Synthesis and Characterization of Monomeric Organogallium-Nitrogen Compounds, $Et_2GaNMe[C_6H_2(2,4,6-t-Bu)_3],$ $Me_2GaNMe[C_6H_2(2,4,6-t-Bu)_3],$ $MeGa{NH[C_6H_2(2,4,6-t-Bu)_3]}_2$, and $Ga{NH[C_6H_2(2,4,6-t-Bu)_3]}_3$

O. T. Beachley, Jr.,* Daniel B. Rosenblum, and David J. MacRae

Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260-3000

Received December 8, 2000

Four gallium-nitrogen compounds, $Et_2GaNMe[C_6H_2(2,4,6-t-Bu)_3]$, $Me_2GaNMe[C_6H_2(2,4,6-t-Bu)_3]$ t-Bu)₃], MeGa{NH[C₆H₂(2,4,6-t-Bu)₃]}₂, and Ga[N(H)C₆H₂(t-2,4,6-Bu)₃]₃, have been prepared by metathetical reactions. The monomeric derivatives $Et_2GaNMe[C_6H_2(2,4,6-t-Bu)_3]$ and Me_2 -GaNMe $[C_6H_2(2,4,6-t-Bu)_3]$ are of interest because their ¹H NMR spectra at room temperature had resonances indicative of two magnetically nonequivalent organic groups bonded to gallium, a spectral feature consistent with restricted rotation about the gallium-nitrogen bond. Variable-temperature ¹H NMR spectral studies of a toluene solution of Me₂GaNMe- $[C_6H_2(2,4,6-t-Bu)_3]$ identified the barrier to rotation about the gallium-nitrogen bond as approximately 71 kJ/mol. This result suggests that steric effects might be responsible. The monomeric compound $MeGa{NH[C_6H_2(2,4,6-t-Bu)_3]}_2$ was prepared from $MeGaCl_2$ and LiNH- $[C_6H_2(t-Bu)_3]$ but was also the gallium–nitrogen product when Me₂GaCl was reacted with the same lithium amide in diethyl ether. Experimental data demonstrated that Me₂GaNH- $[C_6H_2(2,4,6-t-Bu)_3]$ underwent a ligand redistribution reaction at room temperature to form an equilibrium mixture with MeGa{NH[C₆H₂(2,4,6-t-Bu)₃]}₂ and GaMe₃. In contrast, the tertiary amide Ga{NH[C₆H₂(t-Bu)₃]}₃ does not readily undergo ligand redistribution reactions with GaMe₃.

Introduction

Monomeric compounds with the simplest formula R₂-GaNR¹R² such as (t-Bu)₂GaN(t-Bu)(SiPh₃),¹ (t-Bu)₂GaN-(1-adamantyl)(SiPh₃),¹ [(2,4,6-i-Pr)₃C₆H₂]₂GaNH[(2,6-i- $Pr_{2}C_{6}H_{3}_{2}^{1}$ [(2,4,6-t-Bu)₃C₆H₂]₂GaN(H)Ph,² R₂GaN- $(t-Bu)(BMe_2)^3$ (R = Me, Et and CH₂CPhMe₂), and Et₂- $GaN(t-Bu)(BMes_2)^4$ have the potential to exhibit p-p π -bonding³ between gallium and nitrogen, but the experimental data suggest that these interactions are not significant for determining either their structural features or their unique NMR spectral properties at room temperature. Thus, the GaR₂ and the NR¹R² moieties are not coplanar even though each moiety is planar within a given molecule according to the X-ray structural data. Similarly, the asymmetries of the NR¹R² moieties have the potential to magnetically distinguish the two organic substituents bonded to gallium, but the substituents were equivalent according to NMR spectra at room temperature. Thus, rotation about the gallium-nitrogen bond in these molecules is not restricted under these conditions. In this paper the preparation and characterization of four new monomeric gallium-nitrogen compounds that incorporate a supermesityl group on nitrogen, $Et_2GaNMe[C_6H_2(t-Bu)_3]$, $Me_2GaNMe[C_6H_2(t-Bu)_3]$, $MeGa{NH[C_6H_2(t-Bu)_3]}_2$, and $Ga[N(H)C_6H_2(t-Bu)_3]_3$, are described. The first two are of special interest because of their potential to exhibit magnetically nonequivalent organic groups on gallium if there is restricted rotation about the galliumnitrogen bond.

Results and Discussion

The new compound Et₂GaNMe[C₆H₂(t-Bu)₃], which is closely related to the previously reported derivative Et₂- $GaNH[C_6H_2(t-Bu)_3]$,⁵ was synthesized in 90% yield by a metathetical reaction between Et₂GaCl^{6,7} and LiNMe-[C₆H₂(t-Bu)₃] in pentane and then fully characterized. Even though both gallium-nitrogen compounds are liquids at room temperature and are monomeric according to cryoscopic molecular weight studies in benzene solution in the concentration range of 0.04–0.08 *m*, they have very different chemical properties and ¹H NMR spectra. The new derivative Et₂GaNMe[C₆H₂(t-Bu)₃]

Waggoner, K. M.; Ruhlandt-Senge, K.; Wehmschulte, R. J.; He,
X.; Olmstead, M. M.; Power, P. P. *Inorg. Chem.* **1993**, *32*, 2557.
Brothers, P. J.; Wehmschulte, R. J.; Olmstead, M. M.; Ruhlandt-Senge, K.; Parkin, S. R.; Power, P. P. *Organometallics* **1994**, *13*, 2792.
Linti, G. J. J. Organomet. Chem. **1994**, *465*, 79.
D. Chem. B. Chem. Bay. **1000**, 002462

⁽⁴⁾ Power, P. P. Chem. Rev. 1999, 99, 3463.

⁽⁵⁾ Beachley, O. T., Jr.; Rosenblum, D. B.; Churchill, M. R.; Churchill, D. G.; Krajkowski, L. M. Organometallics **1999**, *18*, 2543. (6) Eisch, J. J. J. Am. Chem. Soc. 1962, 84, 3830.

⁽⁷⁾ Armer, B.; Schmidbaur, H. Chem. Ber. 1967, 100, 1521.

was stable to decomposition at temperatures up to 120–130 °C. In contrast, $Et_2GaNH[C_6H_2(t-Bu)_3]$ decomposed at room temperature and formed the metallacyclic

compound {EtGaNH[C₆H₂(t-Bu)₂(CMe₂CH₂)]}₂, GaEt₃, and $H_2N[C_6H_2(t-Bu)_3]$.⁵ The ¹H NMR spectra of these two gallium-nitrogen monomers are also very different. The spectrum of $Et_2GaNMe[C_6H_2(t-Bu)_3]$ is consistent with restricted rotation of the GaEt₂ group about the gallium-nitrogen bond at 20.7 °C, whereas the two ethyl groups of Et₂GaNH[C₆H₂(t-Bu)₃] are magnetically equivalent under the same conditions. Thus, a benzene solution of Et₂GaNMe[C₆H₂(t-Bu)₃] exhibited two sets of sharp resonances of equal intensities for the methyl and methylene protons for the ethyl groups bonded to gallium, whereas $Et_2GaNH[C_6H_2(t-Bu)_3]$ had only one set of ethyl gallium resonances. Single resonances for the N-methyl, the ortho and para tert-butyl groups, and the phenyl protons completed the spectrum of Et₂- $GaNMe[C_6H_2(t-Bu)_3]$. Thus, a methyl group and a supermesityl group on nitrogen are able to restrict rotation about the gallium-nitrogen bond at 20.7 °C and make the ethyl groups on gallium magnetically nonequivalent. Variable-temperature NMR studies of Et₂-GaNMe[C₆H₂(t-Bu)₃] in toluene- d_8 revealed that 75 °C, the highest temperature investigated, did not supply sufficient energy to enable the GaEt₂ group to rotate freely and make the ethyl(gallium) protons equivalent.

The synthesis of Me₂GaNMe[C₆H₂(t-Bu)₃] was undertaken in order to determine if there was restricted rotation of the GaMe₂ moiety as there was for the GaEt₂ moiety in $Et_2GaNMe[C_6H_2(t-Bu)_3]$ and, if so, attempt to determine whether steric hindrance between substituents, p-p π -bonding between gallium and nitrogen, or some other factor(s) was responsible. A metathetical reaction between Me₂GaCl^{7,8} and LiNMe[C₆H₂(t-Bu)₃] in pentane provided the desired gallium-nitrogen product Me₂GaNMe[C₆H₂(t-Bu)₃] as a crystalline solid at room temperature. The compound was readily purified by vacuum sublimation at 60–70 °C and existed as a monomeric species in benzene solution according to cryoscopic molecular weight studies in the concentration range of 0.04-0.08 m. The ¹H NMR spectrum of Me₂- $GaNMe[C_6H_2(t-Bu)_3]$ in benzene and toluene indicated restricted rotation of the GaMe₂ moiety, as two Ga- CH_3 singlets of equal intensity, each with a width at half-height of 8.28 Hz, were observed at 20.7 °C. All other lines in the spectrum were sharp, an observation consistent with free rotation of the $C_6H_2(t-Bu)_3$ group.

A variable-temperature ¹H NMR spectral study of $Me_2GaNMe[C_6H_2(t-Bu)_3]$ in d_8 -toluene was undertaken in order to learn more about the origin of the restricted rotation about the gallium–nitrogen bond. When the temperature was increased from 20.7 to 30.0 °C, the two lines for the Ga–CH₃ groups broadened from 8.28 to 16.08 Hz, whereas all other lines in the spectrum remained sharp. Heating to 40 °C caused more broadening as the width at half-height of each of the Ga-Me lines increased to 37.70 Hz. Coalescence occurred at 51 °C. A further increase in temperature to 60 °C led to sharpening of the single line as the width at half-height decreased to 49.59 Hz. The maximum separation of the two gallium-methyl lines of 0.231 ppm at 20.7 °C, a coalesence temperature of 51 °C, and the approximate formula⁹ afforded a calculated barrier to rotation about the gallium-nitrogen bond of 71 kJ/mol. This small barrier is most likely the result of steric interactions between the methyl groups bonded to gallium and the nitrogen substituents, the bulky supermesityl group, and the methyl group. In contrast, when the methyl group on nitrogen was replaced by a proton, as in Et₂- $GaNH[C_6H_2(t-Bu)_3]^5$ and $Me_2GaNH[C_6H_2(t-Bu)_3]$ (see below), the steric effects were sufficiently small that free rotation about the gallium-nitrogen bond was observed at 20.7 °C. Thus, all observations suggest that π -bonding between gallium and nitrogen appears to be minimal, if it occurs at all.¹⁻⁴ An X-ray structural study of Me₂- $GaNMe[C_6H_2(t-Bu)_3]$ was attempted, but X-ray quality crystals could not be isolated. Single crystals were grown by vacuum sublimation in a sealed tube. However, when the crystals were separated from the wall of the tube in the drybox, they became opaque and did not diffract a beam of X-rays. Recrystallization from pentane was also investigated as a method of crystal growth, but X-ray quality crystals could not be obtained by this method either.

The preparation of Me₂GaNH[C₆H₂(t-Bu)₃] by a metathetical reaction between Me₂GaCl^{7,8} and LiNH[C₆H₂-(t-Bu)₃]⁵ (eq 1) was attempted so that its chemical, physical, and spectral properties could be compared with those of Et₂GaNH[C₆H₂(t-Bu)₃]⁵ and Me₂GaNMe[C₆H₂-(t-Bu)₃]. However, Me₂GaNH[C₆H₂(t-Bu)₃] could not be isolated as a pure compound because it underwent a ligand redistribution reaction to form an equilibrium mixture with MeGa{NH[C₆H₂(t-Bu)₃]₂ and GaMe₃ (eq 2) in diethyl ether and pentane, the reaction solvents.

$$Me_{2}GaCl + LiNH[C_{6}H_{2}(t-Bu)_{3}] \rightarrow Me_{2}GaNH[C_{6}H_{2}(t-Bu)_{3}] + LiCl (1)$$

$$2\text{Me}_{2}\text{GaNH}[\text{C}_{6}\text{H}_{2}(\text{t-Bu})_{3}] \rightleftharpoons \\ \text{MeGa}\{\text{NH}[\text{C}_{6}\text{H}_{2}(\text{t-Bu})_{3}]\}_{2} + \text{GaMe}_{3} (2)$$

When the synthetic reaction (eq 1) was carried out in diethyl ether, the isolated gallium-nitrogen product was MeGa{NH[C₆H₂(t-Bu)₃]}₂, not Me₂GaNH[C₆H₂(t-Bu)₃]. The ¹H NMR spectrum of this product was identical to the compound independently prepared from $MeGaCl_2$ and $LiNH[C_6H_2(t-Bu)_3]^5$ (see below). The other product, trimethylgallium diethyl ether adduct, must have been removed with the ether during vacuum distillation, a conclusion consistent with its physical properties. When pentane was the reaction solvent, the isolated product was a mixture of Me₂GaNH[C₆H₂(t- Bu_{3} and $MeGa{NH[C_{6}H_{2}(t-Bu)_{3}]}_{2}$, two species in the above ligand redistribution equilibrium (eq 2). The remaining species in the above equilibrium, GaMe₃, had been removed from the nonvolatile product during vacuum distillation of the solvent, as the flask containing the solvent that was separated by vacuum distillation smoked and smelled of GaMe3 when it was removed from the vacuum line and exposed to air. The ¹H NMR spectrum of the nonvolatile mixture in C₆D₆ confirmed the existence of the equilibrium, as the spectrum exhibited lines for all three methyl gallium compounds

⁽⁸⁾ Magee, C. P.; Sneddon, L. G.; Beer, D. C.; Grimes, R. N. J. Organomet. Chem. 1975, 86, 159.

⁽⁹⁾ Kost, D.; Carlson, E. H.; Raban, M. J. Chem. Soc., Chem. Commun. 1971, 656.

in eq 2, $Me_2GaNH[C_6H_2(t-Bu)_3]$, $MeGa\{NH[C_6H_2 (t-Bu)_3$]₂, and GaMe₃. The presence of both Me₂GaNH- $[C_6H_2(t-Bu)_3]$ and MeGa{NH[C_6H_2(t-Bu)_3]}₂ permitted the formation of GaMe₃ as required by the above equation. The experimental observations for the reactions in diethyl ether and pentane are reconciled if Me₃-Ga·OEt₂ undergoes a ligand redistribution with MeGa- $\{NH[C_6H_2(t-Bu)_3]\}_2$ slower than does GaMe₃. Fourcoordinate gallium compounds typically undergo ligand redistribution reactions slower than do three-coordinate species. Thus, Me₃Ga·OEt₂ was removed by vacuum distillation before it could react with MeGa{NH[C₆H₂- $(t-Bu)_3$]₂ and re-form Me₂GaNH[C₆H₂(t-Bu)₃]. It is noteworthy that the ¹H NMR resonances assigned to $Me_2GaNH[C_6H_2(t-Bu)_3]$ as part of the equilibrium mixture included only one line for the Ga-Me protons. Thus, neither $Me_2GaNH[C_6H_2(t-Bu)_3]$ nor $Et_2GaNH[C_6H_2-C$ (t-Bu)₃] exhibits restricted rotation about the galliumnitrogen bond at 20.7 °C.

The identity of MeGa{NH[C₆H₂(t-Bu)₃]}₂ and its formation by the decomposition of Me₂GaNH[C₆H₂-(t-Bu)₃] by a ligand redistribution reaction were confirmed by its independent synthesis and characterization. This compound was prepared in 70% yield by a metathetical reaction between MeGaCl2¹⁰ and LiNH- $[C_6H_2(t-Bu)_3]^5$ in a 1:2 mol ratio in diethyl ether and then purified by recrystallization from ether. This gallium-nitrogen product was a crystalline solid, mp 214.7–216.1 °C, and was monomeric in benzene solution in the concentration range of 0.07–0.03 *m* according to a cryoscopic molecular weight study. The resonances in the ¹H NMR spectrum of pure MeGa{NH[C₆H₂(t-Bu)₃]}₂ in benzene were identical to those assigned to this compound, as found in the products of the reaction between Me₂GaCl and LiNH[C₆H₂(t-Bu)₃] in diethyl ether or pentane (eqs 1 and 2).

The derivative with three bulky substituents, Ga{NH-[C₆H₂(t-Bu)₃]}₃, was prepared by reacting GaCl₃ with excess LiNH[C₆H₂(t-Bu)₃].⁵ This gallium–nitrogen product was soluble in pentane and benzene even though it decomposed at the unusually high temperature of 258– 260 °C. When Ga{NH[C₆H₂(t-Bu)₃]}₃ was combined with GaMe₃ in 1:2 and 2:1 mol ratios in benzene solution in attempts to prepare Me₂GaNH[C₆H₂(t-Bu)₃] and MeGa-{NH[C₆H₂(t-Bu)₃]}₂ by stoichiometric ligand redistribution reactions, minimal, if any, reaction occurred even after 12 months according to the ¹H NMR spectra of the reaction mixtures. Thus, three NH[C₆H₂(t-Bu)₃] groups are sufficiently bulky to protect the gallium from reaction with GaMe₃.

Experimental Section

All compounds were manipulated in a standard vacuum line or in a purified argon atmosphere. The starting materials GaMe₃, GaEt₃, and Li(n-Bu) were purchased from Strem Chemicals, Inc. and Aldrich Chemical Co., as appropriate, whereas Et_2GaCl^5 and LiNH[C₆H₂(t-Bu)₃]⁵ were prepared by using literature methods. Crude products that incorporated the NH[C₆H₂(t-Bu)₃] ligand as described in the following paragraphs were observed to have an impurity of the free amine NH₂[C₆H₂(t-Bu)₃] that varied for the preparation of a given compound from 1 to 15%. Extensive studies attempted to identify the source of the amine and the reason for its variability but without success.⁵ The amine was not a product of accidental hydrolysis. The provenance of the amine remains unknown. Since the preparations of Me₂GaCl^{7,8} and MeGaCl₂¹⁰ by ligand redistribution reactions in pentane solutions have not been reported, they are described below. All solvents were dried by conventional procedures. Elemental analyses were performed by E+R Microanalytical Laboratory, Inc., Parsippany, NJ. The ¹H NMR spectra were recorded at 400 MHz by using a Varian Unity-Inova 400 spectrometer. Proton chemical shifts are reported in δ (ppm) units and are referenced to SiMe_4 at δ 0.00 ppm and benzene at δ 7.15 ppm. All samples for NMR spectra were contained in sealed NMR tubes. Infrared spectra were observed for either neat liquids or Nujol mulls of solids, as appropriate, between KBr plates and were recorded with a Perkin-Elmer 683 spectrometer. Melting points were determined with a Mel-Temp by using flame-sealed capillaries filled with purified argon and are uncorrected. Molecular weights were measured cryoscopically for benzene solutions by using an instrument similar to that described by Shriver and Drezdzon.11

Preparation of Me₂GaCl. A 1.15 g (10.0 mmol) sample of GaMe₃ was added by vacuum distillation to 0.881 g (5.00 mmol) of freshly sublimed GaCl₃ dissolved in approximately 25 mL of pentane. The reaction mixture was warmed from -196 °C to room temperature over a 10 min period and then stirred overnight. Removal of solvent by vacuum distillation at 0 °C produced a colorless solid, which was purified by sublimation at room temperature from the original reaction flask through a glass elbow into a Schlenk flask maintained at -196 °C. The product Me₂GaCl (1.67 g 12.4 mmol) was isolated in 82% yield as a colorless, crystalline solid. Me₂-GaCl: mp 45.3–45.5 °C (lit.⁷ 45 °C); ¹H NMR (C₆D₆, δ) 0.18 (s, Ga–CH₃).

Preparation of MeGaCl₂. A flask charged with 1.15 g of freshly sublimed GaCl₃ (6.52 mmol) was attached to a 90° glass elbow which had been connected to a Schlenk flask. Then approximately 20 mL of pentane and 0.375 g of GaMe₃ (3.26 mmol) were vacuum distilled into the flask. As the reaction mixture warmed to room temperature over 10 min, a colorless precipitate formed. After the reaction mixture had been stirred for 12 h, the solvent was removed by vacuum distillation at room temperature. The resulting colorless solid was purified at room temperature by dynamic sublimation through the glass elbow into the Schlenk flask maintained at -196 °C. The product MeGaCl₂ (1.36 g, 8.74 mmol) was isolated in 89.3% yield. MeGaCl₂: mp 78.4–78.9 °C (lit.¹⁰ 75–76 °C); ¹H NMR (THF- d_8 , δ) 0.14 (s, Ga–CH₃).

Preparation of LiNMe[C₆H₂(t-Bu)₃]. A pressure-equalizing addition funnel was charged in the drybox with 6.21 g (22.6 mmol) of HNMe[C₆H₂(t-Bu)₃] and connected to a 500 mL three-necked flask that was equipped with a 24/40 adapter with a Teflon stopcock and a rubber septum. Then a solution of Li(n-Bu) (1.6 M in hexanes, 15 mL, 24 mmol) was added by syringe to the three-necked flask under cover of argon. Finally, approximately 50 mL of pentane was transferred by cannula both to the addition funnel to dissolve the amine and to the flask to dilute the Li(n-Bu). The solution of Li(n-Bu) was cooled to 0 °C, and then the solution of HNMe[C₆H₂(t-Bu)₃] was added with stirring at a rate of about 20 drops/min. Since no precipitate was observed during the addition of the amine, the reaction mixture was allowed to warm to room temperature overnight, after which time a colorless precipitate had formed. The precipitate was isolated by filtration and washed three times with cold solvent to yield 3.05 g of LiNMe $[C_6H_2(t-Bu)_3]$ (10.8 mmol, 48.1% based on HNMe[C₆H₂(t-Bu)₃]). LiNMe[C₆H₂-(t-Bu)₃]: ¹H NMR (THF-d₈, δ) 7.09 (s, Ar-H, 2H), 3.10 (s, N-CH₃, 3H), 1.48 (s, *o*-Ph-(t-Bu), 18H), 1.23 (s, *p*-Ph-(t-Bu), 9H).

⁽¹⁰⁾ Schmidbaur, H.; Findeiss, W. Chem. Ber. 1966, 99, 2187.

⁽¹¹⁾ Shriver, D. F.; Drezdzon, M. A. *The Manipulation of Air-Sensitive Compounds*; Wiley: New York, 1986; p 38.

Preparation of Et₂GaNMe[C₆H₂(t-Bu)₃]. A solution of 1.08 g (6.60 mmol) of Et₂GaCl in approximately 25 mL of pentane was added to a suspension of 2.01 g (7.12 mmol) of LiNMe[C₆H₂(t-Bu)₃] in about 25 mL of pentane that had been cooled to 0 °C. The reaction mixture was stirred for 2 h and then filtered. Two additional extractions of the precipitate separated the pentane-soluble product from LiCl and unreacted lithium amide. Removal of the solvent by vacuum distillation provided a mobile liquid that was purified by vacuum distillation by using an oil bath at 120-130 °C. The final product, Et₂GaNMe[C₆H₂(t-Bu)₃] (2.38 g, 5.91 mmol, 89.5% yield based on Et₂GaCl), was isolated as a colorless mobile liquid that was stable to overnight heating at 65 °C. Et₂GaNMe[C₆H₂(t-Bu)₃]: ¹H NMR (C₆D₆, δ) 7.53 (s, Ph-H, 2H), 3.00 (s, N-CH₃, 3H), 1.55 (s, o-Ph-(t-Bu), 18H), 1.32 (s, *p*-Ph-(t-Bu), 9H), 1.24 (t, *J*_{C-H} = 8 Hz, Ga-CH₂CH₃, 3H), 0.97 (t, $J_{C-H} = 8$ Hz, Ga-CH₂CH₃, 3H), 0.75 (q, $J_{C-H} = 8$ Hz, Ga- CH_2CH_3 , 2H), 0.47 (q, $J_{C-H} = 8$ Hz, $Ga-CH_2CH_3$, 2H). Anal. Calcd for C23H42GaN: C, 68.67; H, 10.52. Found: C, 69.40; H, 10.43. Cryoscopic molecular weight, benzene solution, formula weight 402 (observed molality, observed molecular weight, association): 0.079, 393, 0.98; 0.052, 400, 1.00; 0.029, 390, 0.97.

Preparation of Me₂GaNMe[C₆H₂(t-Bu)₃]. A solution of 0.793 g (5.86 mmol) of Me₂GaCl in approximately 25 mL of pentane was added to 1.65 g (5.86 mmol) of LiNMe[C₆H₂-(t-Bu)₃] suspended in 25 mL of pentane at 0 °C and stirred for 2 h. The reaction mixture was filtered to separate LiCl. After the residue was washed two additional times with pentane, the solvent was removed by vacuum distillation and a viscous material remained. Subsequent dynamic evacuation of the crude product for 12 h produced a solid that was purified by vacuum sublimation at 60-70 °C. The compound Me₂GaNMe- $[C_6H_2(t-Bu)_3]$ (1.81 g, 4.83 mmol) was isolated as a colorless solid in 82.4% yield. Me₂GaN[MeC₆H₂(t-Bu)₃]: mp 73.6-74.2 °C; ¹H NMR (C₆D₆, δ) 7.57 (s, Ph–H, 2H), 2.99 (s, N–CH₃, 3H), 1.54 (s, o-Ph-(t-Bu), 18H), 1.32 (s, p-Ph-(t-Bu), 9H), -0.02 (s, Ga $-CH_3$, 3H), -0.21 (s, Ga $-CH_3$, 3H); (C₆D₅CD₃, δ) 7.50 (s, Ph-H, 2H), 2.98 (s, N-CH₃, 3H), 1.52 (s, o-Ph-(t-Bu), 18H), 1.32 (s, p-Ph-(t-Bu), 9H), -0.002 (s, Ga-CH₃, 3H), -0.228 (s, Ga-CH₃, 3H); IR (Nujol, cm⁻¹) 2790 (s), 1598 (m), 1552 (w), 1472 (s), 1430 (s), 1410 (s), 1388 (vs), 1359 (s), 1282 (m), 1260 (s), 1237 (s), 1210 (s), 1199 (s), 1170 (m, br), 1142 (m), 1118 (s), 1050 (s), 930 (w), 838 (s), 816 (w), 788 (m), 765 (s), 745 (s), 719 (s), 643 (m), 589 (s), 540 (m), 518 (w), 460 (w), 419 (w). Anal. Calcd for C₂₁H₃₈GaN: C, 67.40; H, 10.23. Found: C, 67.84; H, 10.71. Cryoscopic molecular weight, benzene solution, formula weight 374 (observed molality, observed molecular weight, association): 0.077, 374, 1.00; 0.059, 373, 1.00; 0.040, 375, 1.00. Crystals were grown by placing a sample of the compound in a sealed evacuated tube above the vent of an oven maintained at 150 °C. However, when the crystals were removed from the wall of the tube in the drybox, they became opaque and did not diffract a beam of X-rays. Attempts to grow X-ray quality crystals by recrystallization from a pentane solution were unsuccessful.

Reaction of Me₂GaCl and LiNH[C₆H₂(t-Bu)₃] in Diethyl Ether. The reagents 0.431 g (3.19 mmol) of Me₂GaCl and 0.908 g (3.39 mmol) of LiNH[C₆H₂(t-Bu)₃] were combined in diethyl ether at 0 °C. The reaction mixture was allowed to warm to room temperature and was stirred for 2 h. The reaction mixture was filtered, and then the insoluble components were washed two times with the reaction solvent. The components that were volatile at room temperature were removed from the soluble fraction by vacuum distillation, and 0.973 g of a colorless solid was obtained. This crude product was identified Bu_{3} with an impurity of $H_{2}N[C_{6}H_{2}(t-Bu)_{3}]$: mp 175.6–182.6 °C; ¹H NMR (C₆D₆, δ) 7.55 (s, Ph-H, MeGa{NH[C₆H₂(t-Bu)₃]}₂), 7.40 (s, Ph-H, H₂N[C₆H₂(t-Bu)₃]), 3.63 (s, N-H, H₂N[C₆H₂(t-Bu)3]), 3.22 (s, N-H, MeGa{NH[C6H2(t-Bu)3]}2), 1.63 (s, o-Ph-(t-Bu), MeGa{NH[C6H2(t-Bu)3]}2), 1.40 (s, o-Ph-(t-Bu), H2N- $\label{eq:constraint} \begin{array}{l} [C_6H_2(t\text{-}Bu)_3]), \ 1.39 \ (s, \ p\text{-}Ph-(t\text{-}Bu), \ H_2N[C_6H_2(t\text{-}Bu)_3]), \ 1.35 \\ (s, \ p\text{-}Ph-(t\text{-}Bu) \ MeGa\{NH[C_6H_2(t\text{-}Bu)_3]\}_2), \ -0.31 \ (s, \ Me, \ MeGa-\{NH[C_6H_2(t\text{-}Bu)_3]\}_2). \end{array}$

Reaction of Me₂GaCl and LiNH[C₆H₂(t-Bu)₃] in Pentane. A flask was charged with 0.507 g (3.75 mmol) of Me₂-GaCl, while 1.02 g (3.81 mmol) of $LiNH[C_6H_2(t-Bu)_3]$ was placed in a Schlenk flask connected by means of a mediumporosity glass frit. After approximately 25 mL of pentane had been added to each flask, the suspension of LiNH[C₆H₂(t-Bu)₃] was cooled to 0 °C. Then the solution of Me2GaCl was added, and the mixture was stirred for 2 h. After the reaction mixture was filtered, the residue was washed two additional times. Removal of the pentane by vacuum distillation produced 1.195 g of a colorless solid. This crude product was identified by ¹H NMR spectroscopy as a mixture of Me₂GaNH[C₆H₂(t-Bu)₃] and $MeGa{NH[C_6H_2(t-Bu)_3]}_2$ with a small impurity of $H_2N[C_6H_2-$ (t-Bu)₃]:⁵ mp 110-160 °C; ¹H NMR (C₆D₆, δ) 7.55 (s, Ph-H, $MeGa{NH[C_6H_2(t-Bu)_3]}_2)$, 7.51 (s, Ph-H, Me₂GaNH[C₆H₂(t-Bu)₃]), 7.40 (s, Ph-H, H₂N[C₆H₂(t-Bu)₃]), 3.63 (s, N-H, H₂N-[C₆H₂(t-Bu)₃]), 3.49 (s, N-H, Me₂GaNH[C₆H₂ (t-Bu)₃]), 3.22 (s, N-H, MeGa{NH[C₆H₂(t-Bu)₃]}₂), 1.63 (s, o-Ph-(t-Bu), MeGa- $\{NH[C_6H_2(t-Bu)_3]\}_2$, 1.51 (s, *o*-Ph-(t-Bu), Me₂GaNH[C₆H₂(t-Bu)₃]), 1.40 (s, o-Ph-(t-Bu), H₂NC₆H₂(t-Bu)₃), 1.39 (s, np-Ph-(t-Bu), H₂N[C₆H₂(t-Bu)₃]), 1.36 (s, p-Ph-(t-Bu), Me₂GaNH[C₆H₂-(t-Bu)₃]), 1.35 (s, p-Ph-(t-Bu), MeGa{NH[C₆H₂(t-Bu)₃]}₂), -0.15 (s, Me, $Me_2GaNH[C_6H_2(t-Bu)_3]$), -0.26 (s, Me, $GaMe_3$), -0.31(s, Me, MeGa{NH[$C_6H_2(t-Bu)_3$]}₂).

Preparation of MeGa{NH[C₆H₂(t-Bu)₃]}₂. A Solv-seal Schlenk flask with 1.02 g (3.82 mmol) of LiNH[C₆H₂(t-Bu)₃] was connected by means of a medium-porosity frit to a flask that contained 0.289 g (1.86 mmol) of MeGaCl₂. Approximately 25 mL of diethyl ether was vacuum distilled into the apparatus at -196 °C. After the ether was divided between the two flasks, the flask containing the suspension of $LiNH[C_6H_2(t-Bu)_3]$ in ether was cooled to 0 °C and the solution of MeGaCl₂ was added. The resulting mixture was stirred for 12 h and then filtered to remove LiCl and excess LiNH[C₆H₂(t-Bu)₃]. The residue was washed three additional times. The resulting solution was cooled to -30 °C to induce crystallization. Removal of the solvent by vacuum distillation at room temperature produced 0.792 g of MeGa{ $NH[C_6H_2(t-Bu)_3]$ } (1.31 mmol, 70.4% yield based on MeGaCl₂) as a colorless solid. MeGa{NH[C₆H₂(t-Bu)₃]}₂: mp 214.7-216.1 °C; ¹H NMR (C₆D₆, δ) 7.55 (s, Ph-H, 4H), 3.23 (s, N-H, 2H), 1.63 (s, o-Ph-(t-Bu), 36H), 1.35 (s, *p*-Ph-(t-Bu), 18H), -0.30 (s, GaCH₃, 3H); IR (Nujol, cm⁻¹) 3420 (m), 1599 (w), 1423 (s), 1360 (vs), 1262 (m), 1242 (m), 1220 (m), 1193 (m), 1111 (m), 1018 (w), 930 (w), 918 (w), 865 (m), 829 (m), 813 (w), 785 (w), 745 (w), 720 (w), 620 (w, br), 470 (w), 430 (w, br). Anal. Calcd for C₃₇H₆₃-GaN₂: C, 73.38; H, 10.49; N, 4.63. Found: C, 73.78; H, 10.80; N, 4.31. Cryoscopic molecular weight, benzene solution, formula weight 606 (observed molality, observed molecular weight, association): 0.068, 627, 1.03; 0.054, 616, 1.02; 0.033, 612, 1.01.

Preparation of Ga{NH[C₆H₂(t-Bu)₃]}₃. A Schlenk flask charged with 0.148 g (0.840 mmol) of freshly sublimed GaCl₃ was connected by means of a medium frit to a second flask charged with 0.718 g (2.69 mmol) of LiNH[C₆H₂(t-Bu)₃]. Then, approximately 35 mL of benzene was added by vacuum distillation to each flask. After the flask containing the LiNH- $[C_6H_2(t-Bu)_3]$ was cooled with ice, the GaCl₃ solution was added over a 2 h period to the slurry of LiNH[C₆H₂(t-Bu)₃]. The reaction mixture was permitted to warm to room temperature and was stirred overnight. The benzene was removed by vacuum distillation and approximately 70 mL of pentane was added. The product mixture was filtered and then washed four additional times to separate the LiCl and excess LiNH[C6H2-(t-Bu)₃] from the soluble product. Recrystallization of the product from pentane at -78 °C yielded 0.475 g of Ga{NH- $[C_6H_2(t-Bu)_3]$ (0.558 mmol, 66.5% yield based on GaCl₃) as a colorless solid: mp 258-260 °C (dec); ¹H NMR (C₆D₆, δ) 7.35

(s, Ph–H, 6H), 3.84 (s, N–H, 3H), 1.41 (s, *o*-Ph–(*t*-Bu), 54H), 1.36 (s, *p*-Ph–(*t*-Bu), 27H); IR (Nujol, cm⁻¹): 3400 (vw, br), 1580 (vw), 1359 (vs), 1330 (m), 1280 (m), 1237 (m), 1220 (s), 1195 (m), 1162 (w), 1108 (m), 870 (m), 828 (m), 809 (vw), 780 (w). Anal. Calcd for $C_{54}H_{90}GaN_3$: C, 76.21; H, 10.66. Found: C, 75.85; H, 11.29.

Ligand Redistribution Reactions between Ga{NH-[C₆H₂(t-Bu)₃]}₃ and GaMe₃ in 2:1 and 1:2 Mol Ratios. (a) 2:1 Mol Ratio. An NMR tube was charged with 0.172 g (0.202 mmol) of Ga{NH[C₆H₂(t-Bu)₃]}₃ and 0.0116 g (0.101 mmol) of GaMe₃. Then ~0.6 mL of C₆D₆ was added by vacuum distillation, and the tube was flame sealed. ¹H NMR (C₆D₆, δ , 12 months): 7.35 (s, Ph–H), 3.83 (s, N–H), 1.40 (s, ρ -Ph–(*t*-Bu)), 1.36 (s, p-Ph–(*t*-Bu), 27H), -0.15 (s, GaCH₃).

(b) 1:2 Mol Ratio. The reagents, 0.0567 g (0.0666 mmol) of Ga{NH[C₆H₂(t-Bu)₃]}₃, 0.0153 g (0.133 mmol) of GaMe₃, and \sim 0.6 mL of C₆D₆, were combined in an NMR tube, and then the ¹H NMR spectra were recorded. ¹H NMR (C₆D₆, δ , 12 months): 7.35 (s, Ph–H), 3.83 (s, N–H), 1.40 (s, *o*-Ph–(*t*-Bu)), 1.36 (s, *p*-Ph–(*t*-Bu), 27H), -0.15 (s, GaCH₃).

Variable-Temperature ¹H NMR Spectra of Me₂GaNMe-[C₆H₂(t-Bu)₃]. The temperature dependence of the spectrum was investigated in toluene- d_8 . Increasing the temperature from 20.7 to 60 °C resulted in broadening of the two Ga-Me lines of equal intensity until coalesence was observed at 51 °C. Then, the line sharpened at 60 °C, the highest temperature studied. All other lines in the spectrum were unchanged over this temperature range. The measurements of the widths of the Ga-Me lines at half-height were determined by using the Varian VXR-400 program. The approximate formula⁹ with the coalesence temperature of 51 °C and the maximum peak separation of 0.231 ppm afforded a rotation barrier around the gallium–nitrogen bond of 71.5 kJ/mol.

Acknowledgment. This work was supported in part by the Office of Naval Research.

OM001050F