

Volume 20, Number 6, March 19, 2001

© Copyright 2001 American Chemical Society

Communications

Hydrolytic Synthesis of an Alumoxane Hydride Bearing **Terminal Pyrazolato Ligands[†]**

Wenjun Zheng, Herbert W. Roesky,* and Mathias Noltemeyer

Institut für Anorganische Chemie der Universität Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany

Received November 20, 2000

Summary: The novel alumoxane hydride $[(\mu - \eta^1: \eta^1 - 3, 5$ $tBu_2pz)_2(\eta^1-3,5-tBu_2pz)_2(\mu_3-O)(\mu-Al)_3H_3]\cdot 2THF$ (2; 3,5 $tBu_2pz = 3,5$ -tert-butylpyrazolato) is formed when aluminum dihydride $[(\mu - \eta^1 : \eta^1 - 3, 5 - tBu_2pz)(\mu - Al)H_2]_2$ (1) is reacted with 1 equiv of water. The core of compound 2 consists of two tetra- and one hexacoordinated Al atoms with short Al-O bonds. The two central N_2Al_2O ring systems share a common Al-O edge with a hexacoordinated Al atom, and two of the pyrazolato ligands bind in an η^1 and μ - η^1 : η^1 arrangement.

The controlled hydrolysis of organoaluminum compounds with water results in the formation of alumoxanes of the general formulas (RAIO)_n and (R₂AlOAIR₂)_n.^{1,2} Since Sinn and Kaminsky found in 1980 that methylalumoxane (MAO) is a highly active cocatalyst in ethylene and propylene polymerization by group 4 metallocenes (e.g., Cp₂ZrMe₂),³ important stimulus was given to the structural determination of alumoxanes to clarify their role in these polymerization reactions. Although the role of MAO seems to be understood,⁴ the structure of the catalytically active species of methylalumoxane remains unknown. Recently, several lower aggregated alumoxanes [*t*BuAlO]_{*n*} (n = 6-9) as well as aluminum hydroxides (oxide hydroxides) were prepared by the reaction of R_3Al (R = tBu, Me, Mes, Ph) with water or anhydrous lithium hydroxide.^{5,6} On the other hand, it has been shown that aluminum hydride compounds can be used as precursors for the synthesis of organoalumoxane with the formula $(RAIO)_4$ (R = 2,4,6tBu₃C₆H₂) and organoalumoxane hydride with the formula { $[(\mu - \eta^1 : \eta^1 - 3, 5 - tBu_2pz)(\mu - Al)H]_2O$ }₂ ($tBu_2pz = 3, 5 - tBu_2pz$) di-tert-butylpyrazolato) by employing the oxygen-trans-

[†] Dedicated to Professor Tris Chivers on the occasion of his 60th birthday.

^{*} To whom correspondence should be addressed. Fax: (+49)551-39-3373. E-mail: hroesky@gwdg.de.

⁽¹⁾ Alkylalumoxanes generally are species containing an oxygen bridge between two metal atoms, Al-O-Al. Oligomeric aluminum alkoxides (hydroxide) bridged by an alkoxy (hydroxide) group, Al-O(R)–Al (Al–O(H)–Al), and compounds containing no organic group generally are not included in this classification; see: Pasynkiewicz, S. Polyhedron **1990**, *9*, 429.

⁽²⁾ Alkylalumoxanes usually are prepared by hydrolysis of organoaluminum compounds using water^{2a} or hydrated metal salts^{2b} or by the reaction with species containing reactive oxygen such as CO₂, RCONR₂, MeCO₂H, and Me₂SO^{2c} (a) Ishida, S. I. J. Polym. Sci. **1962**, 62, 1. (b) Razuvaev, G. A.; Sangalov, Yu. A.; Ne'lkenbaum, Yu. Ya.; Minsker, K. S. Izv. Akad. Nauk SSSR, Ser. Khim. **1975**, 2547; Chem. Abstr. **1976**, 84, 59627x. Collins, S.; Gauthier, W. J.; Holden, D. A.; Kuntz B. A.; Tavlor, N. L; Ward, D. G. Organometalics **1991**, 10, 2061 Kuntz, B. A.; Taylor, N. J.; Ward, D. G. Organometallics 1991, 10, 2061.
(c) Ziegler, K.; Krupp, F.; Weyer, K.; Larbig, W. Liebigs Ann. Chem.
1960, 629, 251. Zakharkin, L. J.; Khorlina, I. M. Izv. Akad. Nauk SSSR, Ser. Khim. 1959, 2146.

^{(3) (}a) Sinn, H.; Kaminsky, W.; Vollmer, H.-J.; Woldt, R. Angew. Chem. 1980, 92, 396; Angew. Chem., Int. Ed. Engl. 1980, 19, 390. (b)

<sup>Sinn, H.; Kaminsky, W. Adv. Organomet. Chem. 1980, 18, 99.
(4) Brintzinger, H.-H.; Fischer, D.; Mühlhaupt, R.; Rieger, B.;
Waymouth, R. Angew. Chem. 1995, 107, 1255; Angew. Chem., Int. Ed.</sup>

^{Waymouth, R. Angew. Chem. 1995, 107, 1255; Angew. Chem., Int. Ed.} Engl. 1995, 34, 1143 and references therein.
(5) (a) Mason, M. R.; Smith, J. M.; Bott, S. G.; Barron, A. R. J. Am. Chem. Soc. 1993, 115, 4971. (b) Harlan, C. J.; Mason, M. R.; Barron, A. R. Organometallics 1994, 13, 2957. (c) Landry, C. C.; Harlan, C. J.; Bott, S. G.; Barron, A. R. Angew. Chem. 1995, 107, 1315; Angew. Chem., Int. Ed. Engl. 1995, 107, 1201.
(6) (a) Storre, J.; Klemp, A.; Roesky, H. W.; Schmidt, H.-G.; Noltemeyer, M.; Fleischer, R.; Stalke, D. J. Am. Chem. Soc. 1996, 118, 1380. (b) Storre, J.; Schnitter, C.; Roesky, H. W.; Schmidt, H.-G.; Noltemeyer, M.; Fleischer, R.; Stalke, D. J. Am. Chem. Soc. 1997, 119, 7505. 7505.

fer species [Me₂SiO]₃⁷ and dioxane.⁸ However, reactions of organoaluminum hydrides with water to synthesize organoalumoxane or organoalumoxane hydride have not been reported. In this paper the synthesis of the alumoxane hydride $[(\mu - \eta^1: \eta^1 - 3, 5 - tBu_2pz)_2(\eta^1 - 3, 5 - tBu_2pz)_2$ $(\mu_3-O)(\mu-Al)_3H_3]$ ·2THF (**2**) by the reaction of the aluminum dihydride $[(\mu - \eta^1 : \eta^1 - 3, 5 - tBu_2pz)(\mu - Al)H_2]_2$ (1)⁹ with 1 equiv of water is described.

To a stirred solution of compound 1 in dry THF (or dioxane) at 70 °C, 1 equiv of water in THF (or dioxane) was added slowly to yield 2 (Scheme 1).¹¹ The X-ray crystal analysis of 2 reveals an arrangement involving three aluminum atoms and four ligands (Figure 1).¹² The composition in the gas phase is supported by the MS (EI) spectrum ((M – H)⁺, m/z 815). In compound **2**,

(9) To a stirred solution of $H[Bu_2pz]^{10a}$ (0.36 g, 2.0 mmol) in toluene (50 mL) was slowly added AlH₃·NMe₃^{10b} (4.0 mL of a 0.80 M solution in C₆H₆, 3.2 mmol) in excess with evolution of H₂ at 50 °C. The mixture was stirred for 3 h at 50 °C and for 15 h at room temperature. The solvent was removed and the crude product dried under reduced pressure for at least 6 h to afford 1 as a pure white powder (0.38 g, 91%). Alternatively, the crude product was recrystallized in toluene at -26 °C (0.31 g, 76%). Mp: 194–196 °C. ¹H NMR (C₆D₆): δ 1.44 (s, 36 H, *t*Bu), 6.14, (s, 2 H, CH), 5.4 (very br ($W_{1/2} = 144$ Hz), 4 H, Al-H). ¹³C NMR (C₆D₆): δ 30.75 (s, CH₃), 32.79 (s, CMe₃), 104.11 (s, CH) 167.26 (s, *C*-*B*u), MS (EI; m/z (%), 415 ((M – H)⁺, 100), IR (Nujol mull; cm⁻¹): Al–H 1869, 1920, Anal. Calcd for $C_{22}H_{42}Al_2N_4$: C, 63.37; H, 10.16; Al, 12.95; N, 13.44. Found: C, 63.11; H, 10.08; Al, 12.77; N, 13.40

(10) (a) Fernández-Castaño, C.; Foces-Foces, C.; Jagerovic, N.; Elguero, J. J. Mol. Struct. 1995, 355, 265. (b) Kovar, R. A.; Callaway, J. O.; van Dyke, C. H.; Miro, N. D. Inorg. Synth. 1975, 17, 36.

(11) Method 1: To a stirred solution of **1** (2.08 g, 5.0 mmol) in dioxane (50 mL), was slowly added water (0.090 mL, 5.0 mmol) in dioxane (100 mL) (over 5 h) with evolution of H₂ at 70 °C. The solution was filtered through Celite. The filtrate was reduced (to 15 mL), and 2 was recrystallized at room temperature to yield colorless crystals (0.84 g, 41%). Mp: 188 °C. ¹H NMR (THF- d_8): δ (η^1 : η^1) 1.24 (s, 36 H, C(6)-*t*Bu), 5.88 (s, 2 H, C(5)H); δ (η^1) 1.34 (s, 18 H, C(1)-*t*Bu), 1.5 (br $(W_{1/2} = 33 \text{ Hz})$, 18 H, C(3)-*B*u), 6.09 (s, 2 H, C(2)H), 4.5 (very br ($W_{1/2} = 90 \text{ Hz})$, 3 H, Al–H). ¹³C NMR (THF-*d*₈): δ ($\eta^1:\eta^1$) 31.53 (s, *C*(62)), 32.63 (s, C(61)), 99.42 (s, C(5)H), 162.67 (s, C(6)); $\delta(\eta^1)$ 31.46 (s, C(12)), 33.01 (s, C(11)), 31.1 (br, C(32)), 31.2 (br, C(31)), 103.64 (s, C(2/H), 164.38 (s, C(1)), 167.32 (br, C(3)). MS (EI; m/z (%)): 815 ((M – H)⁺, 100), 759 ((M – AlMe₂)⁺, 35). IR (Nujol mull, cm⁻¹): Al–H, 1872, 1896 cm⁻¹. Anal. Calcd for $C_{44}H_{79}Al_3N_8O$: C, 64.71; H, 9.68; N, 6.86. Found: C, 64.21; H, 9.54; N, 6.78. Method 2: The procedure is the same as in method 1, except that THF was used as a solvent and **2** is recrystallized at -26 °C (1.30 g, 54%). Single crystals suitable for X-ray diffraction analysis were obtained from THF at -26 °C.

02

C21

V.

C61

C64

́с63

O C62

Figure 1. Perspective view and atom-labeling scheme of compound 2, showing the numbering scheme and thermal ellipsoids at the 50% probability level. Selected bond lengths (Å) and angles (deg): Al(1)-O(1) = 1.774(2), Al-(2) - O(1) = 1.861(6), Al(2) - O(2) = 2.023(4), Al(1) - N(1) = 01.860(5), Al(1)-N(3) = 1.930(5), Al(2)-N(4) = 2.050(4); Al-(1)-O(1)-Al(2) = 115.56(16), O(1)-Al(1)-N(1) = 110.7(2),O(1)-Al(1)-N(3) = 96.3(2), N(2)-N(1)-Al(1) = 106.78(3),O(1)-Al(2)-N(4) = 89.12(14), O(1)-Al(2)-O(2) = 85.96-(13), Al(1)-N(3)-C(4) = 137.2(4), Al(1)-N(1)-C(1) =142.9(4).

C44

the presence of remaining Al-H bonds was confirmed by ¹H NMR spectroscopy (δ 4.2 (br), THF- d_8) and by the IR spectrum (ν_{Al-H} 1872 and 1896 cm⁻¹).¹³ The three Al atoms of the Al₃O core form a regular triangle (Al-(1)-O(1) = 1.774(3) Å, Al(2)-O(1) = 1.861(6) Å). The Al atoms use two μ - η^1 : η^1 pyrazolato ligands to generate two chairlike five-membered Al₂N₂O rings. An interesting finding is that the oxygen atoms of two THF molecules bind to the Al(2) atom to form a 6-fold coordination sphere. Moreover, the surprising feature of 2 is that two pyrazolato ligands, which generally form stable complexes with aluminum in an $\eta^1:\eta^1$ and, very recently, an η^2 mode,^{8,14} are terminally coordinated to two of the aluminum centers. This coordination pattern is uncommon for the known pyrazolato complexes.¹⁵ Only a few transition-metal complexes (M = Ir, Ta, Ni, Cr) with terminal η^1 -pyrazolato ligands have appeared recently in the literature.¹⁶ In **2**, the 6-fold coordination

⁽⁷⁾ Wehmschulte, R. J.; Power, P. P. J. Am. Chem. Soc. 1997, 119, 8387.

⁽⁸⁾ Zheng, W.; Mösch-Zanetti, N. C.; Roesky, H. W.; Noltemeyer, M.; Hewitt, M.; Schmidt, H.-G.; Schneider, T. R. Angew. Chem. 2000, 112, 4446; Angew. Chem., Int. Ed. 2000, 39, 4276.

⁽¹²⁾ Crystal data for $2:^{18}$ C₆₈H₁₂₇Al₃N₈O₇ (includes six THF molcules), M_r = 1249.72, monoclinic, space group C2/c, a = 1 5.312(10) Å, b = 26.90(4) Å, c = 19.779(6) Å, α = 90°, β = 109.53(2)°, γ = 90°, V = 7680(12) Å³, Z = 4, ρ_{calcd} = 1.081 Mg m⁻³, F(000) = 2744, μ(Mo Kα) = 0.101 mm⁻¹. The total number of reflections measured was 5871 in the range $7.22 \le 2\theta \le 45.16^\circ$, of which 5035 were unique. Final *R* indices: R1 = 0.0850 ($I > 2\sigma(I)$) and wR2 = 0.2575 (all data), maximum/minimum residual electron density 450/–291 e nm⁻³. (13) (a) Janik, J. F.; Duesler, E. N.; Paine, R. T. *J. Organomet. Chem.*

^{1997, 539, 19. (}b) Nlate, S.; Herdtweck, E.; Blümel, J.; Fischer, R. A. J. Organomet. Chem. 1997, 545-546, 543 and references therein.

^{(14) (}a) Zheng, W.; Mösch-Zanetti, N. C.; Roesky, H. W.; Hewitt, M.; Cimpoesu, F.; Schneider, T. R.; Stasch, A.; Prust, J. *Angew. Chem.* 2000, 112, 3229; Angew. Chem., Int. Ed. 2000, 39, 3099 and references therein. (b) Deacon, G. B.; Dilbridge, E. E., Forsyth, C. M.; Junk, P. C.; Skelton, B. W.; White, A. H. Aust. J. Chem. 1999, 52, 733.
 (15) (a) Trofimenko, S. Chem. Rev. 1972, 72, 497. (b) Trofimenko,

S. Prog. Inorg. Chem. 1986, 34, 115. (c) Cosgriff, J. E.; Deacon, G. B.

Angew. Chem. 1998, 109, 298; Angew. Chem., Int. Ed. 1998, 37, 286.
 (16) (a) Carmona, D.; Fernando, J. L.; Luis, A. O. Organometallics
 1991, 10, 3123. (b) Guzei, I. A.; Yap, G. P. A.; Winter, C. H. Inorg. Chem. 1997, 36, 1738. (c) Legzdins, P.; Rettig, S. J.; Smith, K. M.; Tong, V.; Young, V. G. J. Chem. Soc., Dalton Trans. 1997, 3269. (d) Campora, L.; Longe, L. L. Maya, C. M.; Palmo, P.; Correspondent Usice J.; Lopez, J. L.; Maya, C. M.; Palma, P.; Carmona, E. Organometallics 2000, 19, 2707.

sphere around the Al(2) atom differs sharply from other characterized alumoxanes in which coordination numbers of 3, 4,^{5a,b,7} and 5⁸ were found. The Al–O bond lengths of the Al₃O core range from 1.774(3) Å (Al(1)–O(1)) to 1.861(6) Å (Al(2)–O(1)) (Figure 1), and these values are shorter than the sum of the respective covalent radii.¹⁷ However, the Al(2)–O(2) bond length (2.023(4) Å) is much longer than that of Al(1)–O(1), indicating that bonding between Al(2) and the O atom from THF is not as strong as in Al(1)–O(1), due to the 6-fold coordination site. The Al(1)–N(1) bond length (1.860(5) Å) is considerably shorter than those of Al-(1)–N(3) (1.930(5) Å) and Al(2)–N(4) (2.050(4) Å), probably due to the higher electronic density of the N atoms on the terminal ligands.

The ¹H NMR spectrum of **2** in THF-*d*₈ showed that each type of the pyrazolato ligands gives rise to an independent set of signals (δ 1.24, 5.88 ppm and δ 1.34, 1.5 (br, *W*_{1/2} = 33 Hz), 6.07 ppm, at 25 °C), implying that the two types of groups are not rapidly exchanging on the NMR time scale at this temperature. Furthermore, the two different chemical shifts of *t*Bu groups on the η^1 -pyrazolato ligands (δ 1.34, 1.5 ppm) and one broad signal indicated that the exchange between Al-(1)-N(1) and Al(1)-N(2) as well as the rotation around the Al(1)-N(1) axis are both hindered. These features are in sharp contrast to the transition-metal complexes with terminal pyrazolato ligands (e.g., Ta complex), in which such characteristics were not observed, even at -80 °C.^{16b} The experimental investigations of the reaction of **2** (at +70 °C) showed that quite small amounts of a white unidentified insoluble solid as well as H₂ were formed. It is noteworthy to mention that the yield of product **2** is much lower, along with more insoluble byproducts when the hydrolysis is conducted at room temperature or -78 °C. The mechanism of this process is currently unknown, but it probably involves initial intermediate containing Al–OH species.

In summary, this paper demonstrates that precursor **1** can be used to generate alumoxane hydride **2** by hydrolysis. In addition, the structure of **2** illustrates for the first time that pyrazolato ligands also prefer to bind terminally to aluminum(III) centers, besides the known $\eta^{1}:\eta^{1}$ or η^{2} modes. Although some arguments in favor of this terminal arrangement have been proposed that this feature is probably caused by the steric or electronic factors of the structures,^{16b} we cannot yet confirm which factor plays a central role in determining the overall structure. However, as in the case of compound **2**, it seems that the adopted terminal arrangement is likely due to the sterically bulky *t*Bu groups of the ligands rather than to electronic factors.

Acknowledgment. Financial support of this work from the Deutsche Forschungsgemeinschaft and the Göttinger Akademie der Wissenschaften is gratefully acknowledged.

Supporting Information Available: Text giving experimental details of the syntheses and tables of final atomic coordinates, bond distances and angles, and anisotropic thermal parameters for the structural analyses of **2**. This material is available free of charge via the Internet at http://pubs.acs.org. OM000989Y

⁽¹⁷⁾ The electronic contributions of short Al–O bond lengths have recently attracted interest. However, observation of the shortening has brought about controversy, since several explanations for this feature are possible: see ref 8 and references therein.

⁽¹⁸⁾ Sheldrick, G. M. SHELXL-97, Program for Crystal Structure Refinement; University of Göttingen, Göttingen, Germany, 1997.