NMe_2 ₂ (K[1,3-Do₂C₅H₃]; **2**). Addition of LaI₃(THF)₃ to the mixture of **1** and **2** suspended in THF causes the formation of the half-sandwich complexes (η⁵:η¹:η¹-C₅H₃(CH₂CH₂NMe₂)₂-1,2)LaI₂(THF) (3) and $(\eta^5:\eta^1:\eta^1-C_5H_3(CH_2CH_2NMe_2)_2-1,3)LaI_2(THF)$ (4), which can successfully be separated because of their different crystal shapes. The analogous reaction with YbI₂- $(THF)_2$ causes the precipitation of crystalline $(\eta^5:\eta^1:\eta^1-C_5H_3(CH_2CH_2NMe_2)_2-1,2)YbI(THF)_2$ (5). The noncrystallizing 1,3-isomer left in solution reacts with $(C_5Me_5)Na$, forming the $Me_5)Yb(\mu_2-I)Yb[\mu_2-(\eta^5:\eta^1:\eta^1-C_5H_3(CH_2CH_2NMe_2)_2-1,3)(\eta^5-C_5Me_5)]_n$ (6). The reaction of 5 with $C_5H_3(CH_2CH_2NMe_2)_2-1,2)Yb(\eta^5-C_5H_4'Bu)$ (7) and $(\eta^5:\eta^1:\eta^1-C_5H_3(CH_2CH_2NMe_2)_2-1,2)Yb(\eta^5-C_5-1)$ Me₅) (8), respectively. The novel compounds have been characterized by elemental analysis, NMR spectroscopy, and mass spectrometry. Additionally, X-ray structural analyses of **3–8** were performed.

Introduction

Metal complexes with donor-functionalized cyclopentadienyl ligands have been studied intensively during the past decade because of their potential application as catalysts in polymerization processes.² Recently we reported on the synthesis and characterization of a number of complexes of trivalent and divalent lanthanides with mono-N- and mono-O-functionalized cyclopentadienyl ligands.^{2p,t,u} The additional intramolecular coordination of the Lewis base function of the cyclopentadienyl substituent to the metal center reduces or even prevents the coordination of solvent molecules. In general, such intramolecularly stabilized cyclopentadienyl complexes are less sensitive to hydrolysis and

oxidation in air compared to their nonfunctionalized analogues. The synthesis of the first bis-functionalized cyclopentadienyl ligand, 1,3- C_5H_3 (SiMe₂CH₂P⁷Pr₂)₂, and of its zirconium complexes has been reported by Fryzuk et al.³ Rhodium complexes containing both 1,2- and 1,3-bis(phosphinopropyl)cyclopentadienyl ligands were reported by Nelson et al.,⁴ and the rhodium complex [{1,3- C_5 Me₃[CH₂C₆F₄P(C_6 F₅)CH₂]₂}RhCl]BF₄ was described by Saunders et al.⁵ The only example of a complex with a bis-oxygen-functionalized cyclopentadienyl ligand is the zirconium complex [1,2- C_5 H₃(CH₂CH₂OMe)₂]ZrCl₃.⁶ Scandium complexes with cyclopentadienyl ligands incorporating both an amido and an amine function have been synthesized by Piers et al.⁷

Since so far no bis-amino-functionalized cyclopentadienyls have been used in complexation reactions and lanthanide complexes of cyclopentadienyl systems containing two donor-functionalized side chains are not known at all, we started to prepare such a ligand system in order to study its coordination behavior toward lanthanum(III) and ytterbium(II) iodide, expecting in-

and

^{*} To whom correspondence should be addressed. E-mail: schumann@chem.tu-berlin.de.

 $^{^\}dagger \, \text{Dedicated}$ to Professor Max Schmidt on the occasion of his 75th birthday.

⁽¹⁾ Organometallic Compounds of the Lanthanides. Part 140: Trifonov, A. A.; Kirillov, E. N.; Bochkarev, M. N.; Schumann, H.; Mühle, S. *Izv. Akad. Nauk Ser. Khim.* 1999, 384; *Russ. Chem. Bull. (Engl. Transl.)* 1999, 48, 382.

Table 1. ¹H and ¹³C{¹H} NMR Data for 1-4

		¹H NMR			$^{13}C\{^{1}H\}$ NMR	
	solvent	δ (ppm)	assignt	J (Hz)	δ (ppm)	assignt
1	THF- d_8	5.14 (d, 2H), 5.08 (t, 1H) 2.49-2.44 (m, 4H) 2.33-2.27 (m, 4H) 2.08 (s, 12H)	1,2-Do ₂ Cp <i>H</i> NC <i>H₂</i> CH ₂ NCH ₂ CH ₂ (C <i>H</i> ₃) ₂ N	³ <i>J</i> (H,H) 2.2	118.2 103.7 102.2 64.1 45.6 29.5	CpCCH ₂ CpCH Cp(CH) ₂ NCH ₂ (CH ₃) ₂ NCH ₂ NCH ₂ CH ₂
2	THF- d_8	5.27 (t, 1H), 5.19 (d, 2H) 2.49-2.44 (m, 4H) 2.33-2.27 (m, 4H) 2.09 (s, 12H)	1,3-Do ₂ Cp <i>H</i> NC <i>H₂</i> CH ₂ NCH ₂ C <i>H</i> ₂ (C <i>H</i> ₃) ₂ N	⁴ <i>J</i> (H,H) 3.0	115.4 104.0 102.8 63.5 45.8 27.3	CpCCH ₂ Cp(CH) ₂ CpCH NCH ₂ (CH ₃) ₂ NCH ₂ NCH ₂ CH ₂
3	pyridine- <i>d</i> 5	6.59 (d, 2H), 6.43(t, 1H) 3.64 (m, 4H) 3.27-2.93 (m, 2H) 2.99-2.85 (m, 2H) 2.81-2.61 (m, 4H) 2.44 (s, 12H) 1.59 (m, 4H)	$1,2 ext{-}Do_2CpH$ OCH_2CH_2 $NCHHCH_2$ $NCHHCH_2$ NCH_2CH_2 NCH_2CH_2 $(CH_3)_2N$ OCH_2CH_2	³ <i>J</i> (H,H) 3.0	128.9 116.0 114.3 67.5, 25.5 63.5 45.8 26.1	CpCCH ₂ Cp(CH) ₂ CpCH THF NCH ₂ (CH ₃) ₂ NCH ₂
4	pyridine- d_5	6.95 (t, 1H), 6.53 (d, 2H) 3.64 (m, 4H) 3.39-3.15 (m, 2H) 2.95-2.70 (m, 2H) 2.62-2.45 (m, 4H) 2.36 (s, 12H) 1.59 (m, 4H)	1,3-Do ₂ Cp <i>H</i> OC <i>H₂</i> CH ₂ NCH <i>H</i> CH ₂ NCH <i>H</i> CH ₂ NCH ₂ C <i>H</i> ₂ (C <i>H</i> ₃) ₂ N OCH ₂ C <i>H</i> ₂	⁴ <i>J</i> (H,H) 2.6	129.9 116.7 115.4 67.5, 25.5 63.0 45.6 26.6	CpCCH ₂ CpCH Cp(CH) ₂ THF NCH ₂ (CH ₃) ₂ NCH ₂ NCH ₂ CH ₂

teresting results concerning the mutual ring positions of the two side chains and the fluxional behavior of the complexes in solution.

Experimental Section

All operations involving organometallic compounds were carried out under an inert atmosphere of nitrogen using standard Schlenk techniques in dry, oxygen-free solvents. Melting points and decomposition temperatures were mea-

(2) (a) Deng, D.; Qian, C.; Wu, G.; Zheng, P. *J. Chem. Soc., Chem. Commun.* **1990**, 880. (b) Qian, C.; Zhu, D.; Li. D. *J. Organomet. Chem.* **1992**, 430, 175. (c) Qian, C.; Wang, B.; Deng, D.; Wu, G.; Zheng, P. *J. Organomet. Chem.* **1992**, 427, C29. (d) Deng, D.; Song, F.; Wang, Z.; Qian, C.; Wu, G.; Zheng, P. *Polyhedron* **1992**, 11, 2883. (e) Deng, D.; Qian, C.; Song, F.; Wang, Z.; Wu, G.; Zheng, G. *J. Organomet. Chem.* **1993**, *443*, 79. (f) Qian, C.; Zhu, D. *J. Organomet. Chem.* **1993**, *445*, 79. (g) Hermann, W. A.; Anwander, R.; Munck, F. C.; Scherer, W. *Chem. Ber.* **1993**, *126*, 331. (h) Jutzi, P.; Dahhaus, J.; Kristen, M. O. J. Organomet. Chem. 1993, 450, C1. (i) Deng, D.; Qian, C.; Song, F.;
Wang, Z.; Wu, G.; Zheng, C.; Jin, S.; Lin, Y. J. Organomet. Chem. 1993, 458, 83. (j) Laske, D. A.; Duchateu, R.; Teuben, J. H. J. Organomet. Chem. 1993, 462, 149. (k) Anwander, R.; Hermann, W. A.; Scherer, W.; Munck, F. C. *J. Organomet. Chem.* **1993**, *462*, 163. (I) Deng, D.; Zheng, X.; Qian, C.; Sun, J.; Zhang, L. *J. Organomet. Chem.* **1994**, *466*, 95. (m) Qian, C.; Zheng, X.; Wang, B.; Deng, D.; Sun, J. *J. Organomet. Chem.* **1994**, *466*, 101. (n) Van de Weghe, P.; Bied, C.; Collin, J.; Macalo, J.; Santos, I. *J. Organomet. Chem.* **1994**, *475*, 79. (o) Van den Hende, D. Hitchead, B. P. Lister, M. F. Nils, T. A. L. Organomet. Chem. J. R.; Hitchcock, B. P.; Lappert, M. F.; Nile, T. A. J. Organomet. Chem. **1994**, *472*, 79. (p) Molander, G.; Schumann, H.; Rosenthal, E. C. E.; Demtschuk, J. *Organometallics* **1996**, *15*, 3817. (q) Hultzsch, K. C.; Spaniol, T. P.; Okuda, J. *Organometallics* **1997**, *16*, 4845. (r) Trifonov, A. A.; Van de Wegh, P.; Collin, J.; Domingos, A.; Santos, J. *J.* Organomet. Chem. 1997, 527, 225. (s) Hultzsch, K. C.; Spaniol, T. P.; Okuda, J. Organometallics 1998, 17, 485. (t) Schumann, H.; Rosenthal, E. C. E.; Demtschuk, J. Organometallics 1998, 17, 5324. (u) Schumann, H.; Erbstein, F.; Fedushkin, I. L.; Demtschuk, J.; Girgsdies, F. Z. Anorg. Allg. Chem. 1999, 625, 781.

(3) (a) Fryzuk, M. D.; Mao, S. S. H.; Zaworotko, M. J.; MacGillivray, L. R. J. Am. Chem. Soc. 1993, 115, 5336. (b) Fryzuk, M. D.; Mao, S. S.

 H.; Duval, P. B.; Rettig, S. J. *Polyhedron* 1995, 14, 11.
 (4) Barthel-Rosa, L. P.; Catalano, V. J.; Maitra, K.; Nelson, J. H. Organometallics 1996, 15, 3924.

(5) Atherton, M. J.; Fawcett, J.; Holloway, J. H.; Hope, E. G.; Karaçar, A.; Russell, D. R.; Saunders, G. C. J. Chem. Soc., Chem. Commun. 1995, 191.

(6) Van der Zeijden, A. A. H.; Mattheis, C.; Fröhlich, R. Acta Crystallogr. 1998, C54, 460.

sured on a hot-stage microscope in vacuum-sealed (0.01 mbar) capillaries and are uncorrected. The NMR spectra were recorded on a Bruker ARX 200 (1H, 200 MHz, 13C, 50.32 MHz) spectrometer at room temperature. The NMR spectroscopic data are cited in Tables 1 and 2. All chemical shifts are reported in ppm relative to the 1H and 13C residues of the deuterated solvents. Mass spectra (EI, 70 eV) were obtained by using a Varian MAT 311A instrument. Only characteristic fragments and isotopes of the highest abundance are listed. Relative intensities in percent are given in parentheses. Elemental analyses were performed on a Perkin-Elmer Series II CHNS/O Analyzer 2400. Reasonably satisfactory analyses could be obtained by using a special Schlenk tube and small aluminum cans for weighing these extremely sensitive compounds, but not in all cases, because of their especially high sensitivity toward traces of moisture and air of some compounds. 2-(Dimethylamino)ethyl chloride hydrochloride was used as purchased from Aldrich. Free 2-(dimethylamino)ethyl chloride was obtained by treatment of the hydrochloride with sodium hydroxide prior to use. K[C₅H₄(CH₂CH₂NMe₂)] was prepared according to published procedures.8 Recrystallization from THF resulted in the crystalline adduct [K(THF)]- $[\{C_5H_4(CH_2CH_2NMe_2)\}]$, which was characterized by X-ray diffraction. Its molecular structure will be published elsewhere.

[1,2-Bis(2-(dimethylamino)ethyl)cyclopentadienyl]potassium (1) and [1,3-Bis(2-(dimethylamino)ethyl)cy**clopentadienyl]potassium (2).** To a suspension of [K(THF)]- $[\{C_5H_4(CH_2CH_2NMe_2)\}]$ (9.3 g, 37.6 mmol) in THF (140 mL) was added dropwise 2-(dimethylamino)ethyl chloride (4.2 g, 39.0 mmol). The mixture was stirred for 0.5 h at room temperature and then for 12 h at reflux temperature. Then, water (250 mL) was added, the organic layer separated, dried over Na₂SO₄, and concentrated at reduced pressure, and the residual oil distilled under a vacuum (69-79 °C, 10-2 Torr), yielding 6.73 g (86%) of a mixture of 1,2- and 1,3-bis(2-(dimethylamino)ethyl)cyclopentadiene as a light-yellow transparent liquid. A solution of this liquid (6.35 g, 30.4 mmol) in

⁽⁷⁾ Mu, Y.; Piers, W. E.; MacQuarrie, D. C.; Zaworotko, M. J.; Young,

V. G., Jr. Organometallics **1996**, *15*, 2721.
(8) Herrmann, W. A.; Anwander, R.; Munck, F. C.; Scherer, W. Chem. Ber. **1993**, *126*, 331.

Table 2. ¹H and ¹³C{¹H} NMR Data for 5-8

		¹ H NMR			¹³ C{¹H} NMR		
	solvent	δ (ppm)	assignt	<i>J</i> (Hz)	δ (ppm)	assignt	¹ <i>J</i> (¹⁷¹ Yb, ¹³ C) (Hz)
5	THF-d ₈	5.67 (s, 1H), 5.54 (s, 2H) 3.59 (m, 8H) 2.54 (s, 8H) 2.33 (s, 12H) 1.71 (m, 8H)	1,2-Do ₂ Cp <i>H</i> OC <i>H</i> ₂ CH ₂ NC <i>H</i> ₂ CH ₂ (C <i>H</i> ₃) ₂ N OCH ₂ C <i>H</i> ₂		119.3 107.5 105.2 68.2 64.8 47.3 26.3 27.2	CpCCH ₂ CpCH Cp(CH) ₂ THF NCH ₂ (CH ₃) ₂ NCH ₂ NCH ₂ CH ₂ THF	
6	THF-d ₈	5.52 (t, 1H), 5.45 (d, 2H) 2.59 (m, 2H) 2.49 (m, 2H) 2.29 (m, 4H) 2.23 (s, 12H) 1.93 (s, 15H)	1,3-Do ₂ Cp <i>H</i> NCH <i>H</i> CH ₂ NCH <i>H</i> CH ₂ NCH ₂ CH ₂ (CH ₃) ₂ N CpCH ₃	⁴ <i>J</i> (H,H) 2.1	120.0 111.2 107.1 105.8 64.7 45.8 28.4 12.2	CpCCH ₂ CpCCH ₃ CpCH Cp(CH) ₂ NCH ₂ (CH ₃) ₂ NCH ₂ NCH ₂ CH ₂ CpCCH ₃	
7	C_6D_6	6.31 (t, 1H), 5.71 (d, 2H) 5.99 (t, 2H), 5.61 (t, 2H) 2.5–2.0 (m, 8H) 1.88 (s, 12H) 1.61 (s, 9H)	1,2-Do ₂ Cp <i>H</i> 'Bu-Cp <i>H</i> NC <i>H</i> ₂ C <i>H</i> ₂ (C <i>H</i> ₃) ₂ N (C <i>H</i> ₃) ₃ C	³ J(H,H) 3.2, ² J(Yb,H) 12.9, 7.7, ³ J(H,H) 2.6, ² J(Yb,H) 10.3	136.2 117.5 107.7 106.6 105.3 104.2 64.4 48.1 44.2 33.4 32.2 25.2	Cp CC(CH ₃) ₃ Cp CCH ₂ Cp(CH) ₂ 'Bu-CpC CpCH 'Bu-CpC NCH ₂ (CH ₃) ₂ NCH ₂ (CH ₃) ₂ NCH ₂ C(CH ₃) ₃ C(CH ₃) ₃ NCH ₂ CH ₂	5.4 5.4 6.5 7.5 6.5 5.2
8	$\mathrm{C_6D_6}$	6.25 (t, 1H), 5.38 (d, 2H) 2.5-1.7 (m, 8H) 2.15 (s, 15H) 1.89 (s, 12H)	1,2-Do ₂ Cp <i>H</i> NC <i>H₂CH₂</i> (C <i>H₃</i>)Cp (C <i>H₃</i>) ₂ N	³ J(H,H) 3.4, ² J(Yb,H) 13.3, 8.2	116.7 111.8 108.2 107.5 64.7 47.1 43.0 26.3 12.0	CpCCH ₂ CpCCH ₃ Cp(CH) ₂ CpCH NCH ₂ (CH ₃) ₂ NCH ₂ (CH ₃) ₂ NCH ₂ NCH ₂ CH ₂ CpCH ₃	5.4 6.4 6.4 7.5
8	THF-d ₈	5.64 (t, 1H), 5.68 (d, 2H) 2.9-2.4 (m, 8H) 2.33 (s, 12H) 1.92 (s, 15H)	1,2-Do ₂ Cp <i>H</i> NC <i>H₂CH₂</i> (C <i>H</i> ₃)Cp (C <i>H</i> ₃) ₂ N	³ J(H,H) 3.4, ² J(Yb,H) 12.9, 8.2	117.5 111.8 107.9 107.1 65.4 45.9 25.9 11.9	Cp CCH ₂ Cp CCH ₃ Cp (CH) ₂ Cp CH NCH ₂ (CH ₃) ₂ NCH ₂ NCH ₂ CH ₂ Cp CH ₃	4.9 7.1 6.5 7.6

THF (50 mL) was added within 2 h with stirring to a suspension of KH (1.1 g, 27.4 mmol) in THF (70 mL). The pale yellow precipitate formed was filtered off and dried under a vacuum, yielding 6.45 g (95%) of a mixture of 1 and 2 (1.5:1 ratio, demonstrated by ¹H NMR spectroscopy). Anal. Calcd for C₁₃H₂₃N₂K (mol wt 246.44): C, 63.36; H, 9.41; N, 11.37. Found: C, 63.83; H, 8.79; N, 10.25.

Diiodo[1,2-bis(2-(dimethylamino)ethyl)cyclopentadienyl](tetrahydrofuran)lanthanum(III) (3) and Diiodo[1,3-bis(2-(dimethylamino)ethyl)cyclopentadienyl]-(tetrahydrofuran)lanthanum(III) (4). To a stirred suspension of a mixture of 1 and 2 (1.72 g, 6.97 mmol) in THF (40 mL) was added LaI₃(THF)₃ (5.05 g, 6.86 mmol). The mixture was stirred for 30 min at room temperature. Then the solution was separated from precipitated KI by filtration. After the clear solution was concentrated under a vacuum to a volume of 15 mL, 3.16 g (68.5%) of colorless crystals of 3 (elongated blocks) and 4 (large cubic crystals) were isolated. Manual separation of the crystals gave 1.34 g (29%) of 3 and 1.80 g (39%) of **4**; both **3** and **4** decomposed at \sim 180 °C. **3**: MS (195 °C, 139 La; m/z (%)) 208.1 (0.7) $[C_5H_3(CH_2CH_2NMe_2)_2]^+$, 58.1 (100) $[Me_2NCH_2]^+$. Anal. Calcd for $C_{17}H_{31}I_2N_2OLa^{1/2}C_4H_8O$ (mol wt 708.2): C, 32.22; H, 4.98; N, 3.96. Found: C, 31.38; H, 5.39; N, 2.25. **4**: MS (251 °C, ¹³⁹La; m/z (%)) 599.8 (2) [M - $THF]^+$, 473.1 (100) $[M - THF - I]^+$, 414.9 (5) $[M - THF - I]^+$ $- CH_2NMe_2$]+, 58.1 (96) [Me₂NCH₂]+. Anal. Calcd for $C_{17}H_{31}I_2N_2$ -OLa (mol wt 672.15): C, 30.38; H, 4.65; N, 4.17. Found: C, 29.92; H, 5.02; N, 4.13.

Iodo[1,2-bis(2-(dimethylamino)ethyl)cyclopentadienyl]bis(tetrahydrofuran)ytterbium(II) (5). A mixture of 1 and 2 (1.55 g, 6.29 mmol) was added to a solution of YbI₂(THF)₂ (3.45 g, 6.03 mmol) in THF (50 mL). The mixture was stirred for 3 h at room temperature; the red-orange solution that formed was filtered off and reduced to a volume of 15 mL by evaporation of the solvent under a vacuum at 50 °C. Cooling to -28 °C caused precipitation of 1.49 g (38%) of **5** as orange crystals, mp 212 °C dec. MS (271 °C, 174 Yb; m/z (%)): 588.3 (4) $[M - C_5H_3]^+$, 508.0 (10) $[M - 2THF]^+$, 380.9 (4) $[M - 2THF]^+$ - I]⁺, 300.8 (2) [YbI]⁺, 207.2 (7) [C₅H₃(CH₂CH₂NMe₂)]⁺, 58.1 (100) [Me₂NCH₂]⁺. Anal. Calcd for C₂₁H₃₉N₂O₂IYb (mol wt): C, 38.72; H, 6.03; N, 4.30; Yb, 26.56. Found: C, 37.14; H, 5.88; N, 4.92; Yb, 26.34.

Sodium Iodobis{[1,3-bis(2-(dimethylamino)ethyl)cyclopentadienyl](pentamethylcyclopentadienyl)}diytterbium(II) (6). The residual THF solution which is left after isolation of 5 was added to a suspension of Cp*Na (0.59

Table 3. Crystal Data and Structure Refinement for 3-5

	3	4	5
empirical formula	$C_{17}H_{31}I_2LaN_2O^{-1}/_2C_4H_8O$	$C_{17}H_{31}I_2LaN_2O$	$C_{21}H_{39}N_2O_2IYb$
fw	708.20	672.15	651.48
cryst syst	monoclinic	orthorhombic	monoclinic
space group	$P2_{1}/c$ (No. 14)	P2 ₁ 2 ₁ 2 ₁ (No. 19)	P2 ₁ (No. 4)
a (Å), α (deg)	17.5679(3), 90	8.5876(1), 90	9.4725(1), 90
b (Å), β (deg)	9.5385(1), 109.139(1)	15.2281(2), 90	8.4049(2), 98.831(1)
$c(A), \gamma(\circ)$	15.4491(1), 90	17.1304(2), 90	15.1456(4), 90
$V(Å^3)$	2445.73(5)	2240.19(5)	1191.53(4)
Z	4	4	2
D(calcd) (g/cm ³)	1.923	1.993	1.816
μ (Mo K α) (mm ⁻¹)	4.283	4.669	5.237
F(000)	1352	1272	636
cryst size (mm³)	$0.54\times0.12\times0.16$	$0.48\times0.26\times0.40$	$0.32\times0.32\times0.48$
θ_{\min} , θ_{\max} (deg)	1.13, 27.50	1.79, 27.50	1.36, 27.50
index ranges	$-22 \le h \le 18, -12 \le k \le 8,$ $-19 \le l \le 20$	$-11 \le h \le 9, -17 \le k \le 19,$ $-22 \le l \le 19$	$-5 \le h \le 12, -9 \le k \le 10,$ $-19 \le l \le 17$
no. of rflns collected	18 239	17 486	5927
no. of indep rflns	5576 (R(int) = 0.0577)	5141 (R(int) = 0.0372)	4635 (R(int) = 0.0355)
max, min transmissn	0.6883, 0.3644	0.4291, 0.2271	0.3215, 0.2313
no. of data, restraints, params	5576, 0, 257	5141, 0, 212	4635, 1, 249
GOF on F^2	1.004	1.059	1.007
R indices $(I > 2\sigma(I))$	$R = 0.0330, R_{\rm w} = 0.0610$	$R = 0.0249, R_{\rm w} = 0.0496$	$R = 0.0468, R_{\rm w} = 0.0982$
R indices (all data)	$R = 0.0555, R_{\rm w} = 0.0679$	$R = 0.0285, R_{\rm w} = 0.0509$	$R = 0.0591, R_{\rm w} = 0.1040$
abs structure param		0.01(2)	0.278(17)
max, min resid	1.051, -1.282	1.013, -0.645	2.181, -1.618
electron density (e/ų)			

g, 3.74 mmol) in THF (20 mL). The mixture turned dark purple immediately. The solvent was removed under a vacuum, and the residue was washed twice with toluene (15 mL) and was then extracted with THF (30 mL). Again this THF extract was treated with toluene (20 mL), resulting in the formation of 1.26 g (53%) of deep red crystals of 6, mp 240 °C dec. MS (242 °C, 174 Yb; m/z (%)): 588.2 (4) [1,3-Do₂C₅H₃YbI]⁺, 516.1 (22) [1,3- $Do_2C_5H_3YbCp^*$]+, 381.0 (100) [1,3- $Do_2C_5H_3Yb$]+, 308.0 (4) $[Cp*Yb]^+$, 58.1 (95) $[Me_2NCH_2]^+$. Anal. Calcd for $C_{46}H_{76}IN_4$ -NaYb₂·C₇H₈ (mol wt 1273.21): C, 50.00; H, 6.65; N, 4.40; Yb, 27.18. Found: C, 51.12; H, 5.93; N, 4.19; Yb, 27.11.

(1,2-Bis(2-(dimethylamino)ethyl)cyclopentadienyl)-(tert-butylcyclopentadienyl)ytterbium(II) (7). A mixture of 5 (0.9 g, 1.38 mmol) and 'BuC₅H₄Na (0.2 g, 1.38 mmol) turned immediately purple when 25 mL of THF was added. The mixture was stirred for a few minutes, and the solvent was removed under a vacuum. The residue was extracted with diethyl ether (2 \times 20 mL). Concentration of the clear solution to 15 mL caused crystallization of 0.54 g (78%) of dark red 7, mp 219 °C dec. MS (136 °C, ¹⁷⁴Yb; m/z (%)): 502.1 (100) [M]⁺, $379.0\ (59)\ [M-{}^{\ell}\!BuCp]^{+},\ 321.0\ (8)\ [M-{}^{\ell}\!BuCp-CH_{2}NMe_{2}]^{+},$ 295.0 (14) $[(^tBuCp)Yb]^+$, 279.0 (16) $[M - ^tBuCp - CH_2NMe_2]$ - CH₂CH₂]⁺, 58.1 (78) [Me₂NCH₂]⁺. Anal. Calcd for C₂₂H₃₆N₂-Yb (mol wt 501.57): C, 52.68; H, 7.23; N, 5.59; Yb, 34.50. Found: C, 51.30; H, 6.17; N, 6.10; Yb, 34.57.

(1,2-Bis(2-(dimethylamino)ethyl)cyclopentadienyl)-(pentamethylcyclopentadienyl)ytterbium(II) (8). In analogy to the synthesis of 7, complex 5 (1.1 g, 1.68 mmol) was treated with Cp*K (0.28 g, 1.61 mmol) in 25 mL of THF. Recrystallization from diethyl ether afforded 0.68 g (82%) of deep purple crystals of 8: mp 195 °C dec. MS (193 °C, 174Yb; m/z (%)): 516.1 (18) [M]⁺, 380.9 (68) [M - Cp*]⁺, 321.9 (8) [M $-Cp^* - CH_2NMe_2]^+$, 306.8 (11) $[Cp^*Yb]^+$, 279.0 (3) [M- $^{\prime}BuCp - CH_2NMe_2 - CH_2CH_2]^+$, 58.1 (100) $[Me_2NCH_2]^+$. Anal. Calcd for C₂₃H₃₈N₂Yb (mol wt 515.59): C, 53.58; H, 7.43; N, 5.43; Yb, 33.56. Found: C, 52.95; H, 7.19; N, 5.98; Yb, 33.40.

X-ray Structure Determination. The crystal data and details of data collection are given in Tables 3 and 4. The data were collected on a Siemens SMART CCD diffractometer (graphite-monochromated Mo K α radiation, $\lambda = 0.710~73~\text{Å}$) with an area detector by use of ω scans at 173 K. The structures were solved by direct methods using SHELXS-979 and were refined on F^2 using all reflections with SHELXL-97.10 All non-hydrogen atoms in 3-5, 7, and 8 were refined anisotropically. The carbon atoms of the disordered toluene solvent molecules in 6 were refined isotropically; all other nonhydrogen atoms were refined anisotropically. The hydrogen atoms were placed in calculated positions and assigned to an isotropic displacement parameter of 0.08 Å². The idealized methyl groups were allowed to rotate around their X-C bond. Absolute structure parameters were determined using the Flack parameters¹¹ with SHELXL-97. SADABS¹² was used to perform area-detector scaling and absorption corrections. The maximum and minimum transmission factors are summarized in Tables 3 and 4. The geometrical aspects of the structures were analyzed by using the PLATON program.¹³

Results and Discussion

Ligand Synthesis. In analogy to the synthetic approach to mono-N-donor-functionalized cyclopentadienyl derivatives, 2,14 the treatment of ((2-(dimethylamino)ethyl)cyclopentadienyl)potassium with 2-(dimethylamino)ethyl chloride in THF results in the formation of an isomeric mixture of 1,2- and 1,3-bis(2-(dimethylamino)ethyl)cyclopentadiene $(1,2-Do_2C_5H_4)$ and $1,3-Do_2C_5H_4$) along with additional isomers arising from prototropic shifts. The introduction of the second N-functionalized substituent to the cyclopentadienyl ring requires prolonged heating of the reaction mixture under reflux conditions. Workup of the reaction mixture affords a light yellow oil which distills continuously in a temperature range of 69-79 °C/10⁻² Torr, thus not allowing a separation of the isomers (the temperatures necessary to distill the product at pressures of 0.1-1 Torr cause extensive decomposition). However, the ratio of the

⁽⁹⁾ Sheldrick, G. M. SHELXS-97 Program for the Solution of Crystal Structures; Universität Göttingen, Göttingen, Germany, 1990.

⁽¹⁰⁾ Sheldrick, G. M. SHELXL-97 Program for the Refinement of Crystal Structures; Universität Göttingen, Göttingen, Germany, 1997.
(11) Flack, H. D. *Acta Crystallogr.* **1983**, *A39*, 876.
(12) Sheldrick, G. M. SADABS Program for Empirical Absorption

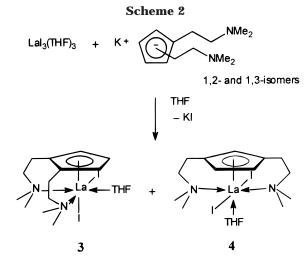
Correction of Area Detector Data; Universität Göttingen, Göttingen, Germany, 1996.

⁽¹³⁾ Spek, A. L. Acta Crystallogr. 1990, A46, C-34.

⁽¹⁴⁾ Rees, W. S., Jr.; Dippel, K. A. Org. Prep. Proced. Int. 1992, 24, 527.

Table 4. Crystal Data and Structure Refinement for 6-8

	6	7	8
empirical formula	C ₄₆ H ₇₆ IN ₄ NaYb ₂ ·C ₇ H ₈	C ₂₂ H ₃₆ N ₂ Yb	C ₂₃ H ₃₈ N ₂ Yb
fw	1273.21	501.57	515.59
cryst syst	orthorhombic	orthorhombic	triclinic
space group	Pbcn (No. 60)	P2 ₁ 2 ₁ 2 ₁ (No. 19)	$P\bar{1}$ (No. 2)
a (Å), α (deg)	13.6957(1), 90	8.5441(2), 90	10.4367(1), 103.334(1)
b (Å), β (deg)	19.1068(1), 90	15.7446(3), 90	14.9603(2), 105.658(1)
$c(\mathring{A}), \gamma(\mathring{\circ})$	21.2924(1), 90	16.1012(3), 90	15.3926(1), 93.699(1)
$V(\mathring{\mathbf{A}}^3)$	5571.82(6)	2165.99(8)	2231.06(4)
Z	4	4	4
D(calcd) (g/cm ³)	1.518	1.538	1.535
$\mu(\text{Mo K}\alpha) \text{ (mm}^{-1})$	3.933	4.324	4.200
F(000)	2536	1008	1040
cryst size (mm³)	$0.44\times0.18\times0.08$	$0.36\times0.10\times0.08$	$0.26\times0.14\times0.04$
θ_{\min} , θ_{\max} (deg)	1.91, 25.50	1.81, 27.50	1.41, 27.50
index ranges	$-16 \le h \le 16, -23 \le k \le 23,$	$-11 \le h \le 9, -20 \le k \le 17,$	$-13 \le h \le 13, -15 \le k \le 19,$
0	$-25 \le l \le 16$	$-20 \le l \le 20$	$-19 \le l \le 14$
no. of rflns collected	34 172	16 830	17 149
no. of indep rflns	5176 (R(int) = 0.0960)	4967 (R(int) = 0.0735)	$10\ 100\ (R(int) = 0.0471)$
max, min transmissn	0.7934, 0.5760	0.7758, 0.5560	0.5494, 0.4078
no. of data, restraints, params	5176, 35, 283	4967, 0, 233	10 100, 0, 487
GOF on F^2	1.053	1.092	0.979
R indices $(I > 2\sigma(I))$	$R = 0.0421, R_{\rm w} = 0.0678$	$R = 0.0454, R_{\rm w} = 0.0738$	$R = 0.0419, R_{\rm w} = 0.0687$
R indices (all data)	$R = 0.0771, R_{\rm w} = 0.0772$	$R = 0.0635, R_{\rm w} = 0.0788$	$R = 0.0832, R_{\rm w} = 0.0798$
abs structure param	· "	-0.020(19)	• "
max, min resid electron density (e/Å ³)	0.721, -0.665	2.167, -1.270	2.098, -0.888

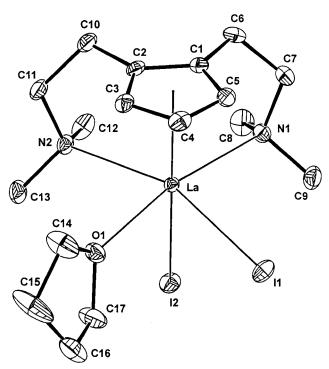

Scheme 1

integral intensities of the resonances appearing in the 1H NMR spectrum of the distillate showing six distinct N-methyl singlets and overlapping multiplets in the "aromatic" region indicates that the product consists of a 1.5:1 mixture of 1,2- and 1,3-Do₂C₅H₄.

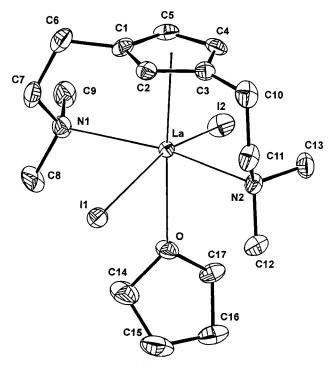
Deprotonation of the mixture of the isomeric cyclopentadienes with KH in THF gives the potassium salts $K[1,2-C_5H_3(CH_2CH_2NMe_2)_2]$ (1) and $K[1,3-C_5H_3(CH_2-CH_2NMe_2)_2]$ (2), which precipitate from the THF solution (Scheme 1). Both compounds are also only slightly soluble in pyridine and insoluble in alkanes and aromatic hydrocarbons. 1 and 2 cannot be separated by fractional extraction with THF but can be characterized by NMR spectroscopic measurements.

The 1H NMR spectrum of THF- d_8 solutions of the mixture containing **1** and **2** shows four well-resolved resonances in the Cp region, two somewhat poorly resolved signals for the CH_2-CH_2 bridges, and two sharp NCH₃ signals. $^1H-^1H$ and $^1H-^{13}C$ NMR COSY measurements allow their unambiguous assignment. On the basis of the fact that the molar amounts of **1** and **2** in the mixture are not equal (ca. 1.5:1), all ^{13}C NMR frequencies can be clearly assigned (Table 1).

Lanthanum(III) Complexes. The metathetical reaction of the mixture of 1 and 2 with the lanthanum(III) iodide $LaI_3(THF)_3$ in THF at room temperature produces the two lanthanum(III) half-sandwich complexes $(1,2-Do_2C_5H_3)LaI_2(THF)$ (3) and $(1,3-Do_2C_5H_3)$ -



 $LaI_2(THF)$ (4) (Scheme 2). After separation of the immediately formed potassium iodide and concentration of the filtrate, the compounds 3 and 4 crystallize simultaneously from the solution as colorless, well-shaped crystals. Once being formed as crystals, the complexes 3 and 4 lose their solubility. Fortunately, the crystals of 3 and 4 are of different shape, thus allowing a manual separation. Complex 3 crystallizes as elongated blocks, whereas complex 4 forms cubic crystals. Both compounds decompose without melting at temperatures of about 180 °C.


The ¹H NMR spectrum of pure **3** in pyridine shows the expected two signals for the protons of the C₅H₃ fragment (δ 6.59 (d, 2H) and 6.43 (t, 1H)), only one singlet signal for the NCH₃ protons (δ 2.44, 12H), and three sets of overlapping multiplets centered at δ 3.12 (2H), 2.92 (2H), and 2.71 (4H) for the methylene protons of the side chains. A quite similar ¹H NMR spectrum is observed for pure 4 with two signals for the C₅H₃ protons (δ 6.95 (t, 1H) and 6.53 (d, 2H)), a singlet for the NCH₃ protons (δ 2.36 (12H)), and three multiplets centered at δ 3.27 (2H), 2.78 (2H), and 2.54 (4H) for the methylene protons. From the multiplet structure of the CH₂ resonances, which indicates the nonequivalence of the methylene protons, it can be inferred that the N atoms of both donor side arms coordinate the lanthanum ion even in such a basic solvent such as pyridine. The ¹³C{¹H} NMR spectra of **3** and **4** show six singlets, one for the *N*-methyl groups, two for the methylene groups of the side chains, and three for the ring carbon atoms (Table 1).

It is noteworthy that the mass spectra of **3** and **4** recorded under EI conditions differ substantially. Whereas for **3** no molecular fragments were detected in the temperature range 20-260 °C, the mass spectrum of **4** shows the unsolvated molecular fragments [(1,3-Do₂C₅H₃)LaI₂]⁺ and [(1,3-Do₂C₅H₃)LaI]⁺ with intensities of 2 or 100%, respectively.

Molecular Structures of the Lanthanum Complexes 3 and 4. The crystals of 3 and 4 separating directly from the reaction solution can be used for single-crystal X-ray diffraction analyses without further purification by recrystallization. Details of the crystal data collections and the structure refinements are listed in

Figure 1. ORTEP plot¹⁵ of the molecular structure and numbering scheme of **3**, with 30% probability thermal ellipsoids. All hydrogen atoms are omitted for clarity.

Figure 2. ORTEP plot¹⁵ of the molecular structure and numbering scheme of **4**, with 40% probability thermal ellipsoids. All hydrogen atoms are omitted for clarity.

Table 3, the ORTEP drawings¹⁵ of the molecular structures of **3** and **4** are shown in Figures 1 and 2, respectively, and selected bond lengths and angles are presented in Table 5. Complex **3**, containing the 1,2-substituted cyclopentadienyl ligand, crystallizes in the monoclinic space group $P2_1/c$. The asymmetric unit is

⁽¹⁵⁾ Zsolnai, L.; Pritzkow, H. ZORTEP, ORTEP Program for PC; Universität Heidelberg, Heidelberg, Germany, 1994.

Table 5. Selected Bond Lengths (Å) and Bond Angles (deg) for 3-5 with Estimated Standard **Deviations**

	3	4	5		
Bond Distances and Angles					
$Ln-Cp^{a,b}$	2.511(2)	2.519(2)	2.466(5)		
Ln-I(1)	3.1974(4)	3.2681(4)	3.2529(8)		
Ln-I(2)	3.2287(4)	3.1696(4)			
Ln-N(1)	2.820(4)	2.728(4)	2.753(9)		
Ln-N(2)	2.772(3)	2.712(4)	2.762(9)		
Ln-O(1)	2.558(3)	2.593(3)	2.500(8)		
Ln-O(2)			2.522(8)		
I(1)-Ln-Cp	101.55(4)	100.66(4)	170.54(13)		
I(2)-Ln-Cp	167.05(5)	100.73(4)			
O(1)-Ln-Cp	102.65(9)	176.62(8)	103.8(2)		
O(2)-Ln-Cp			101.3(2)		
N(1)-Ln-Cp	89.97(9)	89.69(11)	91.4(2)		
N(2)-Ln-Cp	89.64(9)	90.68(8)	90.5(2)		
O(1)-Ln-N(1)	167.10(11)	93.65(12)	163.5(3)		
O(1)-Ln-N(2)	79.96(11)	85.98(11)	87.4(3)		
I(1)-Ln-I(2)	88.346(10)	157.990(13)			
N(2)-Ln-N(1)	103.11(11)	162.94(12)	98.9(3)		
Ring Slippage					
Ln-Cp	0.074	0.043	0.086		

^a Ln = La for 3 and 4 and Yb for 5. ^b Cp defines the centroid of the ring atoms C1-C5.

represented by one molecule of the complex and half of a disordered THF molecule located on a center of inversion. In contrast, complex 4, bearing the 1,3substituted cyclopentadienyl ligand, crystallizes in the orthorhombic space group $P2_12_12_1$. Both complexes **3** and 4 show similar molecular geometries. Two nitrogen atoms, two iodine atoms, the oxygen atom of the coordinated THF molecule, and the centroid position of the Cp ring form a slightly distorded pseudo octahedron around the lanthanum. However, the different coordination requirements of the cyclopentadienyl ligands lead to different positions of the iodine atoms and of the THF molecule relative to the metal center.

In complex 3, the equatorial plane is occupied by two cis-arranged nitrogen atoms, the THF oxygen, and one iodine atom, while the second iodine atom and the Cp ring occupy the apical positions. The La-I bonds are almost of equal length (3.1974 and 3.2287 Å). To the best of our knowledge, this is the first example of a complex of the type $CpLnX_2(L)_3$ in which the LnX_2 fragment exhibits such a geometry.

In complex 4, the equatorial plane is occupied by the two *trans*-positioned nitrogen atoms of the cyclopentadienyl side arms and the two iodine atoms. The ring centroid and the THF oxygen occupy the apical positions of the distorted octahedron. The coordination environment of the metal in 4 corresponds to that in monocyclopentadienyl complexes of the type CpLnX₂(THF)₃ (Ln = lanthanide, X = Cl, Br, $I)^{16}$ and is similar to that in the naphthalene lanthanum complex $[\mu_2-\eta^4:\eta^4-C_{10}H_8]$ -[LaI₂(THF)₃]₂,¹⁷ in which the halogen atoms are also *trans*-positioned in the equatorial plane. Unexpectedly, and in contrast to 3, the La-I bond lengths (3.1696 and 3.2681 Å) differ significantly, with the last value being the longest Ln−I distance ever estimated in lanthanoid iodine complexes. This fact agrees well with the kind of fragmentation of 4 observed in the mass spectrum under EI conditions.

The La-N bonds in **3** (2.772 and 2.820 Å) are longer than those in 4 (2.712 and 2.728 Å), probably caused by steric strains between the *cis*-coordinated Me₂N groups in 3, and are comparable to those in Cp₂La- $[C_6H_3(CH_2NMe_2)_2-2,6]$ (2.788 and 2.755 Å). ¹⁸ The La-N bonds of both 3 and 4 are considerably shorter than those in (Me₂NCH₂CH₂C₅H₄)₃La (2.898 Å).¹⁹ The La-Cpcentroid distances are almost the same in both 3 and 4 (2.511 and 2.519 Å, respectively) and fairly close to those in other monocyclopentadienyl lanthanum derivatives.²⁰

Ytterbium(II) Complexes. The treatment of mixtures of 1 and 2 with equimolar amounts of YbI2 in THF affords only the 1,2-isomeric half-sandwich ytterbium-(II) complex $(1,2-Do_2Cp)$ YbI(THF)₂ (5) in ca. 40% yield (Scheme 3). Compound 5 crystallizes from the filtered and concentrated solution as large orange blocks. All attempts to isolate the analogous complex containing the 1,3-Do₂Cp ligand did not succeed. However, addition of (C₅Me₅)Na (Cp*Na) to the THF solution remaining after the separation of 5, followed by treatment with toluene, yields dark red crystals of a mixed ytterbium complex containing both the 1,3-Do₂Cp ligand and the Cp^* ligand, $\{Na[(1,3-Do_2Cp)(Cp^*)Yb]_2(I)(C_7H_8)\}_n$ (6). Also, compound 5 reacts with the cyclopentadienides ('BuC₅H₄)Na and Cp*K in THF to give the mixed complexes $(1,2-Do_2Cp)Yb(^tBuC_5H_4)$ (7) and $(1,2-Do_2Cp)$ -Yb(Cp*) (8), respectively (Scheme 3). 5 and 6 are soluble in THF but insoluble in diethyl ether, toluene, and hexane. Addition of 5 to pyridine (py) causes decomposition into YbI₂(py)₄ and unidentified products. 7 and 8 are readily soluble in THF, diethyl ether, and benzene. **5−8** melt with decomposition in the temperature range 195-240 °C, with the highest value observed for poly-

In the ¹H NMR spectrum of the diamagnetic 5, recorded in THF- d_8 at 200–293 K, all signals are significantly broadened, showing no spin-spin coupling structure. The resonances of the ring protons show chemical shifts of δ 5.67 (1H) and 5.54 (2H). The protons of the methylene or the NCH3 groups give rise to broad singlets at δ 2.54 (8H) or 2.33 (12H), respectively. The appearance of the ¹³C{¹H} NMR spectrum is rather similar, with the exception that the resonances of the methylene groups can be distinguished. These data confirm two points: (i) both donor functions of the cyclopentadienyl ligand are coordinated to the metal even in THF solution; (ii) a mirror inversion of two crown-type cycles Cp-CH₂-CH₂-(Me₂)N-Yb forced by limited rotation of the Cp ring around the Cp_{centroid}-Yb axis takes place in solution. This is consistent with published data²¹ and the data we obtained by structural analysis. In the ¹H NMR spectrum of 6, recorded in THF- d_8 , the signals of the ring protons (t, δ 5.52, 1H; d, δ 5.45, 2H) and of the methylene protons (m, δ 2.59,

⁽¹⁶⁾ Schumann, H.; Meese-Marktscheffel, J. A.; Esser, L. Chem. Rev.

⁽¹⁷⁾ Fedushkin, I. L.; Bochkarev, M. N.; Schumann, H.; Esser, L.; Kociok-Köhn, G. J. Organomet. Chem. 1995, 489, 145.

⁽¹⁸⁾ Hogerheide, M. P.; Boeresma, J.; Spek, A. L.; van Koten, G. Organometallics 1996, 15, 1505.

⁽¹⁹⁾ Anwander, R.; Herrmann, W. A.; Scherer, W.; Munck, F. C. J.

Organomet. Chem. 1993, 462, 163.
(20) (a) Suleimanov, G. Z.; Kurbanov, T. Kh.; Nuriev, Ya. A.; Rybakova, L. F.; Beletskaya I. P. Dokl. Akad. Nauk SSSR 1982, 265, 896. (b) Hazin, P. N.; Huffman, J. C.; Bruno, J. W. Organometallics

⁽²¹⁾ Krut'ko, D. P.; Borisov, M. V.; Petrosyan, V. S.; Kuz'mina, L. G.; Churakov, A. V. Russ. Chem. Bull. (Engl. Transl.) 1996, 45, 940.

2H; m, δ 2.49, 2H; m, δ 2.29, 4H) are at least poorly resolved, suggesting that in solution either both nitrogen atoms of the 1,3-Do₂Cp ligand coordinate the Yb²⁺ ion or both are turned away from the metal center. Taking into account that considerable steric problems will arise if, along with the Cp* ligand and the Cp ring of the 1,3-Do₂Cp ligand, also the two side chains are coordinated to the metal, the last case would be the most probable one. The existence of a mono-N-coordinated species in solution can be excluded, since in this case three ring ¹H signals of equal intensity should appear in the spectrum. Since the low-temperature NMR spectra of 6 do not differ significantly from its ambienttemperature spectra, dynamic processes can also be excluded.

The ¹H NMR spectrum of **7** in benzene-*d*₆ shows two well-resolved signals for the disubstituted as well as for the monosubstituted cyclopentadienyl ligand (Table 2), a complex signal structure for the side chains of the 1,2- Do_2Cp ligand ranging from δ 2.5 to 2.0, a sharp signal for the tert-butyl protons, and an extremely broad signal for the NCH₃ protons. The ¹³C NMR spectrum of **7** consists of 12 resonances, with the two CH₃N signals being also extremely broadened. ¹H-¹H, ¹H-¹³C NMR COSY, and ¹³C DEPT spectroscopic measurements allow an unambiguous assignment of the signals. The nonequivalence of the NCH3 groups in solution can be explained by a rigid coordination of the side chains to the ytterbium ion, causing different positions of the methyl groups relative to the metal. A careful inspection of the ¹H and ¹³C NMR spectra of 7 reveals small additional couplings only for the Cp ring resonances, thus excluding side rotation bands. It is possible to suggest that ¹H-¹⁷¹Yb and ¹³C-¹⁷¹Yb couplings cause those additional spin-spin spectra, since the relative intensities of the peaks observed are consistent with the natural abundance of this ytterbium isotope (171Yb: spin $^{1}/_{2}$, natural abundance 14.27%). ²² Similar $J(^{13}C-^{171}Yb)$ couplings can be observed in the spectra of (C₅Me₅)₂-Yb(THF)₂ in THF- d_8 , Cp*Yb[Si(SiMe₃)₃](THF)₂ (10 Hz),²³ and of dialkylytterbium compounds (158-265 Hz).²⁴

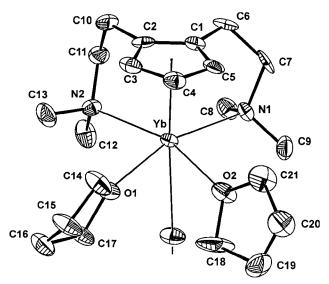
The ¹H and ¹³C NMR spectra of **8** in benzene- d_6 are very similar to those of 7, including the ¹H-¹⁷¹Yb and ¹³C⁻¹⁷¹Yb couplings of the resonances arising from the Cp ring atoms, and show only the differences connected

⁽²²⁾ Avent, A. A.; Edelmann, M. A.; Lappert, M. F.; Lawless, G. A. J. Am. Chem. Soc. 1998, 111, 3423.

⁽²³⁾ Corradi, M. M.; Frankland, A. D.; Hitchcock, P. B.; Lappert,
M. F.; Lawless, G. A. J. Chem. Soc., Chem. Commun. 1996, 2323.
(24) Eaborn, C.; Hitchcock, P. B.; Izod, K.; Lu, Zh.-R.; Smith, J. D. Organometallics 1996, 15, 4783.

Table 6. Selected Bond Lengths (Å) and Bond Angles (deg) for 6–8 with Estimated Standard Deviations

	6	7	8		
Bond Distances and Angles					
Yb-Cp(1)a	2.440(3)	2.394(4)	2.417(3)/2.415(3)		
$Yb-Cp(2)^a$	2.431(3)	2.451(5)	2.452(3)/2.456(3)		
Na-Cp(1)	2.545(3)				
$Yb-N(1)^b$	2.606(5)	2.585(7)	2.635(5)/2.627(5)		
Yb-I	3.1001(2)				
Na-N(2)	2.495(5)				
$Yb-N(2)^c$		2.623(5)	2.640(5)/2.636(6)		
Na-C(1)	2.930(6)				
Na-C(2)	2.776(6)				
Na-C(3)	2.675(6)				
Na-C(4)	2.757(6)				
Na-C(5)	2.923(6)				
Cp(1)-Yb-Cp(2)	132.34(8)	141.44(12)	133.10(12)/133.11(12)		
I-Yb-Cp(1)	106.06(6)				
I-Yb-Cp(2)	107.71(6)				
N(1)-Yb-Cp(1)	93.31(15)	93.90(19)	93.36(14)/92.93(14)		
N(2)-Yb-Cp(1)		94.15(17)	92.40(14)/92.85(14)		
N(1)-Yb-Cp(2)	118.40(14)	109.09(18)	116.13(15)/117.22(14)		
N(2)-Yb-Cp(2)		111.62(19)	117.24(13)/116.57(15)		
N(1)-Yb-N(2)		98.8(2)	96.79(15)/96.03(17)		
N(1)-Yb-I	91.11(13)				
Yb-I-Yb'	180				
Cp(1)-Na-Cp(1)''	127.16(13)				
N(2)-Na-N(2)''	102.4(3)				
Yb-Cp(1)-Na	172.56(12)				
$Yb-Cp(1)^*-Na^a$	157.53				
	Ring	Slippage			
Cp(1)-(Yb)	0.082	0.079	0.046/0.063		
Cp(2)-(Yb)	0.064	0.104	0.070/0.088		
Cp(1)-(Na)	0.319				


^a Cp defines the centroid of the ring atoms Cp(1) (C(1)−C(5) for **6** and **7** and C(101)−C(105)/C(201)−C(205) for **8**), Cp(2) (C(14)−C(18)), and Cp(1)* (C(2),C(3),C(4)). ^b N(11)/N(21) for **8**. ^c N(12)/N(22) for **8**. Symmetry transformations used to generate equivalent atoms: (') −x + 1, −y + 1, −z + 1; ("') −x + 1, y, −z + $\frac{3}{2}$.

with the exchange of 'BuCp for Cp* as the second ligand of the Yb²⁺ ion. As for **7**, $^{1}H^{-1}H$ and $^{1}H^{-13}C$ NMR COSY as well as ^{13}C DEPT measurements were applied to ensure the assignment of the signals of **8**. If **8** is dissolved in THF- d_8 , the signal associated with the protons of the (CH₃)₂N groups becomes sharp and the two very broad signals associated with the carbon atoms of the (CH₃)₂N groups change into one broad signal, thus indicating that in nonpolar solvents such as benzene both donating side chains of the 1,2-Do₂Cp ligand will be fixed to the metal, whereas in polar solvents such as THF the side chains compete with the solvent with respect to their coordination to the metal.

The EI mass spectra of the complexes **5** and **6** show no molecular ion peaks. The most intense metal-containing fragments are $[(1,2-Do_2Cp)YbI]^+$ (10%) for **5** and $[(1,3-Do_2Cp)Yb]^+$ (100%) for **6**. In the mass spectra of **7** and **8** the molecular ion peaks appear at 136 or 193 °C with 100 or 18% intensity, respectively. The most intense metal-containing fragment in the spectrum of **8**, $[1,3-Do_2CpYb]^+$ (68%), corresponds to that in **6**.

Molecular Structures of the Ytterbium Complexes 5–8. The crystal data collection and structure refinement data for 5 are given in Table 3 and those for 6–8 in Table 4. Selected bond distances and angles for 5 are given in Table 5 and those for 6–8 in Table 6.

The large well-shaped elongated blocks of **5** suitable for single-crystal X-ray diffraction analysis were obtained by crystallization from THF. The half-sandwich ytterbium(II) complex **5** crystallizes in the monoclinic

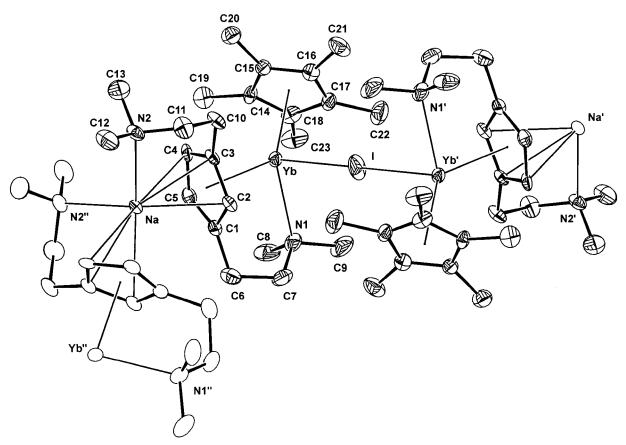


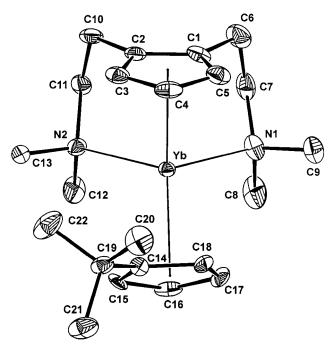
Figure 3. ORTEP plot¹⁵ of the molecular structure and numbering scheme of **5**, with 50% probability thermal ellipsoids. All hydrogen atoms are omitted for clarity.

space group $P2_1$ with two molecules in the unit cell. The calculation of the absolute structure parameter *x* indicated a racemic twinning for the selected crystal. The value of x was refined to 0.278(17); therefore, the ratio of the two enantiomorphs is approximately 72:28. The discrete molecules show a distorted-octahedral structure (Figure 3) similar to that of the lanthanum(III) complex **3**, except that the equatorial iodine in **3** is replaced by a second THF. The cis-arranged Me2N donor units and the THF molecules form the equatorial plane, while the ring part of the 1,2-Do₂Cp ligand and the iodine atom occupy the axial positions ($Cp_{centroid}-Yb-I=170.54^{\circ}$). The monomeric structure of 5 is unique, because all other ytterbium complexes of analogous empirical composition form halogen-bridged dimers $[RYbX(L)_n]_2$ (R =alkyl, 24 cyclopentadienyl; 25 X = halogen; L = coordinate ing solvent such as THF or Et₂O). In contrast to 3, there is no mirror plane in 5 incorporating Cpcentroid-Yb-I, since the α -carbon atoms of the cyclopentadienyl side arms are turned clockwise around the Cp_{centroid}-Yb axis. With regard to the difference in ionic radii of La(III) and Yb(II), the Yb-I bond length in 5 (3.2529 Å) is somewhat longer than the La-I distances in 3 (3.1974 and 3.2287 Å), while the distance Cp_{centroid}-Yb (2.466 Å) in $oldsymbol{5}$ is somewhat shorter than the corresponding value in 3 (2.511 Å). The smaller angle N-Yb-N (98.9°) in 5 compared to that in 3 (N-La-N, 103.1°) is probably the result of less repulsion of the two Me₂N groups caused by the clockwise turning of the α -carbon atoms of the side chains. The distances Yb-N (2.753 and 2.762 A) fall into the range found for the La-N distances in **3** (2.772 and 2.820 Å).

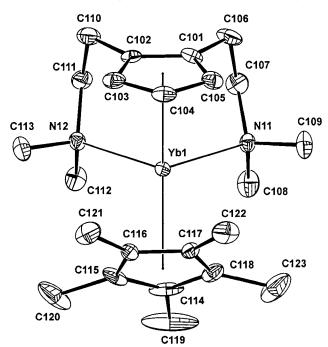
X-ray-quality crystals of **6** were obtained from a THF/ toluene mixture. Complex **6** crystallizes in the orthorhombic space group *Pbcn.* **6** is a polymer consisting of infinite chains formed by [Na{ μ_2 -1,3-Do₂Cp}Yb(μ_2 -I)Yb-{ μ_2 -1,3-Do₂Cp}] units (Figure 4). Each ytterbium atom is further η^5 -coordinated by a C₅Me₅ ligand. The iodine atom is located on a center of inversion with equal distances to the ytterbium atoms of the linear

⁽²⁵⁾ Constantine, S. P.; De Lima, G. M.; Hitchcock, P. B.; Keates, J. M.; Lawless, G. A. J. Chem. Soc., Chem. Commun. 1996, 2421.

Figure 4. ORTEP plot¹⁵ of the molecular structure and numbering scheme of **6**, with 30% probability thermal ellipsoids. All hydrogen atoms are omitted for clarity. Symmetry transformations used to generate equivalent atoms: () -x + 1, -y+1, -z+1; (") -x+1, y, -z+3/2.


Yb-I-Yb unit (180°). However, the unexpectedly large thermal ellipsoid of the iodine atom suggests that in different molecular units of the polymer the Yb-I-Yb angle slightly deviates from 180°. Nevertheless, the geometry of this fragment is rather rare in organolanthanide chemistry. The linear arrangement Yb-F-Yb, but with different Yb-F distances (2.317 and 2.084 Å), was established only for the mixed-valence ytterbium complex Cp*2YbII(\(\mu\)-F)YbIIICp*2.26 The Yb-I distances in **6** (3.1001 Å each) are somewhat shorter than in the complex $[Cp^*(THF)_2Yb(\mu-I)_2YbCp^*(THF)_2]$ (3.134 and $3.175 \text{ Å})^{25}$ and remarkably shorter than in **5** (3.2529 Å). The angle 1,3-Do₂Cp-Yb-Cp* (132.34°) and the distances of the ytterbium atom to the ring centers (1,3- Do_2Cp-Yb , 2.440 Å; Cp^*-Yb , 2.431 Å) fall into the range found for {C₅H₄(CH₂CH₂NMe₂)}₂Yb²⁷ and Cp*₂-Yb(py)₂.²⁸ Only one of the two N atoms of each 1,3-Do₂-Cp ligand is bonded to ytterbium, whereas the second N atom coordinates a sodium atom. The bond length Yb-N (2.606 Å) in **6** is much shorter than that in the half-sandwich complex 5 (2.753 and 2.762 Å) but similar to that in the ytterbium(II) complex {C₅H₄(CH₂CH₂-NMe₂)₂Yb (2.58 Å) containing mono-Me₂N-functionalized Cp ligands.²⁷ The Na-N bond length is 2.495 Å. The distances of the sodium atom to the carbon atom of the ring part of the 1,3-Do₂Cp ligand range from 2.675 to 2.930 Å with the shortest contact to the carbon atom bearing the side arm involved into the Na-N coordination. The angle Cp_{centroid}-Na-Cp_{centroid} is 127.16°. The asymmetric unit of 6 contains a toluene molecule which is disordered about a 2-fold rotation axis. All C-C distances of the phenyl ring and all C-C-C angles belonging to the phenyl and methyl groups were restrained to be equal. Furthermore, the carbon atoms of the solvent molecule were restrained to lie on a common plane.

Crystals of 7 and 8 suitable for single-crystal X-ray analysis were grown from diethyl ether. 7 crystallizes in the orthorhombic space group $P2_12_12_1$ and **8** in the triclinic space group $P\overline{1}$. The X-ray analysis of two different crystals of 7 revealed two mirror isomers which differ in the position of the *tert*-butyl substituent. The asymmetric unit of 8 contains two crystallographically independent molecules. In the monomeric and solventfree molecules of 7 (Figure 5) and 8 (Figure 6) the ytterbium atoms are coordinated by both donor atoms of the 1,2-Do₂Cp ligand. The structures of 7 and 8 resemble the distorted-tetrahedral geometry of other Cp₂Yb(L)₂ complexes with the formal coordination number 8.16 In comparison to complex 5, possessing the same coordination number, the distances of the ytterbium atoms to the ring center of the 1,2-Do₂Cp ligand are remarkably shorter (2.466 Å (5), 2.394 Å (7), 2.417/2.415 \mathring{A} (8)). The distances 'BuCp_{centroid}-Yb (2.451 \mathring{A}) and $Cp^*_{centroid}$ - Yb (2.452/2.456 Å) in **7** or **8** are similar to


⁽²⁶⁾ Burns, C. J.; Andersen, R. A. J. Chem. Soc., Chem. Commun.

⁽²⁷⁾ Bochkarev, M. N.; Fedushkin, I. L.; Nevodchikov, V. I.; Protchenko, A. V.; Schumann, H.; Girgsdies, F. Inorg. Chim. Acta 1998,

⁽²⁸⁾ Tilley, T. D.; Andersen, R. A.; Spencer, B.; Zalkin, A. Inorg. Chem. 1982, 21, 2647.

Figure 5. ORTEP plot¹⁵ of the molecular structure and numbering scheme of 7, with 30% probability thermal ellipsoids. All hydrogen atoms are omitted for clarity.

Figure 6. ORTEP plot¹⁵ of the molecular structure and numbering scheme of **8**, with 30% probability thermal ellipsoids. Only one of the two crystallographically independent molecules is shown. All hydrogen atoms are omitted for clarity

those in $({}^{4}BuC_{5}H_{4})_{2}Yb(THF)_{2}^{29}$ or $Cp^{*}_{2}Yb(py)_{2}, {}^{28}$ respectively. While the 1,2-Do₂Cp-Yb-Cp* angle in **8** (133.1°) is typical for bent divalent lanthanidocenes, the 1,2-Do₂Cp-Yb-'BuCp angle of 141.44° in **7** shows a certain tendency toward coplanarity, which is realized in

(29) Shen, Q.; Zheng, D.; Lin, L.; Lin, Y. *J. Organomet. Chem.* **1990**, 391. 321.

 $(C_5(^{1}Pr)_5)_2Eu (Cp-Eu-Cp = 153.8^{\circ}).^{30}$ The methyl groups of the Cp* ring in 8 and the quaternary carbon atom of the 'Bu group in 7 are bent out of the ring plane away from the ytterbium atoms by up to 0.25(1) and 0.22(2)Å, respectively. The α -carbon atoms of the side arms of the 1,2-Do₂Cp ligands deviate from the ring plane toward the ytterbium atoms by up to 0.04(1) and 0.05(1) Å, respectively. In contrast to the ytterbium complex 5, the geometry of the side chains in 7 and 8 is symmetric relative to the plane containing the metal atom and the centroids of the ligands. The N-Yb-N angles in 7 (98.8°) and 8 (96.79/96.03°) are similar to that in 5 (98.9°) but differ from that in {C₅H₄(CH₂CH₂- NMe_2) $_2$ Yb (104.0°). ²⁸ However, the distances Yb-N in 7 (2.585, 2.623 Å) and **8** (2.635, 2.640/2.627, 2.636 Å) are significantly shorter than in 5 (2.753, 2.762 Å) but are somewhat longer than in $\{C_5H_4(CH_2CH_2NMe_2)\}_{2^{-1}}$ Yb (2.57, 2.58 Å).²⁸

Conclusion

We prepared half-sandwich and bent mixed-sandwich complexes of lanthanum(III) and ytterbium(II) with the novel 1,2- and 1,3-bis(2-(dimethylamino)ethyl)cyclopentadienyl ligands by metathetic reactions of La(III) and Yb(II) iodides with the potassium salts of the ligands. The intramolecular coordination of the donor atoms of the side chains was confirmed by X-ray structure determination for all complexes 3-8. The different coordination requirements of the 1,2- and the 1,3-donorfunctionalized ligands cause a specific coordination geometry around the metal centers in the isomeric halfsandwich lanthanum complexes 3 and 4. Using the stabilizing influence of the 1,2-donor-functionalized ligand, we were able to isolate the first monomeric monocyclopentadienyl ytterbium(II) complex. The nonequivalence of the ¹³C NMR signals of the N-methyl groups in 7 and 8 in benzene solution confirms strong $Me_2N \rightarrow Yb$ coordination. In contrast, the appearance of a broadened singlet signal for these groups in THF solution indicates that the N-donor atoms compete with the coordinating solvent molecules. Investigations concerning the catalytic activity of the complexes for the block polymerization of styrene are in progress.

Acknowledgment. This work was financially supported by the Fonds der Chemischen Industrie and the Deutsche Forschungsgemeinschaft as well as by the Alexander von Humboldt Foundation (research fellowship for I.L.F.). We thank also Dr. Zeigan and Dr. Detlaff for recording the NMR spectra and Ms. M. Borowski for assistance with carrying out the single-crystal X-ray diffraction analyses. We are grateful to Prof. M. N. Bochkarev for fruitful discussions.

Supporting Information Available: Full details of the X-ray structures of complexes **3–8**, including complete tables of crystal data, atomic coordinates, bond lengths and angles, and positional and anisotropical thermal parameters. This material is available free of charge via the Internet at http://pubs.acs.org.

OM000409X