Easy and Reversible C-H Activation of a Substituted Benzene

Giuseppe Canepa, Carsten D. Brandt, and Helmut Werner*

Institut für Anorganische Chemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany

Received November 27, 2000

Summary: The reaction of either $[RhCl(C_8H_{14})_2]_2$ or $[RhCl(C_2H_4)_2]_2$ with $tBu_2PCH_2CH_2C_6H_5$ (**3**) affords at room temperature the five-coordinate arylhydridorhodium(III) complex **4**, the molecular structure of which has been determined by X-ray crystallography. The C-H metalation is completely reversible, as is shown by the formation of trans- $[RhCl(CO)(3)_2]$ from **4** and CO. Compound **4** also reacts with $PhC \equiv CH$, H_2 , and $AgPF_6$ to give products **7**–**9** containing the intact phosphine ligand **3**.

The bis(triisopropylphosphine)rhodium(I) complex $[RhCl(P_iPr_3)_2]_2$ (1) is probably one of the most reactive rhodium(I) compounds known to date.¹ It reacts not only with H₂, O₂, N₂, CO, and C₂H₄ but also with terminal alkynes to give stepwise π -alkyne, alkynyl hydrido, and vinylidene rhodium derivatives.² While **1** is easily accessible from $[RhCl(C_8H_{14})_2]_2$ (2) and 4 equiv of $P_{i}Pr_{3}^{1b}$ the analogous complex $[RhCl(P_{t}Bu_{3})_{2}]_{2}$ cannot be obtained by a similar route.³ Since we knew that even small differences in the size of the phosphine ligand can change the stability and reactivity of compounds of the general composition $[RhCl(PR_3)_2]_n$ significantly, we considered instead of PtBu₃ the somewhat less bulky derivative $tBu_2PCH_2CH_2C_6H_5$ (3), which was recently prepared in our laboratory,⁴ as a candidate to isolate an analogue of 1.

Under conditions similar to those used for the preparation of **1**, the reaction of **2** with a 4-fold excess of **3** in pentane at room temperature resulted in the formation of the yellow solid **4**, the analytical composition of which corresponds to that of [RhCl(**3**)₂].⁵ However, the ¹H and ³¹P NMR spectra of **4** (see Scheme 1) reveal that the product is not a rhodium(I) complex containing two intact phosphine ligands but an arylhydridorhodium-(III) species. The most typical features are the high-field resonance in the ¹H NMR spectrum at δ –18.11 for the RhH proton and the ¹³C NMR signal at δ 146.9 for the metalated carbon atom of the six-membered ring.⁶ Due to ¹⁰³Rh⁻¹H (or ¹⁰³Rh⁻¹³C) and 2-fold ³¹P⁻¹H (or ³¹P⁻¹

^{*a*} $L = tBu_2PCH_2CH_2C_6H_5$ (3).

¹³C) couplings, each of these signals is split into a doublet of doublets of doublets. Moreover, the two doublets of doublets at δ 65.7 and 43.0 in the ³¹P NMR spectrum of **4** confirm that the two phosphorus atoms are chemically nonequivalent.

The result of the X-ray crystal structure analysis of **4** is shown in Figure 1.⁷ It reveals that during the reaction of 2 and 3 a C-H metalation of one of the phenyl groups has indeed taken place. The coordination geometry around the rhodium center corresponds to a distorted trigonal bipyramid with the two phosphorus atoms in the apical positions. The Rh-P distances are slightly longer than in the related, more symmetrical chelate complex [RhHCl{ tBu₂PCH₂C₆H₃CH₂P tBu₂- $\kappa^{3}(P,C,P)$] (A) obtained from RhCl₃·3H₂O and 1,3-bis-[(tert-butylphosphino)methyl]benzene in *i*PrOH/H₂O under reflux.⁸ In contrast, the Rh-C31 bond length of 4 (1.967(5) Å) is slightly shorter than in **A** (1.999(7) Å) and in the Milstein compound [Rh(CH₃)Cl{tBu₂PCH₂- $C_{6}H-3,5-(CH_{3})_{2}CH_{2}PtBu_{2}-\kappa^{3}(P,C,P)$] (2.02(2) Å).⁹ The P-Rh-P axis of **4** is significantly bent (160.18(5)°), which could be due both to steric hindrance between the phosphine substituents and the strain of the six-

^{(1) (}a) Preparation in situ: Busetto, C.; D'Alfonso, A.; Maspero, F.; Perego, G.; Zazzetta, A. *J. Chem. Soc., Dalton Trans.* **1977**, 1828– 1834. (b) Isolation: Werner, H.; Wolf, J.; Höhn, A. *J. Organomet. Chem.* **1985**, *287*, 395–407. (c) X-ray crystal structure analysis: Binger, P.; Haas, J.; Glaser, G.; Goddard, R.; Krüger, C. *Chem. Ber.* **1994**, *127*, 1927–1929.

⁽²⁾ Reviews: (a) Werner, H. Nachr. Chem. Technol. Lab. **1992**, 40, 435–444. (b) Werner, H. J. Organomet. Chem. **1994**, 475, 45–55.

^{(3) (}a) Wolf, J. Unpublished results. (b) The preparation of "crude" [RhCl(P*t*Bu₃)₂] has been reported, ^{3c} but the authors as well as we could not obtain a pure sample of the given composition. (c) Yoshida, T.; Otsuka, S.; Matsumoto, M.; Nakatsu, K. *Inorg. Chim. Acta* **1978**, *29*, L257-L259.

⁽⁴⁾ Werner, H.; Canepa, G.; Ilg, K.; Wolf, J. Organometallics 2000, 19, 4756-4766.

⁽⁵⁾ The preparation of **4** is as follows. A suspension of **2** (1.51 g, 2.11 mmol) in 10 mL of pentane was treated under continuous stirring with **3** (2.11 g, 8.43 mmol). A yellow solution was formed, which was evaporated to dryness in vacuo. After the oily residue was layered with 10 mL of pentane and stored for 8 h, a yellow solid was obtained. It was separated from the mother liquor, washed five times with 4 mL portions of pentane, and dried. The pentane washings were combined and then evaporated to ca. 3 mL in vacuo. The concentrated solution was stirred for 3 h at room temperature, which gave a second fraction of the product: yield 2.29 g (85%); mp 97 °C dec. Alternatively, compound **4** could also be prepared from **5** (303 mg, 0.78 mmol) and **3** (780 mg, 3.12 mmol): yield 808 mg (81%).

Figure 1. ORTEP diagram of **4**. The metal-bonded hydrogen is not exactly located; the other hydrogen atoms are omitted for clarity. Selected bond distances (Å) and angles (deg): Rh–P1, 2.3746(14); Rh–P2, 2.3344(13); Rh–Cl, 2.4687(13); Rh–C31, 1.967(5); P1–Rh–P2, 160.18(5); P1–Rh–Cl, 98.01(5); P1–Rh–C31, 96.89(13); P2–Rh–Cl, 99.74-(5); P2–Rh–C31, 87.54(13); Cl–Rh–C31, 103.40(14); Rh–P2–C28, 110.62(15); P2–C28–C29, 113.8(3); C28–C29–C30, 109.0(4); C29–C30–C31, 121.1(4); C30–C31–Rh, 126.8(4).

membered chelate ring. We note that besides **2** also the dimeric bis(ethene)rhodium(I) derivative **5** can be used

 $^{a} \mathrm{L} = t \mathrm{Bu}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ (3).

as starting material for the preparation of **4**. If **5** is treated with 2 instead of 4 equiv of **3**, the intermediate $[RhCl(C_2H_4)(3)]_2$ (**6**) is detected by ¹H and ³¹P NMR spectroscopy,⁶ which reacts with excess **3** to give **4**. Compound **6** is accessible in analytically pure form from **4** and **5** in the molar ratio of 2:1 in pentane and isolated as a yellow solid in 86% yield.

If a suspension of **4** in pentane is stirred at room temperature under an atmosphere of carbon monoxide, a gradual change of color occurs and after ca. 30 s a light yellow solid precipitates. The spectroscopic data of this compound indicate that instead of the anticipated six-coordinate 1:1 adduct of **4** and CO the square-planar carbonyl complex **7** is formed (Scheme 2). The practically quantitative yield of **7** from the rhodium(III) precursor **4** illustrates that the insertion of the metal into one of the ring C–H bonds of the phosphine **3** is completely reversible. With regard to the structure of **7**, the noteworthy aspect is that in solution at low temperature at least three rotamers can be observed, the existence of which is probably due to the steric bulk of the *tert*butyl groups.¹⁰

The reaction of **4** with phenylacetylene proceeds similarly to that with CO. Treatment of a solution of **4** with PhC=CH in toluene at room temperature affords, after chromatographic workup (Al₂O₃, neutral, activity grade III, hexane) and recrystallization of the oily residue from pentane, a blue-violet solid whose elemental analysis corresponds to **8** (Scheme 2). Typical spectroscopic data of **8** are the signal for the Rh=C= CH proton at δ 1.36 in the ¹H NMR and two low-field resonances for the vinylidene carbon atoms at δ 290.6 and 116.2 in the ¹³C NMR spectrum.⁶ Monitoring the reaction of **4** with PhC=CH in toluene-*d*₈ in an NMR tube suggests that an alkynylhydridorhodium(III) species is formed as an intermediate, which rearranges smoothly to the final product.

The C-H metalation of **3** leading to **4** is also reversed upon stirring a suspension of **4** in pentane at room

⁽⁶⁾ Selected spectroscopic data for 4 and 6-10 are as follows. 4: ¹H NMR (C₆D₆, 600 MHz) $\delta^{-18.11}$ (ddd, J(RhH) = 22.9, J(PH) = 15.9 NMR (C_6D_6 , 600 MH2) δ –18.11 (ddd, J(RnH) = 22.9, J(PH) = 10.9 and 9.5 Hz, 1H, RhH); ¹³C NMR (C_6D_6 , 150.9 MH2) δ 146.9 (ddd, J(RhC) = 34.2, J(PC) = 12.0 and 5.8 Hz, RhC), 144.3 (d, J(PC) = 8.6 Hz, RhCCCH₂), 42.2 (dd, J(RhC) = 5.7, J(PC) = 5.2 Hz, RhCCCH₂), 19.1 (d, J(PC) = 29.3 Hz, PCH₂); ³¹P NMR (C_6D_6 , 162.0 MHz) δ 65.7 (dd, J(RhP) = 120.4, J(PP) = 366.2 Hz, fBu₂P of chelate ring), 43.0 (dd, J(RhP) = 110.2, J(PP) = 366.2 Hz, fBu₂P of monodentate ligand). **6**: ¹H NMR (C₆D₆, 200 MHz) δ 3.56, 3.06 (both m, 4H each, C₂H₄), 2.84 (m, 4H, PCH₂CH₂), 1.56 (m, 4H, PCH₂); ¹³C NMR (C₆D₆, 50.3 MHz) δ 44.7 (d, J(RhC) = 14.9 Hz, C_2P_{4J} , 32.9 (s, $\text{PCH}_2(E_D_6, 50.3 \text{ MHz})$) δ 44.7 (d, J(RhC) = 14.9 Hz, C_2P_{4J} , 32.9 (s, $\text{PCH}_2(E_D_2, 22.4 \text{ (d, } J(\text{PC}) = 15.6 \text{ Hz}$, PCH_2); ³¹P NMR (C_6D_6 , 81.0 MHz) δ 65.8 (d, J(RhP) = 185.7 Hz). 7: IR (KBr) ν (CO) 1937 cm⁻¹; ³¹P NMR (toluene d_8 , 162.0 MHz, 223 K) δ 58.9 (dd, J(RhP) = 118.7, J(PP) = 312.0 Hz, H_{2L} , θ of rotamer I) 58.1 (d. J(RhP) = 19.4 Hz, θ : D of rotamer I) 58.1 (d. J(RhP) = 19.4 Hz, θ : D of rotamer I) tBu_2P of rotamer I), 58.1 (d, J(RhP) = 120.4 Hz, tBu_2P of rotamer II), 47.4 (dd, J(RhP) = 123.8, J(PP) = 312.0 Hz, tBu_2P of rotamer I), 46.6 47.4 (dd, $\mathcal{J}(\text{RhP}) = 123.8$, $\mathcal{J}(\text{PP}) = 312.0$ HZ, \mathcal{I}_{242} Pol rotamer 1), 40.6 (d, $\mathcal{J}(\text{RhP}) = 120.4$ HZ, \mathcal{I}_{242} Pol rotamer III). **8**: ¹H NMR (C₆D₆, 300 MHz, 313 K) δ 3.23 (m, 4H, PCH₂CH₂), 2.53 (m, 4H, PCH₂), 1.36 (dt, $\mathcal{J}(\text{PH}) = 3.2$, $\mathcal{J}(\text{RhH}) = 1.1$ HZ, Rh=C=CH); ¹³C NMR (C₆D₆, 75.4 MHz, 313 K) δ 290.6 (m, Rh=C), 116.2 (m, Rh=C=C), 33.3 (s, PCH₂CH₂), 23.1 (vt, $\mathcal{N} = 15.3$ HZ, PCH₂); ³¹P NMR (C₆D₆, 81.0 MHZ, 308 K) δ 52.5 (d, $\mathcal{J}(\text{RhP}) = 137.3$ HZ). **9**: IR (KBr) ν (RhH) 2138 cm⁻¹; ¹⁴H NMR (C, D, 400 MHZ) δ 3.25 (m, 4H, PCH) CH) 2.31 (m, 4H, PCH) = 22.63 $(C_6D_6, 400 \text{ MHz}) \delta 3.25 \text{ (m, 4H, PCH}_2CH_2), 2.31 \text{ (m, 4H, PCH}_2), -22.63$ $(dt, J(RhH) = 26.3, J(PH) = 14.7 Hz, 2H, RhH_2); {}^{13}C NMR (C_6D_6, 100.6)$ (MHz) δ 34.4 (s, PCH₂CH₂), 26.2 (vt, N = 15.3 Hz, PCH₂); ³¹P NMR (C₆D₆, 162.0 MHz) δ 65.6 (d, *J*(RhP) = 115.3 Hz). **10**: ¹H NMR (acetone d_6 , 200 MHz) δ 3.20, 2.71, 2.53, 2.33 (all m, 2H each, PCH₂ and PCH_2CH_2); ^{13}C NMR (acctone- d_6 , 50.3 MHz) δ 142.5 (d, J(PC) = 9.3 Hz, *ipso*-C of C₆H₅ uncoord), 111.5 (ddd, J(RhC) = 3.7, J(PC) = 9.2and 4.7 Hz, ipso-C of C₆H₅ coord), 40.8 (dd, J(PC) = 25.0 and 2.0 Hz, $PCH_2CH_2-\eta^{6}-C_6H_5)$, 30.6 (s, $PCH_2-\eta^{6}-C_6H_5)$; ³¹P NMR (acetone- d_6 , 81.0 MHz) δ 81.5 (dd, J(RhP) = 211.1, J(PP) = 15.3 Hz, tBu_2P of chelate ligand), 68.6 (dd, J(RhP) = 203.4, J(PP) = 15.3 Hz, tBu₂P of monodentate ligand), -142.7 (sept, J(PF) = 707.0 Hz, PF6-).

⁽⁷⁾ Crystal data for **4**: crystals from acetone at room temperature; crystal size $0.20 \times 0.20 \times 0.10$ mm; monoclinic, space group $P2_1/n$ (No. 14), Z = 4; a = 8.8783(18) Å, b = 17.190(3) Å, c = 21.126(4) Å, $\beta =$ $98.92(3)^\circ$, V = 3185.2(11) Å³, $d_{calcd} = 1.333$ g cm⁻³; $2\theta(max) = 52.74^\circ$ (Mo K α , $\lambda = 0.710$ 73 Å, graphite monochromator, ψ scan, T = 173(2)K; 32 867 reflections scanned, 6512 unique, 4075 observed ($I > 2\sigma(I)$), direct methods (SHELXS-97), 340 parameters, reflex/parameter ratio 19.15; R1 = 0.0450, wR2 = 0.1026; residual electron density +0.897/– 1.259 e Å⁻³.

⁽⁸⁾ Nemeh, S.; Jensen, C.; Binamira-Soriaga, E.; Kaska, W. C. Organometallics **1983**, *2*, 1442–1447.

⁽⁹⁾ Rybtchinski, B.; Vigalok, A.; Ben-David, Y.; Milstein, D. J. Am. Chem. Soc. **1996**, 118, 12406–12415.

⁽¹⁰⁾ Bushweller, C. H.; Rithner, C. D.; Butcher, D. J. Inorg. Chem. 1984, 23, 1967–1970.

temperature in the presence of hydrogen. Under these conditions, the dihydrido complex **9** (pale yellow solid) is formed, the ¹H NMR spectrum of which displays a hydride signal at δ –22.63. It is somewhat shifted upfield compared with that in **4**. From the appearance of a single resonance in the high-field region and the splitting of this signal into a doublet of triplets, we conclude that both the hydrido and the phosphine ligands are stereochemically equivalent. Since it is known that the related compound [RhH₂Cl(P*i*Pr₃)₂] has a trigonal-bipyramidal structure,¹¹ a similar coordination geometry of **9** is most likely.

An attempt to abstract the chloro ligand of **4** with AgPF₆ and generate the cationic 14-electron rhodium-(III) species [RhH{C₆H₄-2-CH₂CH₂P*t*Bu₂- κ^2 (*C*,*P*){**3**]⁺ led instead to the isolation of the half-sandwich-type compound **10** (Scheme 3).¹² The inequivalence of the two *Pt*Bu₂ units is confirmed by the appearance of two signals in the ³¹P NMR spectrum at δ 81.5 and 68.6, which due to ³¹P-¹⁰³Rh and ³¹P-³¹P couplings are split into doublets of doublets. A related complex with *t*Pr instead of *t*Bu substituents at the phosphorus atoms has recently been prepared from the labile bis(acetone)- rhodium(I) precursor $[Rh(C_8H_{14})_2(acetone)_2]PF_6$ and 2 equiv of $C_6H_5CH_2CH_2P{\it I}Pr_2.^4$

In conclusion, we have shown that the reaction of 2, frequently used as a starting material for the preparation of rhodium(I) complexes $[RhCl(PR_3)_2]_n$ (n = 1, 2),^{1b,13} with the sterically demanding phosphine 3 leads to the arylhydridorhodium(III) compound 4 by C-H activation of one of the six-membered rings. The most noteworthy features are (i) that the insertion of the metal into the C-H bond proceeds under unusually mild conditions, as in the reaction of the cationic species $[Rh(C_8H_{14})_2$ - $(solv)_n$ ⁺ with the benzylic phosphine $tBu_2PCH_2C_6H_2$ -Me₃,¹⁴ and (ii) that in the presence of CO, phenylacetylene, or H₂ this insertion process is completely reversible. The five-coordinate rhodium(III) complex 4 also provides access to the cationic half-sandwich-type compound 10, which could not be obtained by established routes.4,15

Acknowledgment. We gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft (Grant No. SFB 347) and the Fonds der Chemischen Industrie, the latter in particular for a Ph.D. fellowship (for G.C.). We also thank Dr. R. Bertermann and Dr. M. Grüne for detailed NMR measurements and Dr. J. Wolf for valuable advice.

Supporting Information Available: A table giving the elemental analysis data for compounds **4** and **6–10** as well as tables of crystallographic data, data collection, and solution and refinement details, positional and thermal parameters, and bond distances and angles for **4**. This material is available free of charge via the Internet at http://pubs.acs.org.

OM0010159

⁽¹¹⁾ Harlow, R. L.; Thorn, D. L.; Baker, R. T.; Jones, N. L. Inorg. Chem. 1992, 31, 993–997.

⁽¹²⁾ The preparation of **10** is as follows. A solution of **4** (136 mg, 0.21 mmol) in 6 mL of toluene was treated at -60 °C with a solution of AgPF₆ (54 mg, 0.21 mmol) in 2 mL of ether. When the solution was warmed to room temperature, a change of color from yellow to brown occurred and a white solid precipitated. The solution was filtered, the filtrate was evaporated in vacuo, and the residue was extracted twice with 4 mL of CH₂Cl₂. The combined extracts were brought to dryness in vacuo, the residue was dissolved in 1 mL of acetone, and 6 mL of ether was added with stirring. A pale brown solid was obtained, which was separated from the mother liquor, washed twice with 5 mL each of ether and pentane, and dried: yield 138 mg (88%); mp 107 °C dec.

^{(13) (}a) van Gaal, H. L. M.; van den Bekerom, F. L. A. *J. Organomet. Chem.* **1977**, *134*, 237–248. (b) Werner, H.; Feser, R. *Z. Naturforsch.* **1980**, *35B*, 689–693.

⁽¹⁴⁾ Rybtchinsky, B.; Konstantinovsky, L.; Shimon, L. J. W.; Vigalok, A.; Milstein, D. *Chem. Eur. J.* **2000**, *6*, 3287–3292.

^{(15) (}a) Singewald, E. T.; Mirkin, C. A.; Levy, A. D.; Stern, C. L. *Angew. Chem.* **1994**, *106*, 2524–2526; *Angew. Chem., Int. Ed. Engl.* **1994**, *33*, 2473–2475. (b) Singewald, E. T.; Shi, X.; Mirkin, C. A.; Schofer, S. J.; Stern, C. L. *Organometallics* **1996**, *15*, 3062–3069.