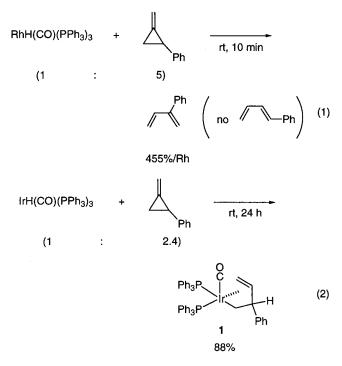
Hydrido-Rhodium(I) and -Iridium(I) Complex Promoted Ring-Opening Isomerization of Unsymmetrically Substituted Methylenecyclopropanes into 1,3-Dienes. Structures of Intermediates and Reaction Pathways

Yasushi Nishihara, Chikako Yoda, and Kohtaro Osakada*


Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan

Received February 1, 2001

Summary: 2-Phenyl-1-methylenecyclopropane and 2,2diphenyl-1-methylenecyclopropane react with MH(CO)- $(PPh_3)_3$ (M = Rh, Ir) to produce 1,3-dienes or the intermediate Rh and Ir complexes having a 3-butenyl ligand, depending on the conditions. The structures and chemical properties of the obtained complexes suggest plausible pathways for the ring-opening isomerization of the methylenecyclopropanes to the corresponding dienes.

Highly strained methylenecyclopropanes¹ undergo transition metal complex promoted ring opening to afford various products, depending on the kind of metal complex used and the reaction conditions. Rhodium(I) complexes promote ring-opening addition of methylenecyclopropane with alkenes,² hydrosilylation to give acyclic organosilanes,³ and intramolecular phenylation of the cyclopropane via ring opening,² as well as isomerization to give 1,3-dienes or their Rh complexes.^{4,5} Much less attention has been paid to the mechanism involved in the reactions and, in particular, the roles of the Rh complexes that promote C-Cbond activation and subsequent bond formation reactions to produce the functionalized products. In this paper we report the reactions of substituted methylenecyclopropanes with RhH(CO)(PPh₃)₃ and IrH(CO)- $(PPh_3)_3$, leading to their ring-opening isomerization into the corresponding 1,3-dienes, and the isolation of the intermediate organo-rhodium and -iridium complexes.

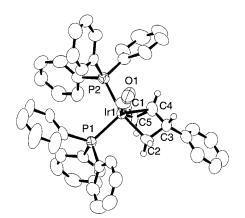
2-Phenyl-1-methylenecyclopropane reacts with RhH-(CO)(PPh₃)₃ at room temperature to promote smooth ring-opening isomerization into 2-phenyl-1,3-butadiene (eq 1), while the reaction with IrH(CO)(PPh₃)₃ produces Ir(η^1 : η^2 -CH₂CH(Ph)CH=CH₂)(CO)(PPh₃)₂ (1) (eq 2).⁶

The molecular structure of **1**, shown in Figure 1, verifies the presence of a 2-phenyl-3-butenyl ligand derived from the C–C activation of a methylenecyclopropane ring.⁷ The former reaction seems to involve an intermediate Rh complex, having a structure analogous to that of **1**, but it was not found in the products due to rapid formation of the 1,3-diene via β -hydrogen elimination. The lack of formation of 1-phenyl-1,3-butadiene in reaction 1 implies selective activation at the less substituted proximal C–C bond of the substrate.

The reaction of 2-phenyl-1-methylenecyclopropane with $IrH(CO)(PPh_3)_3$ at 50 °C in a 10:1 molar ratio gives a mixture of 2-phenyl- and 1-phenyl-1,3-buta-

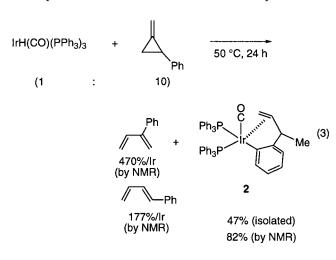
10.1021/om010081n CCC: \$20.00 © 2001 American Chemical Society Publication on Web 04/24/2001

 ^{(1) (}a) Wiberg, K. B. Angew. Chem., Int. Ed. Engl. 1986, 25, 312.
 (b) Bachrach, S. M. J. Phys. Chem. 1993, 97, 4996.

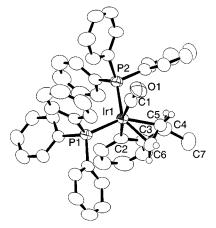

⁽²⁾ Chiusoli, G. P.; Costa, M.; Melli, L. J. Organomet. Chem. 1988, 358, 495.

^{(3) (}a) Bessmertnykh, A. G.; Blinov, K. A.; Grishin, Y. K.; Donskaya,
N. A.; Tveritinova, E. V.; Yuréva, N. M.; Beletskaya, I. P. J. Org. Chem. **1997**, 62, 6069. (b) Bessmertnykh, A. G.; Blinov, K. A.; Grishin, Y. K.;
Donskaya, N. A.; Tveritinova, E. V.; Beletskaya, I. P. Russ. J. Org. Chem. (Engl. Transl.) **1969**, 34, 799.

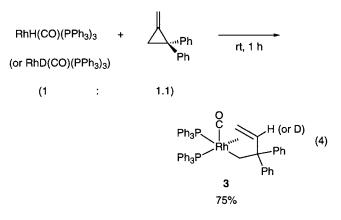
⁽⁴⁾ Brown, J. M.; Kent, A. G. J. Chem. Soc., Perkin Trans. 2 1987, 1597.


⁽⁵⁾ Osakada, K.; Takimoto, H.; Yamamoto, T. J. Chem. Soc., Dalton Trans. 1999, 853.

⁽⁶⁾ Preparation of **1**: To a toluene (10 mL) solution of IrH(CO)-(PPh₃)₃ (223 mg, 0.22 mmol) was added 2-phenyl-1-methylenecyclopropane (74 μ L, 0.54 mmol) at room temperature. After 24 h the solvent was removed by evaporation. Addition of hexane (10 mL) to the yellow oily substance led to the formation of a pale yellow solid, which was washed with 10 mL of hexane (four times), collected by filtration, and dried in vacuo to give Ir(η^{1} : η^{2} -CH₂CH(Ph)CH=CH₂)(CO)(PPh₃)₂ (1; 171 mg, 0.20 mmol, 88%). Complex **1** crystallizes from toluene at -20 °C as colorless crystals. Other complexes were obtained analogously from the reactions at room temperature or at 50 °C.

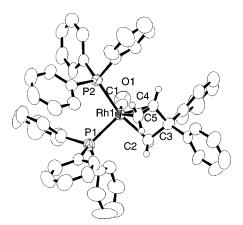

Figure 1. Structure of complex **1** determined by X-ray crystallography with 50% thermal ellipsoid plotting. Hydrogen atoms at the aromatic rings were omitted for simplicity. Selected bond distances (Å) and angles (deg): Ir1-P1 = 2.385(4), Ir1-P2 = 2.341(4), Ir1-C1 = 1.65(3), Ir1-C2 = 2.11(1), Ir1-C4 = 2.14(1), Ir1-C5 = 2.12(2), C2-C3 = 1.54(2), C3-C4 = 1.48(2), C4-C5 = 1.33(2); Ir1-C2-C3 = 94.7(9), C2-C3-C4 = 98(1), Ir1-C4-C3 = 95(1), Ir1-C4-C5 = 71(1), C3-C4-C5 = 120(2), Ir1-C5-C4 = 72(1).

dienes and $Ir(\eta^1:\eta^2-C_6H_4CH(Me)CH=CH_2)(CO)(PPh_3)_2$ (2) (eq 3). The molecular structure of complex 2 was


confirmed by X-ray crystallography (Figure 2).⁸ 2-Phenyl-1,3-butadiene and complex **2** are formed via β -hydrogen elimination of **1** and via orthometalation of the phenyl group of **1**, respectively. At that temperature, the reaction produces 1-phenyl-1,3-butadiene from partial activation of the more highly substituted proximal bond of the substrate.

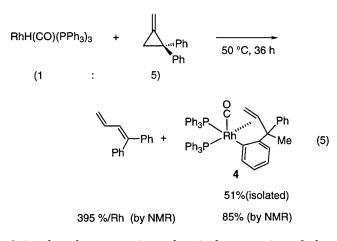
2,2-Diphenyl-1-methylenecyclopropane reacts with RhH(CO)(PPh₃)₃ at room temperature to give Rh(η^{1} : η^{2} -CH₂CPh₂CH=CH₂)(CO)(PPh₃)₂ (**3**) via cleavage of the

Figure 2. Structure of complex **2** determined by X-ray crystallography with 50% thermal ellipsoid plotting. Hydrogen atoms at the aromatic rings and solvated toluene molecules were omitted for simplicity. Selected bond distances (Å) and angles (deg): Ir1-P1 = 2.377(2), Ir1-P2 = 2.358(2), Ir1-C1 = 1.869(6), Ir1-C2 = 2.126(6), Ir1-C5 = 2.161(7), Ir1-C6 = 2.144(7), C2-C3 = 1.408(8), C3-C4 = 1.505(9), C4-C5 = 1.509(9), C4-C7 = 1.52(1), C5-C6 = 1.439(9); Ir1-C2-C3 = 115.4(5), C2-C3-C4 = 116.8-(6), C3-C4-C5 = 109.5(6), C3-C4-C7 = 116.0(6), C5-C4-C7 = 111.1(7), Ir1-C5-C4 = 111.4(5), Ir1-C5-C6 = 69.8(4), C4-C5-C6 = 121.6(6), Ir1-C6-C5 = 71.1(4).


(PPh₃- d_{15})₃ results in selective deuteration at the γ -position of the ligand. The C–C bond activation appears to involve the initial insertion of the C=C double bond into the Rh–H bond and an ensuing β -alkyl elimination¹⁰ of the resulting cyclopropylmethyl rhodium complex (Scheme 1).

⁽⁷⁾ X-ray data for 1: monoclinic, $P2_1/c$ (No. 14), a = 14.128(3) Å, b = 18.584(3) Å, c = 15.013(3) Å, $\beta = 100.62(2)^\circ$, V = 3874 Å³, Z = 4, $D_{calcd} = 1.502$ g cm⁻³, F(000) = 1752, $\mu(Mo K\alpha) = 3.57 \text{ mm}^{-1}$ for monochromated Mo K α radiation ($\lambda = 0.71069$ Å), $R(R_w) = 0.058$ (0.057) for 4246 reflections with $I > 3\sigma(I)$ among 9166 unique reflections ($R_{int} = 0.044$), 460 parameters, GOF = 1.87.

reflections ($R_{int} = 0.044$), 460 parameters, GOF = 1.87. (8) X-ray data for **2**: monoclinic, $P_{1/c}$ (No. 14), a = 13.214(4) Å, b = 21.397(3) Å, c = 14.678(2) Å, $\beta = 93.71(2)^\circ$, V = 4141 Å³, Z = 4, $D_{calcd} = 1.479$ g cm⁻³, F(000) = 1852, μ (Mo K α) = 3.35 mm⁻¹ for monochromated Mo K α radiation ($\lambda = 0.710$ 69 Å), R (R_w) = 0.039 (0.034) for 5990 reflections with $I > 3\sigma(I)$ among 8695 unique reflections ($R_{int} = 0.021$), 476 parameters, GOF = 1.70.


⁽⁹⁾ X-ray data for **3**: monoclinic, *C*2/*c* (No. 15), *a* = 28.705(6) Å, *b* = 20.170(4) Å, *c* = 22.962 (4) Å, *β* = 122.77(1)°, *V* = 11179 Å³, *Z* = 8, *D*_{calcd} = 1.200 g cm⁻³, *F*(000) = 4208, μ (Mo Kα) = 0.402 mm⁻¹ for monochromated Mo Kα radiation (λ = 0.710 69 Å), *R* (*R*_w) = 0.072 (0.105) for 4727 reflections with *I* > 3*σ*(*I*) among 13 210 unique reflections (*R*_{int} = 0.065), 528 parameters, GOF = 2.45.

reflections ($K_{int} = 0.065$), 528 parameters, GOF = 2.45. (10) β -Alkyl elimination of late-transition-metal complexes: (a) Thompson, S. K.; Young, G. B. *Organometallics* **1989**, *8*, 2068. (b) Alkianiec, B.; Christou, V.; Hardy, D. T.; Thompson, S. K.; Young, G. B. *J. Am. Chem. Soc.* **1994**, *116*, 9963. (c) Hartwig, J. F.; Andersen, R. A.; Bergman, R. G. J. Am. Chem. Soc. **1989**, *111*, 2717. (d) McNeill, K.; Andersen, R. A.; Bergman, R. G. *J. Am. Chem. Soc.* **1989**, *111*, 2717. (d) McNeill, K.; Andersen, R. A.; Bergman, R. G. *J. Am. Chem. Soc.* **1997**, *119*, 11244. (e) Kaplan, A. W.; Bergman, R. G. *Organometallics* **1997**, *16*, 1106. (f) Thomas, B. J.; Noh, S. K.; Schulte, G. K.; Sendlinger, S. C.; Theopold, K. H. *J. Am. Chem. Soc.* **1991**, *113*, 893. (g) Takemori, T.; Suzuki, H.; Tanaka, M. J. Am. Chem. Soc. **1994**, *116*, 10779. See also: Rybtchinski, B.; Vigalok, A.; Ben-David, Y.; Milstein, D. J. Am. Chem. Soc. **1996**, *118*, 12406.

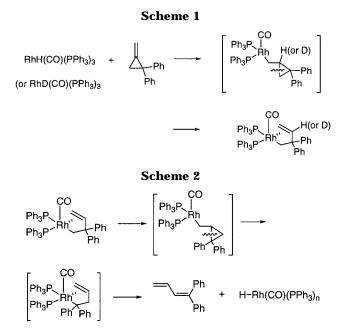


Figure 3. Structure of complex **3** determined by X-ray crystallography with 50% thermal ellipsoid plotting. Hydrogen atoms at the aromatic rings and solvated molecules were omitted for simplicity. Selected bond distances (Å) and angles (deg): Rh1-P1 = 2.408(4), Rh1-P2 = 2.376(4), Rh1-C1 = 1.89(1), Rh1-C2 = 2.13(1), Rh1-C4 = 2.12(1), Rh1-C5 = 2.16(1), C2-C3 = 1.52(2), C3-C4 = 1.54(2), C4-C5 = 1.36(2); Rh1-C2-C3 = 96.0(8), C2-C3-C4 = 97(1), Rh1-C4-C3 = 95.8(8), Rh1-C4-C5 = 72.9(8), C3-C4-C5 = 116(1), Rh1-C5-C4 = 70.0(8).

The reaction of 2,2-diphenyl-1-methylenecyclopropane with RhH(CO)(PPh₃)₃ at 50 °C leads to its ring-opening isomerization into 1,1-diphenyl-1,3-butadiene accompanied by formation of Rh(η^{1} : η^{2} -C₆H₄C(Me)PhCH=CH₂)-(CO)(PPh₃)₂ (**4**) (eq 5). To elucidate the role of complex

3 in the above reaction, chemical properties of the complexes were examined. Once isolated, complex **4** does not produce the 1,3-diene at elevated temperatures. Heating **3** at 50 °C causes the liberation of 1,1-diphenyl-1,3-butadiene in 44% yield. Since the direct elimination

of the diene from the ligand is not plausible, the reaction probably involves skeletal rearrangement and C–C bond formation of the 2,2-diphenyl-3-butenyl ligand to regenerate a cyclopropane ring¹¹ followed by its C–C activation, as shown in Scheme 2. Complex **3**, which is formed as the kinetic product of C–C activation of reaction 5, would be transformed into the diene via a similar pathway and regenerate the hydridorhodium complex that promotes further ring-opening isomerization.

Acknowledgment. This work was supported by a Grant-in-Aid for Scientific Research on Priority Areas, "Molecular Physical Chemistry", from the Ministry of Education, Science, Culture, and Sports of Japan (No. 11166221).

Supporting Information Available: Text and tables giving experimental procedures and crystallographic data for **1–3**. This material is available free of charge via the Internet at http://pubs.acs.org.

OM010081N

⁽¹¹⁾ Several thermally induced rearrangements of organotransitionmetal complexes occur with cyclization of the organic ligand via C-C bond formation, giving a small ring: (a) Flood, T. C.; Bitler, S. P. J. Am. Chem. Soc. **1984**, *106*, 6076. (b) Flood, T. C.; Statler, J. A. Organometallics **1984**, *3*, 1795. (c) Ermer, S. P.; Struck, G. E.; Bitler, S. P.; Richards, R.; Bau, R.; Flood, T. C. Organometallics **1993**, *12*, 2634. (d) Casey, C. P.; Hallenbeck, S. L.; Pollock, D. W.; Landis, C. R. J. Am. Chem. Soc. **1995**, *117*, 9770. (e) Jun, C.-H. Organometallics **1996**, *15*, 895.