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Summary: The rapid hydrogenation of simple aromatic
ketones is accomplished by using a combination of (η5-
C5(CH3)5)Ru complexes and primary amines as a cata-
lyst in 2-propanol. In particular, 1,2-diamines with
primary and tertiary amino groups at both ends exhibit
a significant ligand acceleration effect. Isotope-labeling
experiments using D2 and 2-propanol-dn reveal that
2-propanol participates in the activation of H2 based on
a metal/NH bifunctional effect to facilitate the hydro-
genation. Asymmetric hydrogenation of prochiral simple
ketones with the chiral version of the catalysts provides
optically active secondary alcohols with up to 95% ee.

Well-defined chiral transition metal catalysts having
a metal/NH bifunctional synergetic effect have been
recently developed for the enantioselective catalytic
reduction of carbonyl compounds1a and imines1b to give
optically active alcohols and amines.1-4 Particularly,
chiral Ru complexes RuCl2(chiral diphosphine)(chiral
1,2-diamine)2 and RuCl(Tsdpen)(η6-arene)3 (TsDPEN:

N-(p-toluenesulfonyl)-1,2-diphenylethylenediamine) com-
bined with a base have proven to effect practical
asymmetric hydrogenation or transfer hydrogenation as
catalysts with an excellent reactivity and stereoselec-
tivity as well as a wide range of substrates. Although
both catalyst systems have a characteristic NH func-
tionality, the catalytic performance of the two catalyst
systems differs greatly. For example, the Ru-phos-
phine/diamine complexes readily react with H2, leading
to effective hydrogenation catalysts, while the Ru-
arene/Tsdiamine complexes hardly react with H2 but
instead react with 2-propanol or formic acid to generate
transfer hydrogenation catalysts. This remarkable dif-
ference in the reactivity may be attributable to the
electronic properties on the central Ru metal; the former
catalyst has an electron-donating phosphorus ligand,
but the latter one has an electron-withdrawing tosyl-
amido ligand. We found that Cp*Ru-1,2-diamine com-
plexes (Cp* ) pentamethylcyclopentadienyl, η5-C5-
(CH3)5), which are isoelectronic to the Ru arene transfer
hydrogenation catalyst,3 are highly effective catalysts
for the hydrogenation of ketones. We now report the
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synthesis and structures of the Cp*Ru complexes as well
as their catalytic activity and some mechanistic consid-
erations for the hydrogenation of ketones.

We first examined the ligand-acceleration effect of
several amine ligands for the hydrogenation of aceto-
phenone (Scheme 1). The reaction was carried out in
2-propanol containing acetophenone, Cp*RuCl(cod),5
amine (1), and KOH (cod ) 1,5-cyclooctadiene, aceto-
phenone:Ru:1:KOH ) 100:1:1:1) under atmospheric
pressure of H2 and at 30 °C for 1 h. The reaction
proceeded very slowly without any amine, to give
1-phenylethanol in <1% yield. However, the screening
test with a range of amines under otherwise identical
conditions revealed that N,N-dimethylethylenediamine
(1c) displayed the highest rate enhancement to afford
the product quantitatively (Table 1, runs 1-4). It is
noteworthy that N-methylethylenediamine (1b) worked
equally well, and ethylenediamine (1a) or N,N,N′-tri-
methylethylenediamine (1d) gave only modest yields,
while N,N,N′,N′-tetramethylethylenediamine (1e) did
not promote the reaction at all. These results strongly
suggest that the amino NH group plays a crucial role
for the catalysis. This may be seen from the fact that
2-(dimethylamino)ethanol (1f) and 2-(dimethylamino)-
ethanethiol (1g) were ineffective. Furthermore, a ter-
tiary amino group at the other terminus in 1c most
likely contributes to the rate enhancement, as is clear
from the results obtained using benzylamine (3%),
2-methoxyethylamine (1h, 2%), 2-(diphenylphosphino)-
ethylamine (1i, 16%), and 2-picolylamine (37%).

The hydrogen pressure strongly influences the rate
of the reaction, as shown in Table 1 (runs 3, 5-7). When
the reaction was carried out in 2-propanol containing
the combined catalyst at 30 °C with a substrate/catalyst
molar ratio (S/C) of 1000 (Ru:1c:KOH ) 1:1:1), the
initial rate of the reaction was 100 TOF (TOF: turnover
frequency, moles of product per mole of catalyst per
hour, h-1) under atmospheric pressure of H2 and
increased to 1170 h-1 at 20 atm of H2. Notably, in the
absence of H2, the hydrogenated product was hardly
obtainable, indicating that this reductive transformation
is a net hydrogenation. However, the present catalyst
system was totally inactive for the hydrogenation of a
simple olefin or acetylene such as styrene or phenyl-
acetylene.

Cp*RuCl(cod)/1c is a useful catalyst precursor, which
possibly gives in situ an active catalyst, Cp*Ru(amido)
complex, upon treatment with KOH as observed in the
RuCl(Tsdpen)(η6-arene) catalyst system.3 Unfortu-
nately, all attempts to isolate this amido complex using
either Cp*RuCl(cod) or (Cp*RuCl)4

6 and 1c in the
presence of KOH or (Cp*RuOCH3)2

7 and 1c have been
unsuccessful. Also, similar trials to isolate the Ru
hydride complex, Cp*RuH(amine), in the presence of H2
resulted in the formation of polynuclear Ru hydride
clusters8 without 1c, which are inert to this hydrogena-
tion. Nevertheless, a combined catalyst system of
Cp*RuCl(cod)/1c/KOH or (Cp*RuOCH3)2/1c showed high
activity in the presence of ketonic substrates.

2-Propanol or ethanol is the best solvent choice for
this hydrogenation, while use of aprotic solvents such
as DMF, THF, acetonitrile, and CH2Cl2 resulted in
moderate to low yields. Isotope-labeling experiments
using partially deuterated 2-propanol and D2 revealed
that 2-propanol participates in the H2 activation to
generate a Ru hydride species. The reaction of tert-butyl
phenyl ketone with 1 atm of H2 in (CH3)2CDOH (solvent/
substrate molar ratio of 25) containing the combined
catalyst system Cp*RuCl(cod)/1c/KOH (S/C ) 100) gave
no deuterated product, indicating that 2-propanol is
hardly dehydrogenatively oxidized under the reaction
conditions. When the reaction was performed with D2
in (CH3)2CHOH under otherwise identical conditions,
the deuterated product was obtained with 7% of D
incorporated at the benzylic position. 2H NMR analysis
of this reaction in toluene-d8 showed that a considerable
amount of (CH3)2CHOD is formed, and this H/D ex-
change rate is faster (146 TOF) than the product
formation (33 TOF) (Supporting Information). Notably,
the reaction with D2 in (CH3)2CHOD provided an
alcoholic product with greater than 90% deuterium
content at the benzylic carbon. These results clearly
show that a rapid exchange of hydrogen atoms between
H2 and ROH occurs reversibly prior to the reduction of
the ketones. This scrambling caused by the catalyst in
2-propanol proceeds possibly via interconversion of
Cp*Ru(amido)(η2-H2)9 and Cp*Ru(amine)H, in which
2-propanol participates in the H2 activation through the
formation of a hydrogen-bonding network,10,11 as shown
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Table 1. Hydrogenation of Acetophenone
Catalyzed by Cp*Ru-Amine (1) Complexesa

run Cp*Ru(II) amine (1) PH2, atm conv, %b TOF, h-1 c

1 Cp*RuCl(cod) 1a 1 41
2 Cp*RuCl(cod) 1b 1 98
3 Cp*RuCl(cod) 1c 1 100 100
4 Cp*RuCl(cod) 1d 1 57
5 Cp*RuCl(cod) 1c 0 0
6 Cp*RuCl(cod) 1c 10 520
7 Cp*RuCl(cod) 1c 20 1170d

8 (Cp*RuOCH3)2 1c 10 100e

9 (Cp*RuOCH3)2 1c 10 150e,f

a The reaction was carried out at 30 °C in 2-propanol unless
otherwise noted. The molar ratio of acetophenone:Ru:1:KOH is
100:1:1:1 for runs 1-4, 1000:1:1:1 for runs 5-7, and 500:1:1.5:0
for runs 8-9. The reaction time is 1.0 h unless otherwise noted.
b Determined by 1H NMR spectroscopy. c See text. d 0.5 h. e 2.0 h.
f In ethanol.

Scheme 1
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in Figure 1. Such an effective activation of η2-H2 by H2O
or N(C2H5)3 additives has been considered in an olefin
hydrogenation reaction with a cationic Ru hydridotris-
(pyrazolyl)borate complex and results in a significant
improvement in the catalytic activity.12

Encouraged by the marked acceleration in the reac-
tion in 2-propanol, we then tried asymmetric hydro-
genation of simple ketones using a chiral version of
the Ru catalyst (Table 2). We found that an isolable
Cp*RuCl((S)-2a) effects asymmetric hydrogenation of
alkyl phenyl ketones to provide the corresponding R
alcohols with good to excellent ee’s. Among the chiral
diamine ligands tested, a chiral diamine, (S)-2, derived
from L-proline showed the highest enantioselectivity for
the hydrogenation of acetophenone. The stereoselective
outcome of the reaction was delicately influenced by the
structures of the ketones and catalysts. The enantio-
selectivity was noticeably increased by increasing the

bulkiness of the alkyl group from methyl to isobutyl.
The reaction of phenyl isobutyl ketone was achieved in
up to 95% ee. Notably, (S)-2a and (S)-2b with the NH
group at the side chain provided the (R)-1-phenylethanol
with 72% and 13% ee’s, respectively, while (S)-2c and
(S)-2d with the NH group at the pyrrolidine ring
provided the (S)-1-phenylethanol with 40% and 13%
ee’s, respectively, irrespective of their backbone struc-
ture. On the other hand, the chiral diamine, (S)-2e, with
two NH functionalities at both N termini gave a low
enantioselectivity (3% ee, (R)), presumably because the
opposite selectivities caused by the two NH groups
counteract each other.

To gain a deeper insight into the enantioselective
reaction, the preformed catalyst, Cp*RuCl((S)-2a), was
prepared by mixing an equimolar amount of Cp*RuCl-
(cod) and (S)-2a in toluene at reflux temperature or
more conveniently from 1/4(Cp*RuCl)4 and (S)-2a in
diethyl ether at room temperature. A single-crystal
X-ray analysis (Supporting Information) shows that the
complex has a distorted pseudo-octahedral coordination
environment with Cp*, NR3, RNH2, and Cl ligands as
observed in the RuCl(η6-p-cymene)(Tsdpen) complex.3d

We would expect the Ru hydride complex to be gener-
ated with retention of configuration with the R-Ru(II)
center3d by a Dcb mechanism upon the treatment of the
preformed catalyst with KOH in the presence of H2.
Thus, the preformed catalyst promotes the asymmetric
hydrogenation of acetophenone in 2-propanol containing
KOH to give a chiral alcohol with almost the same
enantiomeric purity as does the in situ generated
catalyst. The aryl ketones approach the H-Ru-N-H
linkage in the hydride-amine complex to form a six-
membered cyclic transition state,3i,4k in which steric
repulsion between the ethyl group of the ligand and the
substituent of the ketone is minimized. To our knowl-
egde, this is the first example of homogeneous asym-
metric hydrogenation of carbonyl compounds catalyzed
by phosphine ligand-free chiral transition metal com-
plexes.13
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Figure 1. Postulated intermediate for the effective activa-
tion of dihydrogen.9-11

Table 2. Asymmetric Hydrogenation of Various
Aryl Ketones, ArCOR, Catalyzed by a Catalyst

System, Cp*RuCl(cod)/(S)-2a/KOHa

Ar R conv, %b ee, %c configd

C6H5 CH3 >99 72 R
C6H5 C2H5 94 79 R
C6H5 n-C3H7 >99 79 R
C6H5 i-C3H7 94 73 R
C6H5 t-C4H9 99 81 R
C6H5 i-C4H9 98 95 R
o-CH3C6H4 CH3 87 85 R
m-CH3C6H4 CH3 70 72 R
o-CF3C6H4 CH3 >99 66 R
m-CF3C6H4 CH3 99 66 R
1-naphthyl CH3 97 79 R
2-naphthyl CH3 98 64 R
a The reaction was carried out at 30 °C for 6-18 h under 10

atm of H2 using a 0.1-0.6 M solution of the ketone in 2-propanol.
Ketone:Ru:(S)-2a:KOH ) 100:1:1:1. b Conversion was determined
by 1H NMR. c Determined by GLC analysis or HPLC analysis. See
Supporting Information. d Determined from the sign of rotation
of the isolated product.
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