Novel Ruthenium(II) Carbene Complexes: Products of the Reactions of 1-Alkynes with $(\eta^6-C_6Me_6)Cl_2Ru(PR_3)$

Heather D. Hansen and John H. Nelson*

Department of Chemistry/216, University of Nevada—Reno, Reno, Nevada 89557-0020

Received June 13, 2000

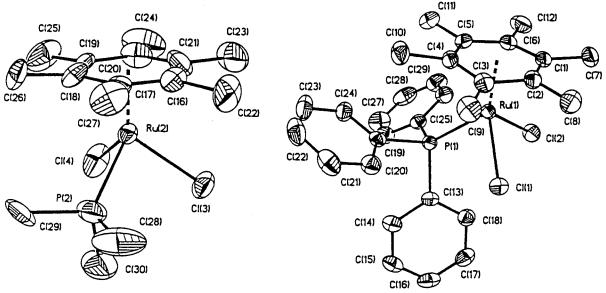
The complexes $(\eta^6 - C_6Me_6)Cl_2Ru(PR_3)$ (1; $PR_3 = DPVP$ (diphenylvinylphosphine) (a), PMe_3 (b), PPh₃ (c)) react with NaPF₆ in acetonitrile solutions to give the cationic complexes $[(\eta^6 - \eta^6 + \eta^6)]$ C_6Me_6)ClRu(PR₃)(NCCH₃)]PF₆ (2a-c) by loss of NaCl. Complexes 1a and 2a react with HC= CSiMe₃ and HC \equiv CPh (and NaPF₆ for **1a**) in MeOH to give the carbene complexes $[(\eta^6 - \eta^6 + \eta^6)]$ C_6Me_6)Cl(DPVP)Ru=C(OCH₃)CH₃]PF₆ (**3a**) and [(η^6 -C₆Me₆)Cl(DPVP)Ru=C(OCH₃)CH₂Ph]PF₆ (4a), respectively. The known analogues 3b,c and 4b and the new complex 4c have been synthesized from **2b,c** and HC≡CR. The solid-state structures of these complexes show a wide variation in the orientation of the carbene plane with respect to the plane of the η^6 arene ring (dihedral angles of $37.9-59.6^{\circ}$). The solution dynamic behavior of $3\mathbf{a}-\mathbf{c}$ and $4\mathbf{a}-\mathbf{c}$ is discussed. Complex 2a also reacts with HC≡CCH₂CH₂OH in MeOH to give the oxacyclic carbene complex $[(\eta^6-C_6Me_6)Cl(DPVP)Ru=\dot{C}(CH_2CH_2CH_2)\dot{O}]PF_6$ (5). 1a (and NaPF₆) and 2a react with HC \equiv CC(OH)Ph₂ in MeOH to give the novel phosphorus ylide complex $[(\eta^6-C_6-$ Me₆)ClRuC(=C=CPh₂)PPh₂CH=CH₂|PF₆ (6) and with dimethylpropargylamine in CH₂Cl₂ or dichloroethane to give the amino cyclic carbene complex [(η⁶-C₆Me₆)Cl(DPVP)Ru=CCH₂- $CMe_2NH]PF_6$ (7) and the metallacyclic complex $[(\eta^6-C_6Me_6)ClRuCH=C(DPVP)CMe_2NH_2]$ PF_6 (8). In the absence of MeOH, reaction of 2a with $HC \equiv CC(OH)Ph_2$ gives the dimeric complex $[(\eta^6-C_6Me_6)Ru(\mu-Cl)_3Ru(\eta^6-C_6Me_6)]PF_6$. Complex **2a** plus HC \equiv CPh in the absence of MeOH gives the carbonyl complex $[(\eta^6-C_6Me_6)Cl(DPVP)Ru(CO)]PF_6$ (9). Reaction of **2c** with HC≡CPh in MeOH for extended time periods (>1 day) gives an analogous carbonyl complex of PPh₃, $[(\eta^6-C_6Me_6)Cl(PPh_3)Ru(CO)]PF_6$. All complexes have been characterized by ¹H, ¹³C{¹H}, and ³¹P{¹H} NMR and IR spectroscopies and electrochemistry and in most cases by X-ray crystallography. Complex 1a is an efficient catalyst for the regionselective addition of H₂O to HC≡CPh, producing exclusively acetophenone in 70% isolated yield.

Introduction

Previous investigations in our laboratory with the hybrid hemilabile ligand diphenylvinylphosphine (DPVP) resulted in the synthesis of the phosphaallyl complexes $[(\eta^5\text{-}C_5H_5)Ru(\eta^3\text{-}DPVP)(\eta^1\text{-}DPVP)]PF_6$ (A) 1 and $[(\eta^5\text{-}C_5\text{-}Me_5)Ru(\eta^3\text{-}DPVP)(\eta^1\text{-}DPVP)]PF_6$ (B) 2 The $\eta^3\text{-}DPVP$ ligand is a neutral, monometallic phosphaallyl ligand coordinated to ruthenium through its phosphorus atom and its vinyl group. The hemilabile nature of the $\eta^3\text{-}DPVP$ ligand in complex B was demonstrated by the reactions illustrated in Scheme 1. Similar reactions showed the hemilabile nature of the phosphaallyl ligand in complex A. 1

As an extension of the chemistry of ruthenium—DPVP complexes and of the chemistry of $(\eta^6\text{-}arene)\text{ruthenium}$ complexes, we attempted to synthesize $[(\eta^6\text{-}C_6\text{Me}_6)\text{ClRu-}(\eta^3\text{-}DPVP)]\text{PF}_6$ (C). Though we have been unable to confirm the formation of C, its acetonitrile precursor $[(\eta^6\text{-}C_6\text{Me}_6)\text{ClRu}(\eta^1\text{-}DPVP)(\text{NCCH}_3)]\text{PF}_6^3$ reacts with

(2) Barthel-Rosa, L. P.; Maitra, K.; Fischer, J.; Nelson, J. H. Organometallics 1997, 16, 1714.


Scheme 1. Reactions of the Phosphaallyl Complex

terminal alkynes to form traditional and novel carbene complexes.

We report here (1) the synthesis and characterization of two new η^6 -C₆Me₆-phosphine-ruthenium-acetoni-

⁽¹⁾ Ji, H.-L.; Nelson, J. H.; DeCian, A.; Fischer, J.; Solujić, L.; Milosavljević, E. B. *Organometallics* **1992**, *11*, 401.

⁽³⁾ Redwine, K. D.; Hansen, H. D.; Bowley, S.; Isbell, J.; Vodak, D.; Nelson, J. H. Synth. React. Inorg. Met.-Org. Chem. 2000, 30, 409.

Figure 1. Structural drawings of $(\eta^6-C_6Me_6)Cl_2Ru(PMe_3)$ (**1b**) and $(\eta^6-C_6Me_6)Cl_2Ru(PPh_3)$ (**1c**) showing the atom-numbering schemes (30% probability ellipsoids). Hydrogen atoms have been omitted for clarity.

trile complexes and their reactions with terminal alkynes, (2) structural characterization of a series of η^6 -C₆Me₆phosphine—ruthenium—carbene complexes, (3) complete analysis of the dynamic behavior of these carbene complexes by ¹H, ¹³C{¹H}, and ³¹P{¹H} variable-temperature NMR spectroscopy and NOE experiments, (4) four new complexes (including two new complex types) containing the $[(\eta^6-C_6Me_6)ClRu(DPVP)]$ moiety, and (5) the use of $(\eta^6-C_6Me_6)Cl_2Ru(DPVP)$ to catalyze the hydration of phenylacetylene.

Results and Discussion

Structural Characterization of (η^6 -C₆Me₆)Cl₂Ru-**(PR₃) (1).** Bridge cleavage of the dimeric $[(\eta^6-C_6Me_6)-$ RuCl₂]₂ complex with 2 equiv of a phosphine gives the reported complexes $(\eta^6-C_6Me_6)Cl_2Ru(PR_3)$ (1; PR₃ = diphenylvinylphosphine (DPVP) (a),4 PMe3 (b),5 PPh3 (c)⁶). The physical properties and NMR and IR spectral data for 1a-c have been reported.4-6 The molecular structures of 1b,c were determined, and views of their crystal structures are given in Figure 1. Selected bond distances and angles are given in Table 1. The structures of 1b,c consist of isolated molecules with no unusual intermolecular contacts, and their metrical parameters compare favorably with those of similar three-legged piano-stool (η^6 -arene)Cl₂Ru(PR₃) complexes in which the Ru(II) atoms possess a pseudo-octahedral geometry.4,7

Synthesis and Characterization of $[(\eta^6-C_6Me_6) Cl(PR_3)Ru(NCCH_3)]PF_6$ (2). Reaction of 1a-c with 1 equiv of NaPF₆ in acetonitrile/CH₂Cl₂ solutions readily gave the cationic complexes $[(\eta^6-C_6Me_6)Cl(PR_3)Ru (NCCH_3)]PF_6$ (2a-c) and NaCl, as was reported for 2a.³ Removal of NaCl followed by crystallization gave an 87%

Table 1. Selected Bond Distances (Å) and Angles (deg) for $(\eta^6-C_6Me_6)Cl_2Ru(PR_3)$ (1b,c)

	$(\eta^6\text{-}C_6\text{Me}_6)\text{Cl}_2\text{Ru}$ - $(\text{PMe}_3)~(\mathbf{1b})$	$(\eta^6\text{-}C_6\text{Me}_6)\text{Cl}_2\text{Ru}$ - $(\text{PPh}_3)~(\textbf{1c})$
Ru-P	2.343(3)	2.3607(10)
Ru-Cl(1)	2.422(3)	2.4117(10)
Ru-Cl(2)	2.424(3)	2.4118(10)
Ru-C(avg.)	2.215(11)	2.249(4)
P-Ru-Cl(1)	82.4(11)	84.99(3)
P-Ru-Cl(2)	84.96(11)	88.22(4)
Cl(1)-Ru-Cl(2)	90.31(10)	88.16(4)
$\sum \angle a$	257.31	261.37

 $a \Sigma \angle =$ the sum of the P-Ru-Cl(1), P-Ru-Cl(2), and Cl(1)-Ru-Cl(2) angles.

yield of 2b and a 28% yield of 2c as orange-yellow powders. Complex **2c** was contaminated with the triply chloride bridged dimer $[(\eta^6-C_6Me_6)Ru(\mu-Cl)_3Ru(\eta^6-C_6-me_6)Ru(\mu-Cl)_3Ru(\eta^6-C_6-me_6)Ru(\mu-Cl)_3Ru(\eta^6-C_6-me_6)Ru(\mu-Cl)_3Ru(\eta^6-C_6-me_6)Ru(\mu-Cl)_3Ru(\eta^6-C_6-me_6)Ru(\mu-Cl)_3Ru(\eta^6-C_6-me_6)Ru(\mu-Cl)_3Ru(\eta^6-C_6-me_6)Ru(\mu-Cl)_3Ru(\eta^6-C_6-me_6)Ru(\mu-Cl)_3Ru(\eta^6-C_6-me_6)Ru(\mu-Cl)_3Ru(\eta^6-C_6-me_6)Ru(\mu-Cl)_3Ru(\eta^6-C_6-me_6)Ru(\mu-Cl)_3Ru(\eta^6-C_6-me_6)Ru(\mu-Cl)_3Ru(\eta^6-C_6-me_6)Ru(\mu-Cl)_3Ru(\eta^6-C_6-me_6)Ru(\mu-Cl)_3Ru(\eta^6-C_6-me_6)Ru(\mu-Cl)_3Ru(\eta^6-C_6-me_6)Ru(\mu-Cl)_3Ru(\eta^6-C_6-me_6)Ru(\mu-Cl)_4Ru(\mu-$ Me₆) PF₆, which was removed by repeated recrystallizations from CH₂Cl₂/Et₂O.

Complex **2b** is quite soluble in acetone, CH₃OH, and CH₃NO₂, less soluble in CH₂Cl₂ and CHCl₃, and not soluble in ether and hydrocarbons. Complex 2c follows the same trend, but it is less soluble than **2b** in all solvents. Complexes 2b,c are not stable for extended periods in any solvent. Complexes 2b,c were identified by the appearance of $\nu(C \equiv N)$ stretching vibrations (at 2322 and 2328 cm⁻¹, respectively) in their infrared spectra and the resonances for coordinated CH₃CN in their ¹H and ¹³C{¹H} NMR spectra (see Experimental Section). Also characteristic of the formation of cationic species, their ³¹P{¹H} NMR resonances are shifted downfield relative to those of 1b,c. Similar observations have been made for the transformation of (η^6 -arene)- $RuCl_2(PR_3)^4$ to $[(\eta^6$ -arene) $RuCl(PR_3)(NCCH_3)]PF_6^3$ for several arene and PR₃ combinations.

The Ru(II)/Ru(III) redox potentials of complexes 1a-c have been reported to be 0.47,4 0.32,8 and 0.47 V,8 respectively. This shows the PMe₃ complex to be more easily oxidized because of the greater σ -donor ability of

⁽⁴⁾ Redwine, K. D.; Hansen, H. D.; Bowley, S.; Isbell, J.; Sanchez, M.; Vodak, D.; Nelson, J. H. Synth. React. Inorg. Met.-Org. Chem. 2000,

⁽⁵⁾ Werner, H.; Werner, R. Chem. Ber. 1982, 115, 3766.

⁽⁶⁾ Bennett, M. A.; Huang, T.-N.; Latten, J. L. J. Organomet. Chem.

⁽⁷⁾ Bennett, M. A.; Robertson, G. B.; Smith, A. K. J. Organomet. Chem. 1972, 43, C41,

⁽⁸⁾ Štěpnička, P.; Gyepes, R.; Lavastre, O.; Dixneuf, P. H. Organometallics 1997, 16, 5089.

PMe₃, and it indicates very similar σ -donor abilities of PPh₃ and DPVP. For complexes $\mathbf{2a-c}$, the redox couples are more positive, as expected for cationic species. The redox couple for $\mathbf{2a}$ was reported to be 0.96 V,³ and the redox couple of $\mathbf{2b}$ was found to be 1.03 V, an unexpected trend. Complex $\mathbf{2c}$ shows only an oxidation wave (1.21 V) and several electrochemical events at negative potentials, indicating redox instability of this complex. As will be shown later, reactions with $\mathbf{2c}$ result in large amounts of decomposition in all solvents and under all conditions utilized; therefore, its decomposition under electrochemical stress is not unexpected.

We initially prepared **2a** because of our desire to prepare $[(\eta^6\text{-}C_6\text{Me}_6)\text{ClRu}(\eta^3\text{-}\text{DPVP})]\text{PF}_6$ (**C**), which contains the hybrid hemilabile phosphaallyl ligand η^3 -DPVP.

Complex **C** would be the arene analogue of the novel Cp and Cp* complexes A and B, prepared previously in our laboratories, 1,2 from the corresponding [(Cp/Cp*)-Ru(η¹-DPVP)₂(NCCH₃)]PF₆ complexes by removal of CH₃CN in vacuo. Both in solution and in the solid state **A** and **B** contain the η^3 -phosphaallyl ligand, which is stabilized by π -electron donation from Ru to the CH= CH_2 group. The vinyl moiety in **A** and **B** is easily displaced by a variety of two-electron-donor ligands (Scheme 1). As would be expected on the basis of the greater electron-donating ability of C₅Me₅ vs C₅H₅, **B** is more easily formed than A from the corresponding [(Cp/Cp*)Ru(η¹-DPVP)₂(NCCH₃)]PF₆ species.² Since both Cp* and Cp are better electron-donating ligands than η^6 -C₆Me₆, we expected that **C** might be difficult to obtain from its corresponding acetonitrile complex 2a. Heating 2a at 112 °C for 2 weeks under reduced pressure gave a complex mixture, as seen by ¹H and ³¹P{¹H} NMR spectroscopy, from which we have been able to isolate neither **C** nor **2a**. Nonetheless, **2a** is a cationic species with a very labile CH₃CN ligand that is readily replaced by alkynes. Use of 2a eliminates the need for reaction with NaPF₆ and subsequent removal of NaCl, since this step has already been accomplished in the preparation of **2a** from **1a**. Reaction of **2a** with alkynes proceeded cleanly and with high yields (78–90%); therefore, we have employed it and complexes 2b,c in our studies.

Synthesis, Characterization, and X-ray Crystal Structures of Methoxyalkylcarbenes [$(\eta^6\text{-}C_6\text{Me}_6)\text{-}Cl(PR_3)$ Ru=C(OCH_3)CH_2R']PF₆ (R' = H (3), Ph (4)). Reaction of **2a**-**c** with HC=CSiMe₃ and HC=CPh gave the methoxymethylcarbene complexes [$(\eta^6\text{-}C_6\text{Me}_6)\text{Cl}(PR_3)$ Ru=C(OCH_3)CH_3]PF₆ (**3a**-**c**) and the methoxybenzylcarbene complexes [$(\eta^6\text{-}C_6\text{Me}_6)\text{Cl}(PR_3)$ Ru=C-(OCH_3)CH_2Ph]PF₆ (**4a**-**c**), respectively, as shown in Scheme 2. The formation of complexes **3b** and **4b**,**c** was confirmed by comparison of their NMR spectral data with those reported by Dixneuf and co-workers. The new complexes **3a**,**c** and **4a** were also characterized by

Scheme 2. Synthesis of Methoxyalkylcarbene Complexes 3 and 4

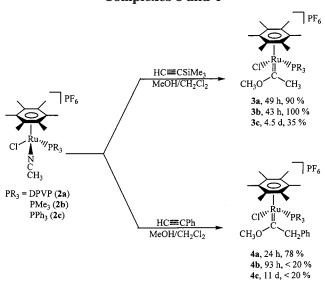
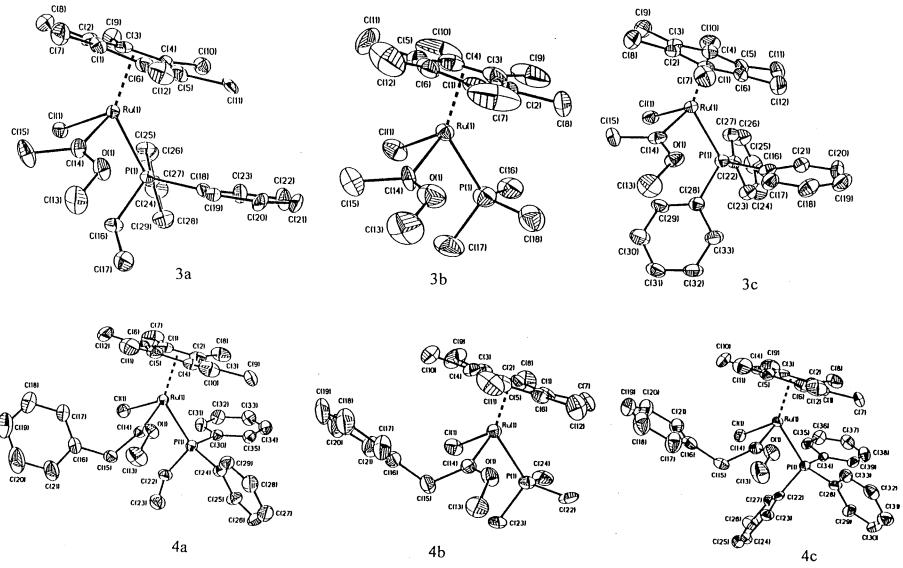


Table 2. Selected $^{13}C\{^1H\}$, 1H , and $^{31}P\{^1H\}$ NMR Spectral Data for the Methoxyalkylcarbene Complexes $[(\eta^6-C_6Me_6)Cl(PR_3)Ru=C(OCH_3)CH_3]^+$ (3) and $[(\eta^6-C_6Me_6)Cl(PR_3)Ru=C(OCH_3)CH_2Ph]^+$ (4), in ppm (J in Hz)


			δ(¹ H)	δ(³¹ P)	
PR_3	δ (13C) Ru=C	OCH ₃	CH ₃	CH ₂	PR_3
DPVP (3a)	327.99 (19.9)	4.38	2.87		31.31
PMe_{3}^{a} (3b)	330.86 (21.2)	4.48	2.98		10.50
PPh ₃ (3c)	331.00 (19.6)	4.18	2.91		38.14
DPVP (4a)	314.54 (14.5)	4.50		5.07, 3.23 (12.5)	27.95
PMe_{3}^{a} (4b)	323.10 (20.64)	4.59		5.04, 4.50 (13.0)	8.12
PPh_3^a (4c)	316.60 (18.65)	4.50		4.76, 2.65	36.06
				(13.03)	

^a Reference 9a.

NMR spectroscopy. Diagnostic ¹³C{¹H}, ¹H, and ³¹P{¹H} NMR data for the six carbene complexes are compared in Table 2. The carbene carbon chemical shifts all occur between 310 and 335 ppm with two-bond P–C coupling constants on the order of 18–20 Hz. The ¹H NMR spectral data of the carbene ligands vary only slightly. The vinyl protons of the DPVP group in **3a** and **4a** show the characteristic^{1–4} set of multiplets between 6.9 and 5.3 ppm (see Experimental Section).

Complexes 3a-c and 4a-c were characterized by X-ray crystallography. Views of the structures of the cations are shown in Figure 2; selected bond distances are given in Table 3, and selected bond angles are given in Table 4. The bond lengths and angles are similar among the cations of each molecule. Analysis of all six structures shows a distorted-octahedral geometry about Ru with the η^6 -C₆Me₆ ligand occupying three facial coordination sites and the three remaining ligands (Cl, PR₃, and carbene) completing the coordination sphere. The Ru=C(carbene) bond lengths of 1.94–2.02 Å are similar to those reported for other structurally characterized Ru carbene complexes. 8,9d,10 The dihedral angles vary considerably among the complexes (37.9–59.6°),

^{(9) (}a) Le Bozec, H.; Ouzzine, K.; Dixneuf, P. H. Organometallics 1991, 10, 2768. (b) Ouzzine, K.; Le Bozec, H.; Dixneuf, P. H. J. Organomet. Chem. 1986, 317, C25. (c) Dixneuf, P. H. Pure Appl. Chem. 1989, 61, 1763. (d) Pilette, D.; Ouzzine, K.; Le Bozec, H.; Dixneuf, P. H.; Rickard, C. E. F.; Roper, W. R. Organometallics 1992, 11, 809.

Downloaded by NORTH CAROLINA CONSORTIUM on June 29, 2009 Published on October 14, 2000 on http://pubs.acs.org | doi: 10.1021/om0004949

Figure 2. Structural drawings of the cations of $[(\eta^6-C_6Me_6)Cl(PR_3)Ru=C(OCH_3)CH_3]PF_6$ (PR₃ = DPVP (**3a**), PMe₃ (**3b**), PPh₃ (**3c**)) and $[(\eta^6-C_6Me_6)Cl(PR_3)Ru=C(OCH_3)-CH_2Ph]PF_6$ (PR₃ = DPVP (**4a**), PMe₃ (**4b**), PPh₃ (**4c**)) showing the atom-numbering schemes (30% probability ellipsoids). Hydrogen atoms have been omitted for clarity.

Table 3.	Selected Bond Distances (Å) for Methoxyalkylcarbene Compounds
	$[(n^6-C_6Me_6)Cl(PR_3)Ru=C(OCH_3)CH_2R'lPF_6 (3a-c and 4a-c)]$

	Ru-C(14)	Ru-P	Ru-Cl	Ru-C (av)	C(14)-C(15)	C(14)-O
3a	1.964(10)	2.342(3)	2.400(3)	2.295(13)	1.497(16)	1.309(12)
3b	2.015(8)	2.311(3)	2.403(3)	2.278(11)	1.523(14)	1.256(11)
3c	1.962(10)	2.351(3)	2.400(3)	2.320(11)	1.490(14)	1.300(12)
4a	1.956(7)	2.3364(18)	2.3993(18)	2.334(7)	1.515(9)	1.328(8)
4b	1.955(13)	2.327(4)	2.407(3)	2.303(14)	1.508(17)	1.306(14)
4c	1.939(10)	2.354(2)	2.404(3)	2.322(10)	1.529(13)	1.288(10)

Table 4. Selected Bond Angles (deg) for Methoxyalkylcarbene Compounds $[(\eta^6-C_6Me_6)Cl(PR_3)\ddot{R}u=C(OCH_3)CH_2R']P\ddot{F}_6$ (3a-c and 4a-c)

	P-Ru-C(14)	Cl-Ru-C(14)	P-Ru-Cl	Ru-C(14)-C(15)	Ru-C(14)-O	O-C(14)-C(15)	dihedral angle ^a
3a	86.6(3)	89.1(3)	85.19(11)	124.5(8)	118.5(8)	117.0(9)	79.9
3b	81.9(3)	89.8(3)	85.55(12)	121.6(8)	116.7(6)	118.5(9)	78.1
3c	86.2(3)	90.8(3)	88.75(10)	124.3(8)	118.3(8)	117.2(10)	92.3
4a	86.09(19)	91.7(2)	87.06(7)	127.6(5)	115.7(5)	116.7(6)	37.9
4b	82.5(4)	93.0(4)	84.44(14)	126.8(10)	115.5(9)	117.6(12)	59.6
4c	88.8(3)	91.7(3)	84.32(9)	127.3(8)	115.8(7)	116.8(9)	57.7

^a Defined as the angle between the C(arene centroid)−Ru−C(carbene) and CH₂R−C(carbene)−OCH₃ planes.

where the dihedral angle is defined as the angle between the C(arene centroid)-Ru-C(carbene) and CH_2R-C (carbene)- OCH_3 planes. This difference in observed dihedral angles led us to study the dynamic behavior of these complexes by variable-temperature NMR spectroscopy.

Dynamic Behavior of the Methoxyalkylcarbene Complexes $[(\eta^6-C_6Me_6)Cl(PR_3)Ru=C(OCH_3)CH_2R']$ **PF**₆ (3a-c, 4a-c). Three canonical representations can be drawn for these Fisher-type carbene complexes (**I**– **III**). ^{10a,11} These representations differ in the localization

$$Ru = C \xrightarrow{OCH_3} \qquad \qquad \bigoplus_{Ru = C} \xrightarrow{OCH_3} \qquad \bigoplus_{Ru = C} \xrightarrow{CH_2R} \xrightarrow{Ru = C} \xrightarrow{CH_2R}$$

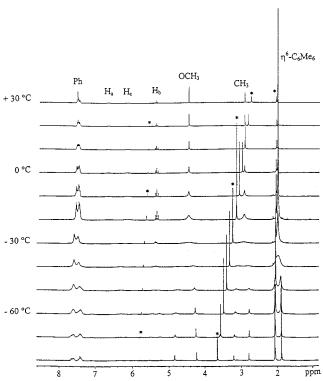
$$I \qquad \qquad II \qquad \qquad III$$

of electron density in the three-atom π system (Ru–C– O). If we consider a carbene to be a neutral two-electrondonor ligand, the other two electrons in the Ru=C double bond must come from the metal. Hence, greater electron density on the metal (low oxidation state and/ or electron-donating substituents) favors form I and a rigid metal-carbon bond about which little to no rotation is anticipated. As the electron-donating ability of the metal decreases, forms II and III become more important. In the limit of no contribution from I, forms II and III suggest free rotation about a Ru-C single bond. Complexes with contributions from all three forms are then expected to show hindered rotation about the ruthenium—carbon bond, the magnitude of the barrier being dependent upon the amount of $Ru_{d\pi} \rightarrow C_{p\pi}$ backdonation.

Theoretical studies of the bonding in late-transitionmetal carbene complexes predict barriers to rotation about the M=C double bond on the order of 6-12 kcal/

(II) (a) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. *Principles and Applications of Organotransition Metal Chemistry*; University Science Books: Mill Valley, CA, 1987; pp 119–136. (b) Schubert, U. Coord. Chem. Rev. 1984, 55, 261.

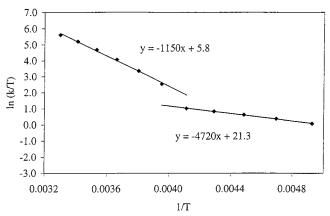
mol. 12 VT NMR spectroscopic studies agree with the theoretical predictions. 13 Theoretical and variable-temperature NMR spectroscopic studies of rutheniumvinylidene complexes show the barrier to rotation about the Ru-C bond to be 9-10 kcal/mol.14 Theoretical studies predict the lower energy conformations to be that with a "vertical" carbene for cyclopentadienyl (CpML₂) complexes and that with a "horizontal" carbene for (arene)ML₂ complexes. For most of the reported structurally characterized CpMLL' carbenes, the vertical orientation is found. For the three reported structurally characterized (arene)MLL' carbenes ($[(\eta^6-C_6Me_6) Ru(=C(OCH_3)CH_2Fc)\{((\eta^5-C_5H_4PPh_2)Fe(\eta^5-C_5H_4COOH))-(\eta^5-C_5H_4PPh_2)Fe(\eta^5-C_5H_4COOH)\}$ $P_{c}(Cl)PF_{6}$ (Fc = ferrocenyl), $[(\eta^{6}-C_{6}Me_{6})(PMe_{3})ClRu=$ $C(OCH_3)CH=CPh_2[PF_6, {}^{9d}]$ and $(\eta^6-C_6H_6)(CO)_2Cr=C(OEt)-C(OEt)$ Ph¹⁵) a horizontal orientation was found. These differences have been interpreted on the basis of both electronic (maximum attractive π overlap and minimizing orbital energies) and steric influences.

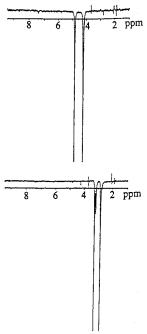

For the methoxyalkylcarbenes described here, the dihedral angles vary from 37.9 to 59.6°, indicating interplay of electronic and steric influences in the solid state. We have attempted no molecular orbital calculations to discern the complete nature of the electronic influences on the solid-state structures. We have determined the rotational barriers for this series of complexes to gain knowledge of the degree of Ru-C double vs single bond character, i.e. canonical form I vs forms II and III. ¹H NOE experiments showed all six complexes to be dynamic at room temperature. Variable-temperature ¹H, ³¹P{¹H}, and ¹³C{¹H} NMR spectra were recorded for acetone- d_6 solutions of each of the complexes (3a-c) and 4a-c) between +50 and -90 °C. The

^{(10) (}a) Schubert, U. In Transition Metal Carbene Complexes, Verlag Chemie: Weinheim, Germany, 1983; p 113. (b) Bianchini, C.; Masi, D.; Romerosa, A.; Zanobini, F.; Peruzzini, M. *Organometallics* **1999**, *18*, 2376. (c) Stockman, K. E.; Sabat, M.; Finn, M. G.; Grimes, R. N. *J.* Am. Chem. Soc. 1992, 114, 8733. (d) Consiglio, G.; Morandini, F.; Ciani,

^{(12) (}a) Schilling, B. E. R.; Hoffmann, R.; Lichtenberger, D. L. J. Am. Chem. Soc. **1979**, 101, 585. (b) Kostić, N. M.; Fenske, R. F. Organometallics **1982**, 1, 974. (c) Kostić, N. M.; Fenske, R. F. J. Am. Chem. Soc. 1982, 104, 3879. (d) Hofmann, P. In Transition Metal

Carbene Complexes, Verlag Chemie: Weinheim, Germany, 1983; p 73. (13) (a) Brookhart, M.; Tucker, J. R.; Flood, T. C.; Jensen, J. J. Am. Chem. Soc. 1980, 102, 1203. (b) Studabaker, W. B.; Brookhart, M. J. Organomet. Chem. 1986, 310, C39. (c) Kegley, S. E.; Brookhart, M.; Husk, G. R. Organometallics 1982, 1, 760. (d) Brumaghim, J. L.; Girolami, G. S. Chem. Commun. 1999, 953. (e) Guerchais, V.; Lapinte,


^{(14) (}a) Consiglio, G.; Morandini, F. *Inorg. Chim. Acta* **1987**, *127*, 79. (b) Urtel, K.; Frick, A.; Huttner, G.; Zsolnai, L.; Kircher, P.; Rutsch, P.; Kaifer, E.; Jacobi, A. *Eur. J. Inorg. Chem.* **2000**, 33. (15) Schubert, U. *J. Organomet. Chem.* **1980**, *185*, 373.


Figure 3. Variable-temperature 1H NMR spectra of $[(\eta^6-C_6Me_6)Cl(DPVP)Ru=C(OCH_3)CH_3]PF_6$ (**3a**) from +30 °C to -80 °C in acetone- d_6 , clearly showing splitting of the CH₃, OCH₃, and $\eta^6-C_6Me_6$ resonances with decreasing temperature. The resonances marked with an asterisk (*) are due to solvents.

PMe $_3$ complexes **3b** and **4b** showed very little change (and no splitting of resonances) upon lowering the temperature in their 1H and $^{31}P\{^1H\}$ NMR spectra; we conclude that the carbene ligand is freely rotating about the Ru–C bond at all temperatures above -90 °C. Electronically, this indicates a very low or negligible barrier to rotation and a large contribution from canonical form **II** and/or **III**. Sterically, this result could be anticipated because of the relatively small size of the PMe $_3$ ligand.

Complexes **3a**,**c** and **4a**,**c** show a very interesting phenomenon. The ¹H VT NMR spectral data for complex 3a are shown in Figure 3; the corresponding Eyring plot is given in Figure 4. The Eyring plot clearly shows the presence of two separate, though probably interrelated, dynamic processes. The activation enthalpy and entropy for the dominant process at lower temperature are 2.3 kcal/mol and -35.4 cal/(mol K), respectively, which gives $\Delta G^{\dagger}_{298} = 12.8$ kcal/mol. The corresponding values for the process dominant at higher temperature are ΔH^{\dagger} = 9.4 kcal/mol, $\Delta S^{\ddagger} = -4.9 \text{ cal/(mol K)}$, and $\Delta G^{\ddagger}_{298} = 10.8$ kcal/mol. The coalescence temperatures observed for these processes are -30 °C (seen in the OCH₃, CH₃, and $\eta^6\text{-C}_6\text{Me}_6$ resonances) and -35 °C (seen in the vinyl proton resonances of DPVP), which give ΔG^{\dagger}_{C} values of approximately 11.0 and 10.8 kcal/mol, respectively. Proton NOE experiments at −80 °C show spin-saturation transfer rather than NOE enhancements upon irradiation of any resonance in the spectrum (see Figure 5), indicating that the molecule continues to be dynamic even at low temperatures. One would not expect to see large-magnitude negative NOE values for compounds

Figure 4. Eyring plot of the temperature dependence of the two-site exchange processes seen to occur in the OCH₃ resonance of $[(\eta^6\text{-C}_6\text{Me}_6)\text{Cl}(\text{DPVP})\text{Ru}=\text{C}(\text{OCH}_3)\text{CH}_3]\text{PF}_6$ (**3a**). Temperatures -30 °C and above were treated by analysis of line widths; temperatures -40 °C and below were treated by analysis of the chemical shift differences.

Figure 5. Low-temperature (-80 °C) 1 H NOE experiments on $[(\eta^{6}\text{-}C_{6}\text{Me}_{6})\text{Cl}(\text{DPVP})\text{Ru} = \text{C}(\text{OCH}_{3})\text{CH}_{3}]\text{PF}_{6}$ (**3a**). Irradiation of one of the OCH $_{3}$ resonances shows complete spin-saturation transfer to the other OCH $_{3}$ resonance (top). Irradiation of one of the CH $_{3}$ resonances shows complete spin-saturation transfer to the other CH $_{3}$ resonance (bottom).

this small, and in any case proton—proton NOE's cannot exceed 50%. Thus, Figure 5 clearly demonstrates spin saturation transfer due to chemical exchange rather than NOE effects. We have (somewhat arbitrarily) assigned the higher energy process to hindered rotation about the Ru—P bond. Similarly, we have assigned the lower energy process to hindered rotation about the Ru—C bond. This is suggestive of a fair contribution from canonical forms **H** and/or **IH** and a steric contribution from the bulk of the DPVP ligand.

The $^{31}P\{^{1}H\}$ VT NMR spectral data for **4a** have been analyzed by an Eyring plot and show only one dynamic process with activation parameters of $\Delta H^{\ddagger} = 5.5$ kcal/mol, $\Delta S^{\ddagger} = -20.0$ cal/(mol K), and $\Delta G^{\ddagger}_{298} = 11.5$ kcal/

Table 5. Rotational Barriers (kcal/mol) and Dihedral Angles (deg) for [(η⁶-C₆Me₆)Cl(PR₃)Ru=C(OCH₃)R']PF₆

	PR_3	R'	Ru=C (ΔG^{\dagger})	Ru-P (ΔG^{\dagger})	dihedral angle
3a	DPVP	CH_3	$\Delta G^{\ddagger}_{298} = 10.8$	$\Delta G^{\dagger}_{298} = 12.8$	79.9
4a	DPVP	CH_2Ph	free rotation	$\Delta G^{\dagger}_{298} = 11.5$	37.9
3b	PMe_3	CH_3	free rotation	free rotation	78.1
4b	PMe_3	CH_2Ph	free rotation	free rotation	59.6
3c	PPh_3	CH_3	free rotation	$\Delta \textit{G}^{\ddagger}_{273} pprox 12.5$	92.3
4c	PPh_3	CH ₂ Ph	free rotation	$\Delta G^{t}_{248} pprox 11$	57.7

mol. We attribute this dynamic behavior to hindered rotation about the $Ru\!-\!P$ bond.

The PPh₃ complexes **3c** and **4c** also show only one dynamic process between +25 and -90 °C, and the ¹³C-¹H} VT NMR very clearly demonstrates that process to be hindered rotation about the Ru-P bond. Lowtemperature ¹³C{¹H} NMR spectra of both compounds show three sets of resonances each for the *ipso*, *ortho*, meta, and para carbons of the phenyl rings. In the spectra of complex 3c at -60 °C, the P-C coupling constants are resolved (see the Experimental Section). The ¹H variable-temperature NMR spectra also show this phenomenon in the 7-8 ppm region for the PPh₃ protons of both **3c** and **4c**. From the ¹H NMR spectra, the coalescence temperatures are estimated to be 0 °C for **3c** and -25 °C for **4c**, giving $\Delta G^{\dagger}_{273} \cong 12.5$ kcal/mol for **3c** and $\Delta G^{\dagger}_{248} \cong 11$ kcal/mol for **4c**. No splitting of the η^6 -C₆Me₆, OCH₃, CH₃, or CH₂ resonances was seen above -90 °C. This observation can be explained by taking into account steric contributions (PPh₃ was the largest phosphine studied) and electronic contributions (forms II and/or III). Data for the six carbene complexes are collected in Table 5.

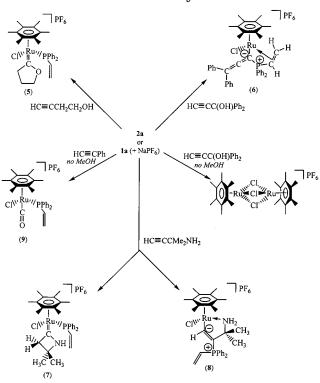
Both reviewers have suggested that the dynamic behavior of 3a could be a result of hindered rotation about the C-O bond due to the dominance of form III, as previously reported for [(η^5 -C₅Me₅)Ru(CO)₂(CHOCH₃)]-PF₆.^{13e} We believe that this is not the case for the following reasons. For 3a the dynamic behavior is clearly a reversible process, whereas that for $[(\eta^5-C_5-$ Me₅)Ru(CO)₂(CHOCH₃)]PF₆ is irreversible. No NOE is observed at -80 °C between the CH3 and OCH3 resonances. Such NOE would be expected for hindered CO rotation. Further, the η^6 -C₆Me₆ CH₃ resonance splits into two resonances at low temperature. For a freely rotating η^6 -C₆Me₆ moiety parallel to the plane of the two isomers of a methoxymethylcarbene group (which should be the more stable geometry), only one η^6 -C₆Me₆ CH₃ resonance should be observed.

Comparison of Reaction Routes: $1a-c + NaPF_6$ → Methoxyalkylcarbenes (Eq 1) or 2a-c → Methoxyalkylcarbenes (Eq 2). Complex 4a was prepared in 51% yield directly from **1a** with NaPF₆ and HC≡CPh in a MeOH/CH2Cl2 mixture. As we predicted (vide supra), complexes 4a and 3b were formed in higher yields by starting with the cationic complexes 2a,b than by starting with the neutral complexes 1a,b and NaPF₆: $2a \rightarrow 4a \ (78\%) \text{ vs } 1a \rightarrow 4a \ (51\%) \text{ and } 2b \rightarrow 3b$ (100%) vs $\mathbf{1b} \rightarrow \mathbf{3b}$ (61%). 9a However, this was not the case for the preparations of 3c and 4b,c. (The preparation of 3a was not attempted from 1a after it was produced in 90% yield starting with 2a.) The reactions of 2a-c appear to be slower than those of 1a-c and $NaPF_6$, as determined by $^{31}P\{^1H\}$ NMR spectroscopic monitoring of reaction progress. For example, the

formation of **4a** from **1a** is nearly complete in \sim 1.5 h but takes 24 h from 2a (see Experimental Section), and **4b,c** are reportedly formed in 10–30 min from **1b,c**^{9a} but take more than 1 day from 2b,c. As mentioned earlier, the acetonitrile complexes are not indefinitely stable in solution, and we have found that impure solutions of all of the carbene complexes slowly decompose in solution (i.e., upon crystallization attempts), 16 the PPh₃ complexes being especially unstable. From the reactions with 2a-c we saw evidence (1H and 13C{1H} NMR and IR) for the formation of Ru-carbonyl species. (We also isolated a small amount of $[(\eta^6-C_6Me_6)Cl(PPh_3)-$ Ru(CO)|PF₆ as red crystals from a prolonged reaction of 1c with HC≡CPh and NaPF₆.) These observations indicate that beginning with complexes 2a-c is not the most favorable route to choose.

The carbonyl species observed most probably resulted from attack on an intermediate vinylidene species by adventitious water in the reaction solvents (MeOH and CH₂Cl₂) by a previously described mechanism. The first step is coordination of the alkyne to the site on the metal vacated by CH₃CN. This probably occurs initially in an η^2 -alkyne fashion with facile conversion to the η^1 vinylidene species, as postulated¹⁷ for several metal complexes. The α-carbon of late-transition-metal vinylidenes is readily attacked by nucleophiles,9,11a including water, 18 to give disubstituted carbenes. Hydroxycarbenes can undergo β -hydride elimination followed by reductive elimination of an organic molecule to give the carbonyl species. Each of these types of species have been isolated from similar reactions by many groups.^{9,11a,17-19}

The $^{13}\text{C}\{^1\text{H}\}$ NMR spectra for $[(\eta^6\text{-}C_6\text{Me}_6)\text{ClRu}(PR_3)\text{-}(CO)]PF_6$ show the carbonyl carbon resonances as doublets at $\sim\!195$ ppm with two-bond P–C coupling constants of $\sim\!25$ Hz. Infrared spectroscopy shows $\nu(CO)$ stretching vibrations at $\sim\!2013$ cm $^{-1}$. All other spectral data are as expected (see Experimental Section).


Synthesis and Characterization of the Oxacyclic Carbene [$(\eta^6\text{-}C_6\text{Me}_6)\text{Cl(DPVP)}$ Ru= $\overline{\text{C(CH}_2\text{CH}_2\text{CH}_2)}$ O]-

(19) Bianchini, C.; Casares, J. A.; Peruzzini, M.; Romerosa, A.; Zanobini, F. *J. Am. Chem. Soc.* **1996**, *118*, 4585.

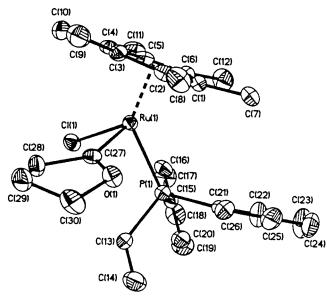
⁽¹⁶⁾ Dixneuf and co-workers have stated that complexes 4b,c are "stable methoxybenzylcarbene-ruthenium complexes", but they do not specify whether as solids or in solution (see ref 9a, p 2769).

⁽¹⁷⁾ Bruce, M. I. *Chem. Rev.* **1991**, *91*, 197.
(18) (a) Davies, S. G.; McNally, J. P.; Smallridge, A. J. *Adv. Organomet. Chem.* **1990**, *30*, 1. (b) Gamasa, M. P.; Gimeno, J.; Lastra, E.; Lanfranchi, M.; Tiripicchio, A. *J. Organomet. Chem.* **1992**, *430*, C39. (c) Bruce, M. I.; Swincer, A. G. *Aust. J. Chem.* **1980**, *33*, 1471.

Scheme 3. Novel Reactions of 1a and 2a with **Terminal Alkynes**

 $\mathbf{PF_6}$ (5). A $\mathrm{CH_2Cl_2}$ solution of 1a was treated with 1 equiv of NaPF₆ and 5 equiv of 3-butyn-1-ol and stirred overnight. The solution was filtered to remove NaCl, and the volume of the filtrate was reduced in vacuo. Addition

of Et₂O produced $[(\eta^6-C_6Me_6)Cl(DPVP)Ru=\dot{C}(CH_2)_3\dot{O}]$ PF₆ (5) as an air-stable yellow powder in 71% yield after recrystallization (see Scheme 3).


The cyclic oxycarbene is evidenced by the resonances at 313.25 (${}^{2}J(PC) = 14.0 \text{ Hz}$), 88.58, 21.13, and 55.78 ppm for the carbene and CH₂ carbons, respectively, in the ¹³C{¹H} NMR spectrum. Similar cyclic oxycarbenes show these resonances at 317.38 (${}^{2}J(PC) = 22.0 \text{ Hz}$), 87.98, 21.54, and 55.96 ppm for $[(\eta^6-C_6Me_6)Cl(PMe_3)-$

 $Ru=C(CH_2)_3OPF_6^{4a}$ and 299.50 ($^2J(PC)$ not resolved), 80.86, 23.41, and 55.81 ppm for $[(\eta^5-C_5Me_5)(DPVP)_2Ru=$

 $C(CH_2)_3O[PF_6.^2$ The $-(CH_2)_3-$ protons resonate as multiplets between 5.2 and 1.5 ppm, similar to what is reported for other cyclic oxycarbenes.^{2,9a,20} The characteristic multiplets for the vinyl protons in 5 are seen at 6.63, 6.11, and 5.41 ppm.

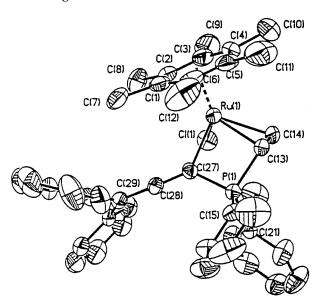
Complex 5 was characterized by X-ray crystallography, and a view of the cation is shown in Figure 6. Selected bond distances and angles are listed in Table 6. Analysis shows a distorted-octahedral structure about Ru with the η^6 -C₆Me₆ ligand occupying three facial coordination sites. The three remaining ligands (Cl, DPVP, and carbene) complete the coordination sphere. The Ru=C(carbene) bond length of 1.958(7) Å is similar to the Ru=C bond length found for the Ru=C(carbene)

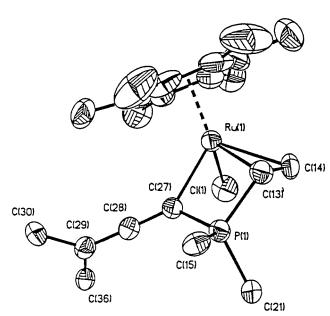
of $[(\eta^5-C_5Me_5)(DPVP)_2Ru=\dot{C}(CH_2)_3\dot{O}]^+$ (1.942 Å).² The

Figure 6. Structural drawing of the cation of $[(\eta^6-C_6Me_6)-$ Cl(DPVP)Ru=C(CH₂)₃O]PF₆ (5) showing the atom-numbering scheme (30% probability ellipsoids). Hydrogen atoms have been omitted for clarity.

Table 6. Selected Bond Distances (Å) and Angles (deg) for $[(\eta^6-C_6Me_6)Cl(DPVP)Ru=C(CH_2)_3O]PF_6$ (5)

	Dista	ances	
Ru(1)-C(27)	1.958(7	C(27)-C(28)	1.495(9)
Ru(1)-P(1)	2.339(2	C(27)-O(1)	1.308(8)
Ru(1)-Cl(1)	2.396(2	C(28)-C(29)	1.512(9)
Ru(1)-C(arene) (av)	2.297(8	C(29)-C(30)	1.486(11)
C(13)-C(14)	1.258(1	0) C(30)-O(1)	1.466(8)
	Δne	gles	
C(27)-Ru(1)-Cl(1)	88.1(2)	Ru(1)-C(27)-O(1)	122.3(5)
. , . , . ,	` '		` '
C(27)-Ru(1)-P(1)	87.1(2)	Ru(1)-C(27)-C(28)	129.8(5)
Cl(1)-Ru(1)-P(1)	85 63(7)	C(28)-C(27)-O(1)	107 9(6)


five-membered ring showed the typical puckeredenvelope conformation with deviations from planarity of +0.0609 (C(27)), -0.1445 (C(28)), +0.1731 (C(29)), -0.1400 (C(30)), and $+0.0505^{\circ}$ (O(1)).


Unexpected Synthesis of a Novel Phosphorus Ylide. In an attempt to prepare a vinylcarbene complex similar to $[(\eta^6-C_6Me_6)RuCl(PMe_3)=C(OCH_3)CH=CRR']$ -PF₆, 9d complex 1a was reacted with 1 equiv of NaPF₆ and 5 equiv of 1,1-diphenylprop-3-yn-1-ol, HC≡CC(OH)-Ph₂, in 1:1 MeOH/CH₂Cl₂. The solution quickly turned from red-orange to dark red to nearly black. After 24 h of stirring at room temperature, the solvent volume of the dark red solution was reduced in vacuo. Addition of Et₂O caused the precipitation of an orange powder that was identified by ¹H and ³¹P{ ¹H} NMR spectroscopy as the starting material (1a). After several such precipitations of starting material, the novel ylide complex $[(\eta^6$

 C_6Me_6)ClRuC(=C=CPh₂)PPh₂CH=CH₂]PF₆ (**6**) was obtained as impure oily red crystals in 16% yield. Alternatively, the reaction of complex **2a** and HC≡CC-(OH)Ph₂ in MeOH/CH₂Cl₂ produced complex 6 in 24% yield, also as impure oily red crystals. The structure of **6** was established by X-ray crystallography.

Two views of the cation of **6** are shown in Figure 7: the first is of the entire cation; the phenyl groups, except for the ipso carbons, have been removed for clarity in the second view. Table 7 lists selected bond distances

^{(20) (}a) Bruce, M. I.; Swincer, A. G.; Thomson, B. J.; Wallis, R. C. Aust. J. Chem. 1980, 33, 2605. (b) Gamasa, M. P.; Gimeno, J.; Gonzalez-Cueva, M.; Lastra, E. J. Chem. Soc., Dalton Trans. 1996, 2547.

Figure 7. Structural drawings of the cation of $[(\eta^6-C_6Me_6)-$ ClRuC(=C=CPh₂)PPh₂CH=CH₂]PF₆ (6) showing the full atom-numbering scheme (top, 30% probability ellipsoids) and the unique central geometry of the ylide (bottom; phenyl ring carbons, except C_i, have been omitted for clarity; 40% probability ellipsoids). Hydrogen atoms have been omitted for clarity in both views.

and angles. The Ru atom is in a distorted-octahedral geometry, with the η^6 -C₆Me₆ ligand occupying one face and the Cl, allenyl, and vinyl ligands occupying the three sites of the opposite face. Of particular significance are the Ru-P separation, the vinyl C=C bond length, the Ru–C(27) bond length, and the allenyl geometry. The Ru-P separation of 2.902(2) Å is quite a bit longer than the sum of the atomic radii of Ru and P (1.32 and 1.10 Å, respectively), indicating the absence of a bonding interaction between Ru and P. The C(13)-C(14) bond is slightly elongated (1.395(11) vs 1.258–1.289 Å for the uncoordinated vinyl of DPVP) due to σ -donation to Ru from the C=C π molecular orbital and π -back-donation of electron density from ruthenium into the C=C π^* -

Table 7. Selected Bond Distances (Å) and Angles (deg) for

$[(\eta^6-C_6Me_6)ClRuC$	C(=C=CP	Ph ₂)PPh ₂ CH=CH ₂	2]PF ₆ (6)
	Dista	nces	
Ru(1)-C(27)	2.122(7)	C(13)-C(14)	1.395(11)
Ru(1)-P(1)	2.902(2)	C(27)-C(28)	1.289(9)
Ru(1)-Cl(1)	2.396(2)	C(28)-C(29)	1.319(9)
Ru(1)-C(arene) (av)	2.270(9)	C(27)-P(1)	1.758(7)
Ru(1)-C(13)	2.193(7)	P(1)-C(13)	1.782(7)
Ru(1)-C(14)	2.185(7))	
	Ang	les	
C(27)-Ru(1)-Cl(1)	83.9(2)	Ru(1)-C(27)-P(1)	96.4(3)
C(27)-Ru(1)-C(13)	74.6(3)	Ru(1)-C(27)-C(28)	134.1(6)
C(27)-Ru(1)-C(14)	97.2(3)	C(28)-C(27)-P(1)	129.5(6)
C(13)-Ru(1)-C(14)	37.2(3)	C(27)-C(28)-C(29)	178.5(7)
Cl(1)-Ru(1)-C(13)	108.1(2)	C(28)-C(29)-C(30)	119.2(7)
Cl(1)-Ru(1)-C(14)	81.8(2)	C(28)-C(29)-C(36)	119.3(7)
C(27)-P(1)-C(13)	95.3(3)	C(30)-C(29)-C(36)	121.4(6)
C(27)-P(1)-C(15)	115.1(3)	P(1)-C(13)-C(14)	119.7(6)
C(27)-P(1)-C(21)	113.1(3)	P(1)-C(13)-Ru(1)	93.2(3)
C(15)-P(1)-C(21)	108.1(3)	C(14)-C(13)-Ru(1)	71.1(4)

113.6(3)

C(13)-P(1)-C(21)

antibonding molecular orbital. Similar C=C bond elongation upon metal coordination is seen for the Cp and Cp^* complexes $[(\eta^5-C_5H_5)Ru(\eta^1-DPVP)(\eta^3-DPVP)]PF_6^1$ and $[(\eta^5-C_5Me_5)Ru(\eta^1-DPVP)(\eta^3-DPVP)]PF_6$, in which one of the vinyl groups is coordinated to ruthenium. The C=C bond distances are $1.399(5)^1$ and 1.51(3) Å² for the η^3 -DPVP ligands and 1.306(5)¹ and 1.24(2) Å² for the η^{1} -DPVP ligands. The Ru–C(27) bond distance of 2.122(7) Å is indicative of a $Ru-C(sp^2)$ single bond, rather than a Ru=C(sp2) double bond, and is similar to the Ru-C(sp²) distance reported for (η⁵-C₅H₅)(CO)(PPrⁱ₃)RuC-(PPh₂)=C=CPh₂ (2.139(5) Å). 21a The C(27)-C(28) and C(28)-C(29) bond distances (1.289(9) and 1.319(9) Å, respectively) and the C(27)-C(28)-C(29) angle (178.5(7)°) support an allenyl formulation. They are similar to the metrical parameters reported by Esteruelas and coworkers^{21a} for $(\eta^5-C_5H_5)(CO)(PPr_3)RuC(PPh_2)=C=CPh_2$. Finally, as can be seen from Figure 7, the phosphorus atom has tetrahedral geometry, with the average angle about P being 109°. The unusual phosphorus ylide in this complex is stabilized in its dipolar form by coordination to ruthenium.

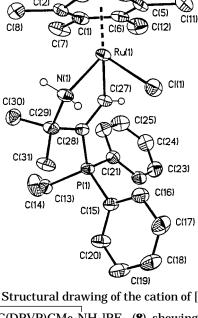
In the ¹H NMR spectrum, the resonances for the protons of the vinyl group have been shifted significantly upfield (4.06 to 3.69 ppm) from those of uncoordinated vinyl protons (typically 7.0 to 5.3 ppm for cationic arene-Ru complexes³). This confirms the decreases in C=C bond order and in deshielding upon η^2 -coordination to ruthenium. Similarly, the vinyl carbon resonances are seen at 28.35 ppm (${}^{1}J(PC) = 88.1 \text{ Hz}$) and 66.5 ppm vs the normal 130–135 ppm range. The carbons of the allenyl chain resonate at 89.92, 204.94, and 111.70 ppm (C(27), C(28), and C(29) in Figure 7). For similar ylide (or allenyl-phosphonio) complexes,²¹ the same carbon resonances are found at 71-84, 210-217, and 101-104 ppm, respectively. The IR spectrum contains the characteristic C=C=C stretch at 1976 cm⁻¹ and CH=CH₂ stretch at 1448 cm⁻¹.

Complex 6 most probably resulted from intramolecular attack of the coordinated DPVP phosphorus on C_{α}

^{(21) (}a) Esteruelas, M. A.; Gómez, A. V.; López, A. M.; Modrego, J.; Oñate, E. *Organometallics* **1998**, *17*, 5434. (b) Cadierno, V.; Gamasa, M. P.; Gimeno, J.; López-González, M. C.; Borge, J.; García-Granda, S. Organometallics 1997, 16, 4453.

C(9)

C(3)


Scheme 4. Proposed Mechanism for Formation of the Novel Ylide Complex 6

a Reference 9a.

of the allenylidene intermediate postulated in reactions of $(\eta^6-C_6Me_6)RuCl_2(PR_3)$ complexes with HC=CC(OH)-Ph₂,9d rather than the expected intermolecular attack by MeOH (Scheme 4). This attack is facilitated by the ability of the vinyl group to coordinate to Ru in an η^2 fashion. This coordination behavior of the vinyl group in DPVP was previously demonstrated by Nelson and co-workers in the bisphosphine complexes $[(\eta^5-C_5H_5) Ru(\eta^{1}-DPVP)(\eta^{3}-DPVP)]PF_{6}^{1}$ and $[(\eta^{5}-C_{5}Me_{5})-Ru(\eta^{1}-C_{5}Me_{5})]$ DPVP)(η^3 -DPVP)]PF₆² already discussed.

Reaction with an Aminoalkyne, 1,1-Dimethyl-2**propargylamine.** We next attempted a reaction for which we have seen no direct precedent-that of 1a or 2a with an aminoalkyne (rather than an hydroxyalkyne). We anticipated the formation of a methoxy-(aminoethyl)carbene ($\{Ru\}=C(OCH_3)CH_2CMe_2NH_2$) or, with excess aminoalkyne behaving as a base, deprotonation^{10b,22} of a vinylidene to form an (aminoalkynyl)ruthenium complex ({Ru}−C≡CCMe₂NH₂). Instead, we have isolated two other complexes. Reaction of 2a with excess dimethylpropargylamine in MeOH/CH₂Cl₂ at room temperature for 30.5 h gave less than 10% isolated yield of the cyclic aminocarbene $[(\eta^6-C_6Me_6)Cl(DPVP)-$

Ru=CCH₂CMe₂NH)]PF₆ (7), whose identity was confirmed by an X-ray crystal structure determination that gave a poor data set but sufficient information to establish bond connectivities (refer to Scheme 3 for a structural drawing). Reaction of **1a** and NaPF₆ with 1

Figure 8. Structural drawing of the cation of $[(\eta^6-C_6Me_6)-$

ClRuCH=C(DPVP)CMe2NH2]PF6 (8) showing the atomnumbering scheme (30% probability ellipsoids). Hydrogen atoms on C(27) and N(1) are in calculated positions and have an arbitrary radius of 1 Å. All other hydrogen atoms have been omitted for clarity.

equiv of aminoalkyne in refluxing CH2Cl2 or with 4 equiv of aminoalkyne in refluxing dichloroethane gave starting material, complex 7 (<10% yield), and the

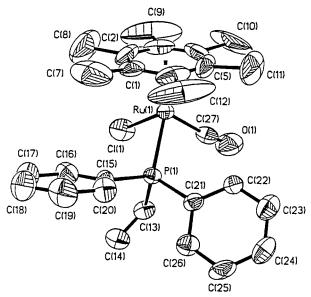
ruthenacycle $[(\eta^6-C_6Me_6)ClRuCH=C(DPVP)CMe_2NH_2]$ -PF₆ (8; <10% yield), also characterized initially by an X-ray structural determination (Figure 8). Complexes 7 and 8 have not-too-different structures (e.g., both are cyclic complexes and both have a dangling rather than a chelating vinylphosphine). For complex 7, the geminal CH₂ protons next to the carbene carbon are found as a singlet at 1.25 ppm, and the gem-dimethyl protons are found as a singlet at 1.76 ppm in the ¹H NMR spectrum. The observance of singlets rather than separate, coupled resonances is indicative of nitrogen inversion within the ring that causes the diastereotopic protons to be chemical shift equivalent. Also, there is only one resonance in the ¹³C(1H) NMR spectrum for the gem-dimethyl carbon atoms (15.11 ppm). The singlet resonance at 1.42 ppm in the ¹H NMR spectrum was assigned to the NH proton on the basis of integration and the fact that it is not present in the HETCOR spectrum.

For complex 8, the CH proton attached to Ru (Ru-CH=C) gives rise to a downfield chemical shift (9.73) ppm) that was assigned by its integration and P-H coupling constant (24.0 Hz). Similar to complex 7, the gem-dimethyl protons are chemical shift equivalent, and they give rise to a singlet at 1.33 ppm. Their attached carbon atoms are also chemical shift equivalent (30.95 ppm). The diastereotopic NH₂ protons are found at 4.84 and 4.19 ppm with an H-H coupling constant of 10.5 Hz, indicating a strong Ru-N bond in solution as well as in the solid state. One of these protons is also longrange-coupled to phosphorus (${}^{4}J(PH) = 4.5 Hz$). The vinyl protons for both complexes resonate in the expected downfield region (7.3-6.2 ppm). There is a

Table 8. Selected Bond Distances (Å) and Angles (deg) for

$[(\eta^6-C_6Me_6)ClRuCH=C(DPVP)CMe_2NH_2]PF_6 (8)$

	Distar	nces	
Ru(1)-C(27)	2.020(7)	C(28)-C(29)	1.521(10)
Ru(1)-Cl(1)	2.402(2)	C(29)-N(1)	1.515(9)
Ru(1)-C(arene) (av)	2.220(8)	N(1)-Ru(1)	2.133(6)
C(27)-C(28)	1.337(10	C(28)-P(1)	1.789(7)
	Angl	es	
C(27)-Ru(1)-Cl(1)	84.9(2)	C(27)-C(28)-C(29)	119.2(6)
C(27)-Ru(1)-N(1)	76.5(3)	P(1)-C(28)-C(29)	120.8(5)
N(1)-Ru(1)-Cl(1)	82.59(19)	C(28)-C(29)-N(1)	103.3(6)
C(29)-N(1)-Ru(1)	116.3(4)	C(27)-C(28)-P(1)	120.0(6)
Ru(1)-C(27)-C(28)	119.9(5)		


Scheme 5. Proposed Mechanism for Formation of the Ruthenacycle 8

difference in the ³¹P{¹H} chemical shifts of **7** and **8** that initially helped us determine that we indeed had produced two different complexes, a fact that was confirmed by the X-ray crystallographic determinations.

A view of the structure of the cation of complex 8 is shown in Figure 8, with selected bond lengths and angles collected in Table 8. Of note is the Ru-C(27) bond distance (2.02(7) Å), which is on the high end of Ru=C(sp²) bond lengths and on the low end of Ru-C(sp²) bond lengths. There is a double bond between C(27) and C(28), as evidenced by the bond distance of 1.337(10) Å and the 360° sum of angles about C(28) $(119.2(6)^{\circ} + 120.8(5)^{\circ} + 120.0(6)^{\circ})$. The rest of the metallacyclic ring is comprised of single bonds, i.e., C(28)-C(29) (1.521(10) Å), C(29)-N (1.515(9) Å), and N-Ru (2.133(6) Å). The five-membered ring shows the typical puckered-envelope conformation with deviations from planarity of -0.0915 (Ru), +0.1513 (N), +0.0418 (C(27)), +0.0483 (C(28)), and -0.1498° (C(29)). The DPVP phosphorus is in a tetrahedral environment, with the average bond angle about phosphorus being 109.5°, and all P-C bonds show no P=C double-bond character, making this a tetravalent phosphonium center. The charges are balanced with Ru(II), neutral η^6 -C₆Me₆, anionic Cl⁻, anionic alkyl (C⁻), neutral :N, cationic P⁺, and anionic PF_6^- as counterion.

A possible mechanism for the formation of **8** is shown in Scheme 5. η^2 -Alkyne coordination is followed by a shift in electron density on the way to an η^1 -vinylidene complex. However, vinylidene formation is intercepted by P attack on the (probably transient) carbocation, followed by N coordination to the vacant coordination site on Ru.

Attempt To Synthesize an Allenylidene. An attempt to prepare either an allenylidene or the ylide $\mathbf{6}$ from the reaction of $\mathbf{2a}$ and $HC \equiv CC(OH)Ph_2$ in the absence of MeOH gave neither. The reaction of $\mathbf{2a}$ with

Figure 9. Structural drawing of the cation of $[(\eta^6-C_6Me_6)-Cl(DPVP)Ru(CO)]PF_6$ (9) showing the atom-numbering scheme (30% probability ellipsoids). Hydrogen atoms have been omitted for clarity. Selected bond distances (Å) and angles (deg): Ru(1)-C(27), 1.933(10); Ru(1)-P(1), 2.330(2); Ru(1)-Cl(1), 2.382(2); Ru(1)-C(arene, average), 2.291(11); C(27)-O(1), 1.005(10); C(27)-Ru(1)-P(1), 86.9(3); C(27)-Ru(1)-Cl(1), 90.4(3); Cl(1)-Ru(1)-P(1), 85.45(9); Ru(1)-C(27)-O(1), 174.2(9).

1.5 equiv of $HC \equiv CC(OH)Ph_2$ in CH_2Cl_2 quickly produced a purple solution, characteristic of allenylidene species, 9 which was stirred for 4.5 h. After this time, the solvents were removed in vacuo, and crystallization of the red-purple oil was attempted from CH_2Cl_2/Et_2O . The mixture decomposed upon recrystallization attempts, yielding only a very small amount (<10% yield based upon Ru) of the triply bridged dimer $[(\eta^6-C_6-Me_6)Ru(\mu-Cl)_3Ru(\eta^6-C_6Me_6)]PF_6^4$ as fine red crystals. Apparently CH_3OH stabilizes the ylide complex $\bf 6$.

Attempt To Synthesize a Vinylidene. As in the previous synthesis, our attempt to prepare a vinylidene from 2a and phenylacetylene in the absence of MeOH gave an unexpected product. A solution of 2a in CH2-Cl₂ was stirred with 1 equiv of HC≡CPh for 21 days under nitrogen and gave an orange oil, crystallization of which gave the carbonyl complex $[(\eta^6-C_6Me_6)Cl-$ (DPVP)Ru(CO)]PF₆ (9) in 11% yield. Complex 9 showed a ν (C≡O) vibration at 2014 cm⁻¹ in its infrared spectrum and a doublet at 196.49 ppm (${}^{2}J(PC) = 24.9 \text{ Hz}$) in its ¹³C{¹H} NMR spectrum. All aspects of the ¹H, ¹³C-{1H}, and 31P{1H} NMR spectra are as expected. An X-ray structural determination showed the familiar distorted-octahedral coordination of Ru with no unusual interionic contacts. A view of the cation is shown in Figure 9.

Electrochemistry. Complexes **3**–**6** and **8** were also characterized by cyclic voltammetry, and their observed Ru(II)/Ru(III) redox couples are summarized in Table 9. In both series of methoxycarbene complexes ($3\mathbf{a}-\mathbf{c}$ and $4\mathbf{a}-\mathbf{c}$) the PMe₃ complexes are the easiest to oxidize, as is expected, because PMe₃ is a better σ -donor than either PPh₃ or DPVP. Dixneuf and co-workers report the Ru(II)/Ru(III) couple for **4b** at 1.15 V vs SCE, ^{9a} which translates to 0.70 V vs Ag/AgCl and corrected for Fc/Fc⁺ (Fc = ferrocene) at 0.49 V. Ad-

Table 9. Electrochemical Data for Complexes 3-6 and 8a

	$E_{1/2}(Ru(II)/Ru(III)), V$	$E_{ m p,a}-E_{ m p,c},{ m mV}$
$[(\eta^6\text{-}C_6\text{Me}_6)\text{Cl}(\text{DPVP})\text{Ru} = \text{C}(\text{OCH}_3)\text{CH}_3]\text{PF}_6 \textbf{ (3a)}$	0.91	183
$[(\eta^6-C_6Me_6)Cl(PMe_3)Ru=C(OCH_3)CH_3]PF_6$ (3b)	0.83	141
$[(\eta^6-C_6Me_6)Cl(PPh_3)Ru=C(OCH_3)CH_3]PF_6$ (3c)	0.96	232
$[(\eta^6-C_6Me_6)Cl(DPVP)Ru=C(OCH_3)CH_2Ph]PF_6$ (4a)	0.93	189
$[(\eta^6-C_6Me_6)Cl(PPh_3)Ru=C(OCH_3)CH_2Ph]PF_6$ (4c)	0.98	170
$[(\eta^6-C_6Me_6)Cl(DPVP)Ru=C(CH_2)_3O]PF_6 (5)$	0.96	134
$[(\eta^6-C_6Me_6)ClRuC(=C=CPh_2)PPh_2CH=CH_2]PF_6 (6)$	0.98^b	
$[(\eta^6\text{-}C_6\text{Me}_6)\text{ClRuCH} = \text{C(DPVP)CMe}_2\text{NH}_2]\text{PF}_6 \textbf{ (8)}$	0.43	92
$[(\eta^6-C_6Me_6)Cl(PPh_3)Ru(CO)]PF_6$	0.63^b	

^a Conditions: measured in CH₂Cl₂ solution with 0.1 M tetrabutylammonium hexafluorophosphate as supporting electrolyte; glassy carbon working electrode; platinum-wire auxiliary electrode; Ag/AgCl reference electrode; scan rate 250 mV/s; all potentials vs Fc/Fc+ ^b $E_{p,a}$ only; irreversible.

ditionally, each of these cationic carbene complexes reflects the expected decreased electron density at Ru compared to the neutral complexes 1a-c (0.47, 40.32, 8 and 0.47 V,8 respectively; vide ante). Complex 5 shows a redox couple very near the potentials of the methoxycarbene complexes and is, to the best of our knowledge, the only five-membered oxacyclic carbene complex to be electrochemically characterized. Also without reported values with which to compare are complexes 6 and 8 (irreversible oxidation at 0.98 V and $E_{1/2} = 0.43$ V, respectively). Complex 7 could not be purified enough for electrochemical measurements, and complex 9 showed no electrochemical events above the solvent current. The PPh₃ analogue of **9** showed only an oxidation wave (at 0.63 V) with no return reduction wave, again pointing to the instability of PPh₃ complexes seen throughout this research (vide ante the irreversible oxidation of 2c and the decomposition of PPh₃ complexes reported throughout this paper).8

Catalysis. Tokunaga and Wakatsuki reported the successful use of $(\eta^6-C_6H_6)RuCl_2(PR_3)$ $(PR_3 = PPh_2(C_6F_5)$ and P(3-C₆H₄SO₃Na)₃) for the anti-Markovnikov hydration of terminal alkynes.²³ By varying the PR₃ group and the amount of excess PR3 in the reaction mixture, they selectively produced the desired aldehydes in fair yields. A preliminary experiment with complex 1a, based upon their methods, has proven fruitful (eq 3).

Phenylacetylene was heated at reflux in 95% EtOH in the presence of 2.5 mol % of 1a for 17 h. GC/MS and ¹H NMR spectroscopy of the extracted organic product showed the presence of acetophenone (81.4%), hexamethylbenzene (15.7%), and an as yet unidentified substance (2.9%), but no phenylacetaldehyde. Acetophenone was isolated in 70% yield based upon phenylacetylene. The inorganic fraction has yet to be fully characterized, but it does show several infrared absorption bands in the M-CO region (1967-2073 cm⁻¹). This could indicate a mechanism similar to that proposed by Tokunaga and Wakatsuki to explain the formation of both aldehydes and ketones.²³ The presence of hexamethylbenzene in the organic product has two probable origins: loss from 1a to form the catalytically active species or loss from 1a during workup and vacuum distillation. Tokunaga and Wakatsuki monitored the loss of C₆H₆ from one of their Ru species (by ¹H NMR spectroscopy) and postulate that the active catalytic species in their experiments is of the type [RuCl₂{PPh₂- $(C_6F_5)_x$, for which they have independent data.²³ If our catalytically active species is similar, i.e. of the type [RuCl₂(DPVP)_x], the presence of free η^6 -C₆Me₆ in the product would be explained. Or, independent of the nature of the active catalytic species, if hexane washing and chromatography during workup did not fully remove all the Ru-containing material, η^6 -C₆Me₆ could have been liberated from this material along with (or after) acetophenone as a product of the heat-induced decomposition of complex 1a. Either route could also have led to the unidentified compound seen in the GC/ MS spectrum at m/z 194.

Characterization of the inorganic species produced, optimization of reaction conditions, and reactions with other alkynes are in progress.

Summary

Two new η^6 -C₆Me₆-phosphine-Ru-CH₃CN complexes (2b,c) were synthesized and characterized, and their reactions with terminal alkynes were investigated. It was found that reactions of the neutral complexes (η^6 - $C_6Me_6)RuCl_2(PR_3)$ (1) with terminal alkynes in the presence of NaPF₆ and MeOH to form methoxycarbene complexes generally proceed more rapidly, with fewer side products, than do reactions of the cationic complexes $[(\eta^6-C_6Me_6)Cl(PR_3)Ru(NCCH_3)]PF_6$ (2) with terminal alkynes in MeOH. The dynamic behavior of two series of methoxyalkylcarbene complexes (3 and 4) was investigated by NOE and VT NMR experiments, and the data are explained by invoking both steric and electronic arguments.

In all, 12 previously unreported complexes of ruthenium have been synthesized and characterized, including the novel complexes of a phosphorus ylide (6), a cyclic aminocarbene (7), and a nitrogen-containing ruthenacycle (8). $(\eta^6-C_6Me_6)RuCl_2(DPVP)$ was shown to catalytically hydrate phenylacetylene to give acetophenone with no evidence for phenylacetaldehyde production.

Experimental Section

General Comments. All reactions were carried out under a nitrogen atmosphere, and workups were performed without precaution to exclude air. The complexes (η^6 -C₆Me₆)Cl₂Ru(PR₃) $(PR_3 = diphenylvinylphosphine (DPVP) (1a), ^4 PMe_3 (1b), ^5 PPh_3$ (1c)⁶) and $[(\eta^6-C_6Me_6)Cl(DPVP)Ru(NCCH_3)]PF_6$ (2a)³ were prepared by literature methods. (Trimethylsilyl)acetylene was purchased from Lancaster, phenylacetylene, 3-butyn-1-ol, and 1,1-dimethylpropargylamine were purchased from Aldrich, and 1,1-diphenyl-3-propyn-1-ol was purchased from GFS Chemicals. Acetonitrile was distilled from CaH₂ prior to use. NMR spectra were recorded on a Varian Unity Plus-500 FT NMR spectrometer operating at 500 MHz for ¹H, 125 MHz for ¹³C, and 202 MHz for ³¹P. Proton and carbon chemical shifts were referenced to residual solvent resonances; phosphorus chemical shifts were referenced to an external 85% aqueous solution of H₃PO₄. All shifts to low field, high frequency are positive. NOE experiments were performed with the pulse sequence reported by Shaka and co-workers.²⁴ FT-IR spectra were recorded on a Perkin-Elmer Spectrum BX spectrometer in CH₂Cl₂ solution on NaCl windows or as Nujol mulls on CsI windows (abbreviations: shp = sharp, st = strong, m = medium, w = weak, br= broad). Cyclic voltammograms were recorded at 25 °C in freshly distilled CH₂Cl₂ containing 0.1 M tetrabutylammonium hexafluorophosphate using a BAS CV50-W voltammetric analyzer. A three-electrode system was used. The working electrode was glassy carbon, the auxiliary electrode was a platinum wire, and the reference electrode was Ag/AgCl (aqueous) separated from the cell by a Luggin capillary. The Fc/Fc⁺ couple occurred at 490 mV²⁵ under the same conditions. Melting points were determined on a Mel-Temp apparatus and are uncorrected. Elemental analyses were performed by Galbraith Laboratories, Knoxville, TN.

Synthesis of the Acetonitrile Complexes $[(\eta^6-C_6Me_6) Cl(PR_3)Ru(NCCH_3)]PF_6$ (2b,c). $PR_3 = PMe_3$ (2b). To a red solution of $(\eta^6\text{-C}_6\text{Me}_6)\text{Cl}_2\text{Ru}(\text{PMe}_3)$ (**1b**; 0.407 g, 0.991 mmol) in 10 mL of CH₂Cl₂ was added 50 mL of CH₃CN and a solution of NaPF₆ (0.168 g, 0.997 mmol) in 10 mL of CH₃CN. The reaction mixture became cloudy within a few minutes. The mixture was stirred for 12 h and then gravity-filtered to remove NaCl. The solvents were removed in vacuo to give 2b as a yellow powder in 86.5% yield (0.481 g); mp 195 °C. Anal. Calcd for C₁₇H₃₀ClF₆NP₂Ru: C, 36.39; H, 5.39; Cl, 6.32. Found: C, 36.20; H, 5.17; Cl, 6.38. IR (cm⁻¹; Nujol): 2293 w $\nu(C \equiv N)$, 843, 559 st $\nu(PF)$. ¹H NMR (499.84 MHz, acetone d_6): δ 2.68 (d, ${}^5J(PH) = 1.5$ Hz, 3H, CH₃CN), 2.18 (d, J(PH) =1.0 Hz, 18H, η^6 -C₆Me₆), 1.57 (d, ${}^2J(PH) = 11.0$ Hz, 9H, PMe₃). ¹³C{¹H} NMR (125.70 MHz, acetone- d_6): δ 126.99 (s, CH₃CN), 100.17 (d, J(PC) = 2.6 Hz, $\eta^6 - C_6 Me_6$), 16.21 (s, $\eta^6 - C_6 Me_6$), 14.98 (d, ${}^{1}J(PC) = 33.6 \text{ Hz}$, PMe₃), 3.83 (s, $CH_{3}CN$). ${}^{31}P\{{}^{1}H\}$ NMR (202.34 MHz, acetone- d_6): δ 4.84 (s, PMe₃), -145.00 (sept, $^{1}J(PF) = 707.8 \text{ Hz}, PF_{6}$

 $PR_3 = PPh_3$ (2c). Similarly, 2c was prepared from 1c in 27.6% yield (0.185 g), mp 180 °C dec. Anal. Calcd for C₃₂H₃₆-ClF₆NP₂Ru: C, 51.43; H, 4.86; Cl, 4.74. Found: C, 51.19; H, 5.01; Cl, 4.63. IR (cm⁻¹; Nujol): 2297 w ν (C≡N), 841 st ν (PF). ¹H NMR (499.84 MHz, acetone- d_6): δ 7.68–7.64 (m, 6H, Ph H_0), 7.59–7.51 (m, 9H, Ph H_m , Ph H_p), 2.22 (d, ${}^5J(PH) = 1.5$ Hz, 3H, CH₃CN), 1.91 (d, J(PH) = 1.0 Hz, 18H, η^6 -C₆Me₆). ¹³C- $\{^{1}H\}$ NMR (125.70 MHz, acetone- d_{6}): δ 135.54 (d, $^{2}J(PC)$ = 9.7 Hz, C_0), 132.01 (d, ${}^4J(PC) = 2.3$ Hz, C_p), 129.48 (d, ${}^3J(PC)$ = 10.2 Hz, C_m), 128.70 (s, CH_3CN), 101.64 (d, J(PC)) = 2.6 Hz, η^6 - C_6 Me₆), 15.65 (s, η^6 - C_6 Me₆), 3.67 (s, CH₃CN). ³¹P{¹H} NMR (202.33 MHz, acetone- d_6): δ 33.84 (s, PPh₃), -145.00 (sept, ${}^{1}J(PF) = 707.8 \text{ Hz}, PF_{6}$.

Synthesis of the Methoxymethylcarbene Complexes $[(\eta^6-C_6Me_6)Cl(PR_3)Ru=C(OCH_3)CH_3]PF_6$ (3a-c). To a redorange solution of the appropriate acetonitrile complex (2ac; 0.25 g, \sim 0.45 mmol) in 1:1 MeOH/CH₂Cl₂ (10 mL) was added a 2-fold excess of (trimethylsilyl)acetylene (HC≡CSiMe₃) and the mixture was stirred for 43-49 h. The solvents were removed in vacuo, and the resulting yellow to orange powders were crystallized from CH₂Cl₂/Et₂O.

 $PR_3 = DPVP$ (3a). Reaction time: 49 h. Yield: 0.23 g (90%). Mp: 188-191 °C. Anal. Calcd for C₂₉H₃₇ClF₆OP₂Ru: C, 48.78; H, 5.22; Cl, 4.96. Found: C, 48.60; H, 5.17; Cl, 4.81.

$$Ph_2P$$
 $C_\alpha = C_\beta$ H_b

¹H NMR (499.84 MHz, CD₃NO₂): δ 7.58-7.47 (m, 10H, Ph), 6.63 (ddd, ${}^{2}J(PH) = 24.4 \text{ Hz}$, ${}^{3}J(H_{a}H_{b}) = 18.3 \text{ Hz}$, ${}^{3}J(H_{a}H_{c}) =$ 12.4 Hz, 1H, H_a), 6.22 (dd, ${}^{3}J(PH) = 38.5 \text{ Hz}$, ${}^{3}J(H_{a}H_{c}) = 12.4$ Hz, 1H, H_c), 5.48 (ddd, ${}^{3}J(PH) = 19.2 \text{ Hz}$, ${}^{3}J(H_{a}H_{b}) = 18.3 \text{ Hz}$, 2 $J(H_{b}H_{c}) = 0.8$ Hz, 1H, H_b), 4.38 (s, 3H, OCH₃), 2.87 (s, 3H, CH₃), 1.99 (s, 18H, η^6 -C₆Me₆). ¹³C{¹H} NMR (125.71 MHz, CD₃-NO₂): δ 327.99 (d, ${}^{2}J(PC) = 19.9$ Hz, Ru=C), 134.22 (d, ${}^{2}J(PC)$ = 10.1 Hz, C_0 , 133.40 (d, ${}^2J(PC)$ = 9.2 Hz, C_0 , 131.25 (s, C_0), 130.98 (br s, C_{β}), 130.83 (s, C_{p}), 130.77 (d, ${}^{1}J(PC) = 51.8 \text{ Hz}$, C_{α}), 130.77 (d, ${}^{1}J(PC) = 51.8 \text{ Hz}$, C_{i}), 129.04 (d, ${}^{1}J(PC) = 48.8$ Hz, C_i), 128.49 (d, ${}^{3}J(PC) = 10.4$ Hz, C_m), 128.28 (d, ${}^{3}J(PC) =$ 10.2 Hz, C_m), 107.38 (d, J(PC) = 2.4 Hz, η^6 - C_6Me_6), 66.38 (s, OCH₃), 39.05 (s, CH₃), 14.91 (s, η^6 -C₆Me₆). ³¹P{¹H} NMR (202.35 MHz, CD₃NO₂): δ 31.31 (s, DPVP), -145.00 (sept, $^{1}J(PF) = 707.8 \text{ Hz}, PF_{6}$.

 $PR_3 = PMe_3$ (3b). Reaction time: 43 h. Yield: 0.39 g (100%). Characterization data have been reported.9a

 $PR_3 = PPh_3$ (3c). Reaction time: 4.5 days. Yield: $\leq 10\%$ after recrystallization. (There was enough formed to confirm formation of 3c by NMR spectroscopy, but it was always contaminated with [(η^6 -C₆Me₆)₂Ru₂Cl₃]PF₆,⁴ and impure solutions slowly decomposed in all solvents.) Complex 3c was also formed by reaction of 1c (0.464 g, 0.778 mmol) and NaPF₆ (0.134 g, 0.800 mmol) with HC≡CSiMe₃ (0.58 mL, 4.1 mmol) in MeOH/CH₂Cl₂ (1:1, 40 mL) for 24 h. Complex 3c was isolated as yellow crystals after filtration (to remove NaCl) and crystallization from acetone/Et₂O in 35.9% yield (0.213 g). (There was no evidence for formation of the triply chloride bridged dimer in this preparation.) Anal. Calcd for C₃₃H₃₉ClF₆-OP₂Ru: C, 51.87; H, 5.14; Cl, 4.64. Found: C, 51.69; H, 5.03; Cl, 4.52. ¹H NMR (499.84 MHz, acetone- d_6): δ 7.6–7.4 (br m, 15H, Ph), 4.18 (s, 3H, OCH₃), 2.91 (d, ${}^{4}J(PH) = 1.0$ Hz, 3H, CH₃), 1.93 (d, J(PH) = 1.0 Hz, 18H, η^6 -C₆Me₆). ¹³C{¹H} NMR (125.71 MHz, acetone- d_6): δ 331.00 (d, ${}^2J(PC) = 19.6$ Hz, Ru= C), 134.86 (br s, C_0), 131.92 (br s, C_p), 129.51 (d, $^3J(PC) = 9.2$ Hz, C_m), 108.60 (d, J(PC) = 2.4 Hz, η^6 - C_6Me_6), 67.19 (s, OCH₃), 40.87 (d, ${}^{3}J(PC) = 1.3$ Hz, CH₃), 15.89 (s, η^{6} -C₆Me₆). ${}^{31}P\{{}^{1}H\}$ NMR (202.33 MHz, acetone- d_6): δ 38.14 (s, PPh₃), -145.00 (sept, ${}^{1}J(PF) = 708.0 \text{ Hz}, PF_{6}$).

Synthesis of the Methoxybenzylcarbene Complexes $[(\eta^6-C_6Me_6)Cl(PR_3)Ru=C(OCH_3)CH_2Ph]PF_6$ (4a-c). These complexes were prepared in the same manner as complexes 3a-c using phenylacetylene, HC≡CPh, in place of (trimethylsilyl)acetylene.

 $PR_3 = DPVP$ (4a). Reaction time: 24 h. Yield: 0.18 g (78%). Complex **4a** was also prepared from **1a**, NaPF₆, and HC \equiv CPh in 51% yield as described above for **3c**. Mp: 130 °C dec. Anal. Calcd for C₃₅H₄₁ClF₆OP₂Ru: C, 53.20; H, 5.23; Cl, 4.49. Found: C, 53.04; H, 5.31; Cl, 4.57.

 1 H NMR (499.84 MHz, CDCl₃): δ 7.15–7.63 (m, 15H, Ph), 6.87 $(ddd, {}^{2}J(PH) = 23.0 \text{ Hz}, {}^{3}J(H_{a}H_{b}) = 18.0 \text{ Hz}, {}^{3}J(H_{a}H_{c}) = 12.3$

⁽²⁴⁾ Stott, K.; Stonehouse, J.; Keeler, J.; Hwang, T.-L.; Shaka, A. J. J. Am. Chem. Soc. **1995**, 117, 4199.

⁽²⁵⁾ Gagné, R. R.; Koval, C. A.; Lisensky, G. C. Inorg. Chem. 1980, 19, 2854.

Hz, 1H, H_a), 6.19 (dd, ${}^{3}J(PH) = 40.0$ Hz, ${}^{3}J(H_{a}H_{c}) = 12.3$ Hz, 1H, H_c), 5.39 (dd, ${}^{3}J(PH) = 19.5$ Hz, ${}^{3}J(H_{a}H_{b}) = 18.0$ Hz, 1H, H_b), 5.07 (d, ${}^{2}J(H_{a}H_{b}) = 12.5$ Hz, 1H, H_a), 4.50 (s, 3H, OCH₃), 3.23 (d, ${}^{2}J(H_{a}H_{b'}) = 12.5$ Hz, 1H, H_{b'}), 1.80 (s, 18H, η^{6} -C₆Me₆). 13 C{ 1 H} NMR (125.71 MHz, CDCl₃): δ 314.54 (${}^{2}J(PC) = 14.5$ Hz, Ru=C), 134.97 (d, ${}^{2}J(PC) = 10.3$ Hz, C₀ DPVP), 132.61 (d, ${}^{2}J(PC) = 8.8$ Hz, C₀ DPVP), 132.14 (d, ${}^{4}J(PC) = 2.3$ Hz, C_p DPVP), 131.56 (C_i Ph), 131.34 (s, C_β), 131.09 (d, ${}^{4}J(PC) = 2.1$ Hz, C_p DPVP), 131.27 (d, ${}^{1}J(PC) = 72.9$ Hz, C_o), 130.13 (s, C_o Ph), 128.90 (s, C_m Ph), 128.86 (d, ${}^{3}J(PC) = 10.6$ Hz, C_m DPVP), 127.00 (d, ${}^{1}J(PC) = 51.3$ Hz, C_i DPVP), 109.64 (s, η^{6} -C₆Me₆), 67.91 (s, OCH₃), 54.43 (s, CH₂), 15.91 (s, η^{6} -C₆Me₆). 31 P{ 1 H} NMR (202.33 MHz, CDCl₃): δ 27.95 (s, DPVP), -144.96 (sept, ${}^{1}J(PF) = 712.6$ Hz, PF₆).

PR₃ = **PMe**₃ (**4b**). Reaction time: 93 h. Yield: ≤10%. Formation was confirmed by comparison with reported 9a NMR spectral data. The crude mixture decomposed to give green solutions of $[(\eta^6\text{-}C_6\text{Me}_6)\text{Cl}(\text{PMe}_3)\text{Ru}(\text{CO})]\text{PF}_6$ (vide infra) and free $\eta^6\text{-}C_6\text{Me}_6$ upon crystallization attempts. Full characterization data have been reported. 9a

PR₃ = **PPh**₃ (**4c**). Reaction time: 11 days. Yield: ≤10%. Formation was confirmed by comparison with reported NMR spectral data. The crude mixture decomposed to give green solutions of $[(\eta^6\text{-}C_6\text{Me}_6)\text{Cl}(\text{PPh}_3)\text{Ru}(\text{CO})]\text{PF}_6$ (vide infra) upon crystallization attempts. Full characterization data have been reported. 9a

Characterization Data for [(η^6 -C₆Me₆)Cl(PMe₃)Ru(CO)]-PF₆. ¹H NMR (499.84 MHz, acetone- d_6): δ 2.61 (s, 18H, η^6 -C₆Me₆), 2.21 (d, ²J(PH) = 12.0 Hz, 9H, PMe₃). ¹³C{¹H} NMR (125.71 MHz, acetone- d_6): δ 196.64 (d, ²J(PC) = 24.6 Hz, Ru–CO), 113.38 (d, J(PC) = 2.4 Hz, η^6 -C₆Me₆), 16.92 (s, η^6 -C₆Me₆), 16.23 (d, ¹J(PC) = 38.1 Hz, PMe₃). ³¹P{¹H} NMR (202.33 MHz, acetone- d_6): δ 18.68 (s, PMe₃), -139.38 (sept, ¹J(PF) = 708.8 Hz, PF₆).

Characterization Data for [(η^6 -C₆Me₆)**Cl(PPh₃)Ru(CO)**]**-PF₆.** Mp: 188 °C dec. IR (cm⁻¹; CH₂Cl₂): 2012 st, sh ν (CO).
¹H NMR (499.84 MHz, acetone- d_6): δ 7.66—7.55 (m, 15H, Ph), 2.12 (d, J(PH) = 1.0 Hz, 18H, η^6 -C₆Me₆). 13 C{ 1 H} NMR (125.71 MHz, acetone- d_6): δ 198.30 (d, ^{2}J (PC) = 25.5 Hz, Ru-CO), 134.92 (d, ^{2}J (PC) = 10.1 Hz, C₀), 133.06 (d, ^{4}J (PC) = 2.0 Hz, C_p), 130.10 (d, ^{3}J (PC) = 10.8 Hz, C_m), 115.33 (d, J(PC) = 2.1 Hz, η^6 -C₆Me₆), 16.58 (s, η^6 -C₆Me₆). 31 P{ 1 H} NMR (202.33 MHz, acetone- d_6): δ 40.47 (s, PPh₃), -145.00 (sept, ^{1}J (PF) = 707.6 Hz, PF₆).

Synthesis of [$(\eta^6\text{-}C_6\text{Me}_6)\text{Cl}(\text{DPVP})\text{Ru}=\dot{\text{C}}(\text{CH}_2)_3\dot{\text{O}}]\text{PF}_6$ **(5).** To a solution of 0.200 g (0.366 mmol) of **1a** and 0.069 g (0.369 mmol) of NaPF₆ in 40 mL of MeOH/CH₂Cl₂ (1:1, v/v) was added 0.14 mL (1.9 mmol) of 3-butyn-1-ol, HC=CCH₂CH₂-OH. After 24 h, the solvents were removed in vacuo. Filtration of a CH₂Cl₂ solution of the product removed NaCl, and crystallization from CH₂Cl₂/Et₂O gave 0.189 g (71%) of **5** as a yellow powder. Mp: 161–179 °C. Anal. Calcd for C₃₀H₃₇ClF₆-OP₂Ru: C, 49.63; H, 5.14; Cl, 4.88. Found: C, 49.50; H, 4.89; Cl, 4.63.

¹H NMR (499.84 MHz, CDCl₃): δ 7.42–7.54 (m, 10H, Ph), 6.63 (ddd, ²J(PH) = 22.0 Hz, ³J(H_aH_b) = 18.2 Hz, ³J(H_aH_c) = 12.2 Hz, 1H, H_a), 6.11 (dd, ³J(PH) = 39.7 Hz, ³J(H_aH_c) = 12.2 Hz, 1H, H_c), 5.41 (dd, ³J(PH) = 19.5 Hz, ³J(H_aH_b) = 18.2 Hz, 1H, H_b), 5.20 (apparent q, ²J(H_αH_α) = ³J(H_αH_β) = ³J(H_αH_β) = 8.0

Hz, 1H, H $_{\alpha}$), 4.90 (apparent q, $^2J(H_{\alpha}H_{\alpha'}) = ^3J(H_{\alpha'}H_{\beta}) =$ ${}^{3}J(H_{\alpha'}H_{\beta'}) = 8.0 \text{ Hz}, 1H, H_{\alpha'}, 3.17 \text{ (ABXYZ, } {}^{2}J(H_{\nu}H_{\nu'}) = 21.5$ Hz, ${}^{3}J(H_{\nu}H_{\beta}) = 9.0$ Hz, ${}^{4}J(PH) = 9.0$ Hz, ${}^{3}J(H_{\nu}H_{\beta}) = 5.5$ Hz, 1H, H_{ν}), 3.07 (ABXYZ, ${}^{2}J(H_{\nu}H_{\nu}) = 21.5$ Hz, ${}^{4}J(PH) = 9.0$ Hz, ${}^{3}J(H_{\gamma'}H_{\beta}) = 8.5 \text{ Hz}, {}^{3}J(H_{\gamma'}H_{\beta'}) = 7.0 \text{ Hz}, 1H, H_{\gamma'}), 2.01 \text{ (m, 1H, }$ H_{β}), 1.90 (s, 18H, η^6 -C₆Me₆), 1.53 (m, 1H, $H_{\beta'}$). ¹³C{¹H} NMR (125.71 MHz, CDCl₃): δ 313.28 (d, ${}^{2}J(PC) = 19.6$ Hz, Ru=C), 134.15 (d, ${}^{2}J(PC) = 10.2 \text{ Hz}$, C_{0}), 132.97 (d, ${}^{2}J(PC) = 9.4 \text{ Hz}$, C_o), 131.59 (d, ${}^4J(PC) = 2.5$ Hz, C_p), 131.22 (br s, C_β), 131.07 (d, ${}^{4}J(PC) = 2.3 \text{ Hz}, C_{p}$), 130.51 (d, ${}^{1}J(PC) = 47.9 \text{ Hz}, C_{\alpha}$), 130.23 (d, ${}^{1}J(PC) = 45.6 \text{ Hz}$, C_i), 128.62 (d, ${}^{3}J(PC) = 10.4 \text{ Hz}$, C_m), 128.47 (d, ${}^3J(PC) = 10.3 \text{ Hz}$, C_m), 128.00 (d, ${}^1J(PC) = 49.8$ Hz, C_i), 107.36 (d, J(PC) = 2.1 Hz, η^6 - C_6Me_6), 88.46 (s, $C_{\alpha'}$), 55.75 (s, $C_{\gamma'}$), 22.02 (s, $C_{\beta'}$), 15.72 (s, η^6 - C_6Me_6). $^{31}P\{^1H\}$ NMR (202.33 MHz, CDCl₃): δ 34.32 (s, DPVP), -145.01 (sept, ¹*J*(PF) $= 712.2 \text{ Hz}, PF_6$).

Synthesis of the Novel Ylide $[(\eta^6-C_6Me_6)ClRuC(=C=$

CPh₂)PPh₂CH[□]=CH₂]PF₆ (6). Method A. Complex 6 was prepared from 0.201 g (0.368 mmol) of 1a, 0.061 g (0.366 mmol) of NaPF₆, and 0.381 g (1.83 mmol) of 1,1-diphenylprop-3-yn-1-ol, HC≡CC(OH)Ph₂, in 40 mL of MeOH/CH₂Cl₂ (1:1, v/v). The red-orange solution quickly became dark red, nearly black. The reaction mixture was stirred for 24 h. Reduction of the solvent volume on a rotary evaporator and addition of Et₂O precipitated starting material 1a as an orange powder, which was collected by gravity filtration. Solvent removal from the filtrate gave a purple oil that afforded more 1a upon repeated crystallizations from CH₂Cl₂/Et₂O. Finally, red crystals (0.048 g, 16%) of 6 were obtained from CH₂Cl₂/Et₂O.

Method B. To a solution of 0.200 g (0.288 mmol) of **2a** in 10 mL of MeOH/CH₂Cl₂ (1:1, v/v) was added 0.067 g (0.322 mmol) of HC \equiv CC(OH)Ph₂. The mixture was stirred for 25.5 h, after which time the solvents were removed in vacuo. The residue was washed with Et₂O and crystallized from CH₂Cl₂/Et₂O with recovery of starting material (**2a**) and decomposition predominant. Final yield: 0.028 g (24.3%). Mp: 202 °C dec. Anal. Calcd for C₄₁H₄₁ClF₆P₂Ru: C, 58.19; H, 4.88; Cl, 4.19. Found: C, 58.27; H, 4.69; Cl, 4.03. IR (cm⁻¹; CDCl₃): 1976 br, w ν (C=C=C), 1448 m ν (CH=CH₂), 846, 548 st ν (PF).

$$\begin{array}{c|c} Ru & H_b & H_c \\ Ru & & H_c \\ Ru & & H_c \\ Ru & & H_c \\ Ph & & H_a \\ Ph & & H_a \end{array}$$

¹H NMR (499.84 MHz, CDCl₃): δ 7.89-7.05 (m, 20H, Ph), 4.06 $(ddd, {}^{3}J(PH) = 19.7 Hz, {}^{3}J(H_{a}H_{b}) = 12.2 Hz, {}^{2}J(H_{b}H_{c}) = 1.6$ Hz, 1H, H_b), 3.81 (ddd, ${}^{3}J(PH) = 29.4 \text{ Hz}$, ${}^{3}J(H_{a}H_{c}) = 9.6 \text{ Hz}$, $^{2}J(H_{b}H_{c}) = 1.6$ Hz, 1H, H_c), 3.69 (ddd, $^{2}J(PH) = 19.6$ Hz, ${}^{3}J(H_{a}H_{b}) = 12.2 \text{ Hz}, {}^{3}J(H_{a}H_{c}) = 9.6 \text{ Hz}, 1H, H_{a}, 1.95 \text{ (s, 18H, }$ η^6 -C₆Me₆). ¹³C{¹H} NMR (125.71 MHz, CDCl₃): δ 204.94 (d, $^{2}J(PC) = 1.8 \text{ Hz}, C_{2}, 134.72 \text{ (d, } ^{4}J(PC) = 2.6 \text{ Hz}, C_{p} DPVP),$ 134.13 (d, ${}^{4}J(PC) = 2.8 \text{ Hz}$, $C_p DPVP$), 132.66 (d, ${}^{2}J(PC) = 11.8$ Hz, C_0 DPVP), 130.86 (d, ${}^3J(PC) = 10.2$ Hz, C_m DPVP), 130.56 (d, ${}^{3}J(PC) = 11.7 \text{ Hz}$, $C_{m} DPVP$), $129.15 \text{ (d, } {}^{2}J(PC) = 12.6 \text{ Hz}$, C_o DPVP), 128.96 (s, C_o Ph), 128.71 (s, C_o Ph), 128.71 (s, C_m Ph), 128.64 (s, C_p Ph), 128.45 (s, C_m Ph), 128.42 (s, C_p Ph), 128.32 (s, C_i Ph), 127.78 (s, C_i Ph), 125.57 (d, ${}^{1}J(PC) = 64.1$ Hz, C_i DPVP), 121.43 (d, ${}^{1}J(PC) = 68.5$ Hz, C_i DPVP), 111.70 (d, ${}^{3}J(PC) = 20.4 \text{ Hz}$, C₃), 108.92 (s, η^{6} -C₆Me₆), 89.92 (s, C₁), 66.58 (s, C_{β}), 28.35 (d, ${}^{1}J(PC) = 88.1$ Hz, C_{α}), 15.46 (s, η^{6} -C₆Me₆). ³¹P{¹H} NMR (202.33 MHz, CDCl₃): δ 36.58 (s, DPVP), -145.01 (sept, ${}^{1}J(PF) = 712.7$ Hz, PF₆).

Reactions with 1,1-Dimethylpropargylamine, HC≡CC-(CH₃)₂NH₂. Method A. To a solution of 0.380 g (0.544 mmol) of 2a in 18 mL (1:1, v/v) of MeOH/CH₂Cl₂ was added 0.4 mL (3.8 mmol) of HC≡CC(CH₃)₂NH₂. The solution gradually changed color from orange to a deep red-black over the 30.5 h

reaction time. The solvents were removed in vacuo, giving an oily red material and a white solid. The red material was dissolved in $MeOH/CH_2Cl_2$, and this solution was filtered to remove the white solid; Et_2O was added to the filtrate to crystallize the product(s). (The white solid was not characterized.) Repeated crystallizations gave brown to black oils from which a small amount of the cyclic carbene complex 7 was isolated. The 1H NMR spectra consistently evidenced the presence of starting material (2a) in varying amounts. This prompted us to try the next two methods to increase the amount of 2a that reacted.

Method B. Dimethylpropargylamine (0.06 mL, 0.51 mmol) was passed through a filter pipet containing Na₂CO₃ (to remove H₂O) directly into a solution of 0.251 g (0.460 mmol) of 1a in 15 mL of CH₂Cl₂. To this solution was added 0.076 g (0.453 mmol) of NaPF₆ and 5 mL of CH₂Cl₂. When they were heated to reflux, all components were taken into solution, and the red color darkened. The mixture was refluxed for 42.5 h, and then the solvents were removed in vacuo to give a brown oil that was dissolved in CH2Cl2 and filtered (nothing was visually removed). The solvent volume was reduced to 2 mL in vacuo, and Et₂O was added to precipitate an orange powder (identified by ¹H NMR spectroscopy to be **1a**) and a brown oil. Repeated precipitations gave 0.047 g of recovered 1a (18.7%). Continued crystallizations gave a small amount of yellow crystalline 7 and a small amount of red-brown crystalline 8, as evidenced by ¹H NMR spectroscopy.

Method C. To an orange suspension of 0.296 g (0.541 mmol) of 1a in 40 mL of 1,2-dichloroethane was added 0.24 mL (2.3 mmol) of HC≡CC(CH₃)₂NH₂ and 0.100 g (0.595 mmol) of NaPF₆. Again, all components were taken into solution upon heating to reflux, and the color of the mixture changed from orange to red to brown. The reaction was monitored by ¹H NMR spectroscopy, which showed the continued presence of 1a, 7, and 8 after 56 h of reflux. At this time, 15 mL of absolute EtOH was added in an attempt to make the reaction medium more polar. The mixture was refluxed for another 14 h, at which time the ¹H NMR spectrum of an aliquot showed the same ratios of 1a, 7, and 8 as before. The reaction mixture was cooled to room temperature and subjected to column chromatography (2 × 5 cm²) on silica (200-400 mesh, Natland Int. Corp.) with eluting solvents CH₂Cl₂, acetone, and MeOH, sequentially. ¹H NMR spectroscopy showed that the eluted products contained 1a (CH₂Cl₂), 1a and 7 (CH₂Cl₂ and 1:1 CH₂-Cl₂/acetone), and 1a and 8 (acetone). Crystallizations of these fractions from CH₂Cl₂/hexane and acetone/Et₂O gave 1a, 7, and 0.02 g (0.03 mmol) of mostly pure 8 as yellow-orange crystals from which NMR spectral data were obtained.

Neither 7 nor 8 were obtained pure enough, in large enough quantities, to allow for elemental analyses. All NMR spectroscopic data showed traces to large amounts of starting materials and generally mixtures of 7 and 8.

[(η⁶-C₆Me₆)Cl(DPVP)Ru=CCH₂CMe₂NH)]PF₆ (7). ¹H NMR (499.84 MHz, CDCl₃): δ 7.71–7.67 (m, 4H, H₀ Ph), 7.54–7.44 (m, 6H, H_{m,p} Ph), 6.66 (ddd, ²J(PH) = 24.5 Hz, ³J(H_aH_b) = 18.5 Hz, ³J(H_aH_c) = 12.7 Hz, 1H, H_a), 6.30 (ddd, ³J(PH) = 41.5 Hz, ³J(H_aH_c) = 12.7 Hz, ²J(H_bH_c) = 1.5 Hz, 1H, H_c), 6.24 (ddd, ³J(PH) = 22.0 Hz, ³J(H_aH_b) = 18.5 Hz, ³J(H_bH_c) = 1.5 Hz, 1H, H_b), 2.22 (s, 18H, η⁶-C₆Me₆), 1.76 (s, 6H, CMe₂), 1.25 (s, 2H, CH₂), 1.42 (s, 1H, NH). ¹³C{¹H} NMR (125.71 MHz, CDCl₃): δ 134.77 (s, C_β), 132.15 (d, ¹J(PC) = 105.1 Hz, C_i), 131.89 (d, ⁴J(PC) = 2.4 Hz, C_p), 131.31 (d, ²J(PC) = 9.9 Hz, C_o), 131.03 (d, ¹J(PC) = 98.2 Hz, C_o), 128.55 (d, ³J(PC) = 11.9 Hz, C_m), 96.11 (d, J(PC) = 3.3 Hz, η⁶-C₆Me₆), 31.51 (s, CMe₂), 29.62 (s, CH₂), 16.75 (s, η⁶-C₆Me₆), 15.11 (s, CMe₂). ³¹P{¹H} NMR (202.33 MHz, CDCl₃): δ 23.68 (s, DPVP), -144.72 (sept, ¹J(PF) = 712.6 Hz, PF₆).

[(η⁶-C₆Me₆)ClRuCH=C(DPVP)CMe₂NH₂]PF₆ (8). Mp: 198 °C dec. ¹H NMR (499.84 MHz, acetone- d_6): δ 9.73 (d, ³J(PH) = 24.0 Hz, CH), 8.08–7.67 (m, 10H, Ph), 7.31 (ddd, ²J(PH) =

24.0 Hz, ${}^{3}J(H_{a}H_{b}) = 18.0$ Hz, ${}^{3}J(H_{a}H_{c}) = 12.5$ Hz, 1H, H_a), 6.90 (dd, ${}^{3}J(PH) = 46.5$ Hz, ${}^{3}J(H_{a}H_{c}) = 12.5$ Hz, 1H, H_c), 6.29 (dd, ${}^{3}J(PH) = 23.0$ Hz, ${}^{3}J(H_{a}H_{b}) = 18.0$ Hz, 1H, H_b), 4.84 (dd, ${}^{4}J(PH) = 4.5$ Hz, ${}^{2}J(HH) = 10.5$ Hz, 1H, NH₂), 4.19 (d, ${}^{2}J(HH) = 10.5$ Hz, 1H, NH₂), 2.06 (s, 18H, η^{6} -C₆Me₆), 1.33 (s, 6H, CMe₂). ${}^{13}C\{{}^{1}H\}$ NMR (125.71 MHz, acetone- d_{6}): 5 217.74 (d, ${}^{2}J(PC) = 7.0$ Hz, Ru-C), 143.34 (s, C_β), 135.59 (d, ${}^{4}J(PC) = 2.9$ Hz, C_p), 135.48 (d, ${}^{4}J(PC) = 2.9$ Hz, C_p), 135.27 (d, ${}^{2}J(PC) = 9.7$ Hz, C_o), 135.12 (d, ${}^{2}J(PC) = 10.4$ Hz, C_o), 130.94 (d, ${}^{3}J(PC) = 12.7$ Hz, C_m), 130.84 (d, ${}^{3}J(PC) = 12.8$ Hz, C_m), 121.77 (d, ${}^{1}J(PC) = 77.1$ Hz, C_o), 121.76 (d, ${}^{1}J(PC) = 111.0$ Hz, C_i), 121.12 (d, ${}^{1}J(PC) = 86.4$ Hz, C_i), 95.43 (s, η^{6} -C₆Me₆), 68.68 (d, ${}^{2}J(PC) = 30.2$ Hz, CMe₂), 30.95 (s, CMe₂), 16.06 (s, η^{6} -C₆Me₆). ${}^{31}P\{{}^{1}H\}$ NMR (202.33 MHz, acetone- d_{6}): 5 7.10 (s, DPVP), -145.00 (sept, ${}^{1}J(PF) = 706.6$ Hz, PF₆).

Reaction of 2a and HC=CC(OH)Ph2 in the Absence of MeOH. To an orange solution of **2a** (0.319 g, 0.457 mmol) in 10 mL of CH2Cl2 was added 0.1 g (0.480 mmol) of HC=CC-(OH)Ph2. The color changed from orange to purple within minutes. After 4.5 h the solvents were removed in vacuo to yield a purple-red oil. Attempted crystallizations from CH2-Cl2 and Et2O gave a small amount of crystalline [(η^6 -C₆Me₆)₂-Ru₂Cl₃]PF₆ (which was identified by an X-ray crystallographic unit cell determination and ¹H NMR spectroscopy⁴) and decomposition of the remainder of the material present.

Reaction of 2a and HC \equiv CPh in the Absence of MeOH. A solution of 0.307 g (0.440 mmol) of 2a in 10 mL of CH₂Cl₂ was stirred with 0.05 mL (0.455 mmol) of HC \equiv CPh for 21 days, by which time the CH₂Cl₂ had evaporated. The orange oil was dissolved in a minimum volume of CH₂Cl₂, washed with hexane, and crystallized from CH₂Cl₂/Et₂O. The carbonyl complex [(η^6 -C₆Me₆)Cl(DPVP)Ru(CO)]PF₆ (9) was thus obtained in 11.4% yield (0.034 g) as yellow crystals from an otherwise decomposition-laden mixture.

Complex 9 was also obtained by bubbling CO(g) through an acetone solution (20 mL) of 2a (0.222 g, 0.319 mmol) for 4 h, followed by removal of solvents in vacuo. Yield: 0.190 g (86.9%). Mp: 192-201 °C. Anal. Calcd for C₂₇H₃₁ClF₆OP₂Ru: C, 47.41; H, 4.57; Cl, 5.19. Found: C, 47.29; H, 4.36; Cl, 5.02. IR (cm⁻¹; CH₂Cl₂): 2014 sh, st ν (CO). IR (cm⁻¹; Nujol): 814, 557 st $\nu(PF)$. ¹H NMR (499.84 MHz, CDCl₃): δ 7.47–7.63 (m, 10H, Ph), 6.71 (ddd, ${}^{2}J(PH) = 25.2 \text{ Hz}$, ${}^{3}J(H_{a}H_{b}) = 17.9 \text{ Hz}$, ${}^{3}J(H_{a}H_{c}) = 12.0 \text{ Hz}, 1H, H_{a}, 6.14 \text{ (dd, } {}^{3}J(PH) = 42.5 \text{ Hz},$ ${}^{3}J(H_{a}H_{c}) = 12.0 \text{ Hz}, 1H, H_{c}, 5.41 \text{ (dd, } {}^{3}J(PH) = 21.5 \text{ Hz},$ 3 $J(H_{a}H_{b}) = 17.9 \text{ Hz}, 1H, H_{b}), 2.00 \text{ (s, 18H, } \eta^{6}\text{-C}_{6}\text{Me}_{6}). \, ^{13}\text{C}\{^{1}\text{H}\}$ NMR (125.70 MHz, CDCl₃): δ 196.49 (d, ${}^{2}J(PC) = 24.9$ Hz, Ru-CO), 133.72 (d, ${}^{2}J(PC) = 9.9$ Hz, C_{0}), 133.34 (d, ${}^{2}J(PC) =$ 9.9 Hz, C_0), 132.65 (d, ${}^4J(PC) = 2.4$ Hz, C_p), 132.56 (s, C_β), 132.23 (d, ${}^{4}J(PC) = 2.8 \text{ Hz}$, C_p), 130.16 (d, ${}^{1}J(PC) = 53.0 \text{ Hz}$, C_{α}), 129.38 (d, ${}^{3}J(PC) = 10.8 \text{ Hz}$, C_{m}), 129.07 (d, ${}^{3}J(PC) = 10.8$ Hz, C_m), 126.18 (d, ${}^{1}J(PC) = 55.6$ Hz, C_i), 126.77 (d, ${}^{1}J(PC) =$ 54.9 Hz, C_i), 113.57 (d, J(PC) = 1.9 Hz, η^6 - C_6 Me₆), 16.20 (s, η^6 -C₆Me₆). ³¹P{¹H} NMR (202.33 MHz, CDCl₃): δ 34.41 (s, DPVP), -145.00 (sept, ${}^{1}J(PF) = 712.4$ Hz, PF₆).

Catalysis. Phenylacetylene (2 mL, 18 mmol) was added to a suspension of 1a (0.250 g, 0.457 mmol) in 10 mL of 95% EtOH. Upon heating, all components were taken into solution, and the color darkened. After a 17 h reflux, the solution was cooled to room temperature and the solvents were removed in vacuo to give a red oil. The oil was washed several times with hexane, and the yellow washings were passed through a flash column packed with Celite and silica, with most of the red inorganic material being left on the Celite. The inorganic fraction was then washed from the column with CH₂Cl₂ and MeOH. Solvent removal and vacuum distillation (0.27 mmHg, 78 °C) of the organic fraction yielded 1.534 g of a pale yellow viscous liquid. ¹H NMR and FT-IR spectroscopy and GC/MS have identified the products as acetophenone, hexamethylbenzene, and an unknown compound in a ratio of 81.4:15.7: 2.9. The red inorganic fraction has not been fully characterized as yet.

Table 10 Crystallographic Data

		Table 1	u. Crystalio	grapnic Data			
	1b	1c	3a	3b	3c		4a
empirical formula	C ₁₅ H ₂₇ Cl ₂ PRu	C ₃₀ H ₃₃ Cl ₂ PRu	C ₂₉ H ₃₇ ClF ₆ -	C ₁₈ H ₃₃ ClF ₆ -	C ₃₃ H ₃₉ ClF ₆ -		I ₄₁ ClF ₆ -
			OP_2Ru	$OP_2Ru\cdot C_3H_6O$			$P_2Ru\cdot C_{1.50}H_3O_{0.50}$
fw	410.31	596.50	714.05	635.98	828.14	819.	
cryst syst	orthorhombic	triclinic	orthorhombic	monoclinic	monoclinic	mone	oclinic
space group	Pbca	$P\bar{1}$	$P2_12_12_1$	$P2_1/n$	$P2_1/c$	C2/c	
a (Å)	15.2968(14)	8.9314(11)	8.3402(8)	17.385(6)	14.840(2)	24.23	254(13)
b (Å)	17.8266(10)	9.0629(9)	13.7264(12)	8.9043(15)	8.616(3)	10.68	895(14)
c (Å)	26.3270(17)	17.8273(17)	27.022(3)	18.548(3)	29.172(4)	29.10	63(2)
α (deg)	90	89.243(8)	90	90	90	90	
β (deg)	90	89.432(11)	90	91.92(2)	94.846(5)	104.4	479(6)
γ (deg)	90	65.522(8)	90	90	90	90	
$V(Å^3)$	7179.1(9)	1313.2(2)	3093.5(5)	2869.6(13)	3716.7(14)	7312	.0(12)
Z	16	2	4	4	4	8	` ′
$d_{\rm calcd}$ (g/cm ³)	1.518	1.509	1.533	1.472	1.480	1.488	8
$\mu \text{ (mm}^{-1}\text{)}$	1.247	0.879	0.755	0.805	0.642	0.650	0
$R1(F)/wR2(F^2)^a$	0.0772/0.0734	0.0521/0.1051	0.0819/0.1391	0.0808/0.1977	0.0748/0.1797	0.063	36/0.1734
	4b	4c	5	6	8	3	9
empirical formula	C ₂₄ H ₃₇ ClF ₆ -	C ₃₉ H ₄₃ ClF ₆ -	C ₃₀ H ₃₇ C	lF ₆ - C ₄₁ H ₄₁ ClF	6P2Ru C31H41	ClF ₆ -	C ₂₇ H ₃₁ ClF ₆ -
	OP_2Ru	$OP_2Ru\cdot CH_2O$			NP_2	Ru	OP_2Ru
fw	654.00	925.12	726.06	846.20	740.11		683.98
cryst syst	orthorhombic	triclinic	monocli	nic monoclini	c triclini	c	monoclinic
space group	Pbca	$P\bar{1}$	$P2_1/c$	$P2_1/n$	$P\bar{1}$		$P2_1/c$
a (Å)	13.3348(17)	9.243(3)	13.8695	(7) 10.3675(8)	9.8514	(17)	10.7954(9)
b (Å)	15.537(4)	10.934(4)	8.3371(6	3) 23.5252(1)	2) 11.0147	7(13)	15.450(2)
c (Å)	27.037(3)	20.766(5)	26.956(2	2) 16.4003(1	5) 16.392	(2)	17.280(2)
α (deg)	90	78.132(18)	90	90	77.717	(8)	90
β (deg)	90	83.389(18)	96.906(6	3) 101.269(7)	76.579	(11)	91.623(7)
γ (deg)	90	89.359(19)	90	90	87.0820	(11)	90
$V(Å^3)$	5601.6(17)	2039.9(10)	3094.4(4	3922.9(5)	1690.60	(4)	2881.0(6)
Z	8	2	4	4	2		4
$d_{\rm calcd}$ (g/cm ³)	1.551	1.506	1.559	1.433	1.454		1.577
$\mu \text{ (mm}^{-1}\text{)}$	0.825	0.718	0.756	0.606	0.692		0.807
D1(E\/D9(E?)a	0.0010/0.1510		0.700			0 000	0.000/0.1440

0.0628/0.1083

0.0678/0.1580

0.0830/0.1393

X-ray Crystallographic Studies. Single crystals of 1b,c, 3a-c, 4a-c, 5, 6, 8, and 9 suitable for X-ray diffraction were obtained as follows: slow diffusion of Et₂O into a CHCl₃ solution of complex 1c, slow diffusion of hexane into a benzene solution of complex 1b, slow diffusion of Et₂O into CH₂Cl₂ solutions of complexes 3a,c, 4a,b, and 9, slow diffusion of Et₂O into a CHCl₃/acetone solution of complex 3b, and slow diffusion of Et₂O into acetone solutions of complexes 4c, 5, 6, and 8. The crystals were mounted on glass fibers, coated with epoxy, and placed on a Siemens P4 diffractometer. Intensity data were collected in the ω mode with graphite monochromated Mo K α radiation ($\lambda = 0.710~73~\text{Å}$). Three check reflections, monitored every 100 reflections, showed random (<2%) variation during the data collections. The data were corrected for Lorentz, polarization effects, and absorption (using an empirical model derived from azimuthal data collections). Scattering factors and corrections for anomalous dispersion were taken from a standard source.²⁶ Calculations were performed within the Siemens SHELXTL Plus (version 5.10) software package on a PC. The structures were solved by direct methods (1b, **3a**, and **9**) or by Patterson methods (**1c**, **3b**, **c**, **4a**-**c**, **6**, and **8**).

0.0910/0.1519

 $R1(F)/wR2(F^2)^a$

(26) International Tables for X-Ray Crystallography, D. Reidel: Boston, MA, 1992; Vol. C.

Anisotropic thermal parameters were assigned to all nonhydrogen atoms. Hydrogen atoms were refined at calculated positions with a riding model in which the C-H vector was fixed at 0.96 Å. Hydrogen atoms were not added to the solvent Et₂O molecule in the structure solution of **3c**. There is half of an acetone molecule in the unit cell of 4a. The data were refined by the method of full-matrix least squares on F^2 . Final cycles of refinement converged to the R1(F) and $wR2(F^2)$ values given in Table 10, where $w^{-1} = \sigma^2(F) + 0.001F^2$.

0.0883/0.2225

0.0692/0.1449

Acknowledgment. An award from the Research Corp., for which we are grateful, supported this research. We thank Johnson Matthey Aesar/Alfa for a generous loan of RuCl₃·H₂O and the National Science Foundation (Grant No. CHE-9214294) for funds to purchase the 500 MHz NMR spectrometer.

Supporting Information Available: Listings of atom coordinates, bond distances and angles, thermal parameters, anisotropic refinements, and hydrogen atom coordinates for 1b,c, 3a-c, 4a-c, 5, 6, 8, and 9. This material is available free of charge via the Internet at http://pubs.acs.org.

OM0004949

^a Final R indices have $I \ge 2\sigma(I)$. $R1(F) = \sum (|F_0| - |F_c|)/\sum (|F_0|)$; $wR2(F^2) = \sum w(|F_0^2| - |F_c^2|)^2/\sum w(|F_0^2|)^2|^{1/2}$.