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Summary: Reduction of the tetranuclear dinitrogen clus-
ter {[1,1-H10Ce(a-C4H3N)2]SM} 4(THF)2(#-N2) with Na
sand in THF afforded the linear polymeric divalent Sm
complex {[1,1-H1oCes(0-C4H3N);2]2.Sm[Na(THF)]2} n, where
each samarium atom is surrounded by four %>-bonded
pyrrolide rings, thus giving the metal center a formal
30-electron configuration.

Dipyrrolide dianions?! are structurally and electroni-
cally similar to ansa-cyclopentadienyl ligand systems.
However, the presence of deprotonated N atoms in the
pyrrolide rings allows additional o-bonding interactions,
which play an important role in assembling polynuclear
structures. In fact, these ligands enabled the prepara-
tion of a series of cyclic and planar divalent? and mixed-
valence® Sm clusters of variable nuclearity. A common
characteristic in this family of complexes is the particu-
lar bonding mode adopted by the ligand, which, by
crossing o- and z-interactions, confers a bent-metal-
locene geometry to each metal center. This feature is
more than likely responsible for the pronounced reactiv-
ity of divalent samarium polypyrrolide complexes,*
which is otherwise observed only with the samarocenes
and whose reactivity® has to date never been reproduced
by any other ligand system.® Conversely, divalent sa-
marium pyrrolide complexes react with N to perform
a four-electron reduction, resulting in tetranuclear
trivalent flat clusters that encapsulate an [N2]*~
moiety.2=4 Given the low energy requirement for the
cleavage of a single N—N bond (157 kJ/mol) and the
availability of several Sm(ll) centers in the cluster
structure, the resistance of the N—N single bond to
cleavage is at least surprising. Somehow, the encapsu-
lation of reduced N, into a tetranuclear cluster prevents
further reduction. Herein we describe the result of an
attempt to cleave the N—N bond of coordinated N.

Reaction of {[1,1-H10Ce(0-C4H3N)2]1SM} 4(THF)2(1-N2)
with an excess of finely dispersed Na in THF and under
N afforded the novel divalent samarium complex {[1,1-
H10C5((X-C4H3N)2]28m[Na(THF)]z}n (1)7 (Scheme l), which
no longer contains N,. The complex has a linear
polymeric structure® consisting of samarium atoms
surrounded by four sz-coordinated pyrrolide rings orig-
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Figure 1. Structure of compound 1. Bond distances (A)
and angles (deg): Sm—N(1) = 2.811(5), Sm—C(1) = 2.916(6),
Sm—C(2) = 3.023(5), Sm—C(3) = 2.978(6), Sm—C(4) =
2.837(5), Sm—N(2) = 2.980(5), Sm—C(5) = 3.037(6), Sm—
C(6) = 3.035(5), Sm—C(7) = 2.912(6), Sm—C(8) = 2.883(6),
Sm—N(3) = 2.973(5), Sm—C(15) = 2.851(8), Sm—C(16) =
2.884(8), Sm—C(17) = 2.952(6), Sm—C(18) = 2.837(6), Sm—
N@4) = 2.822(5), Sm—C(19) = 2.951(6), Sm—C(20) =
2.919(9), Sm—C(21) = 2.961(6), Sm—C(22) = 2.816(5),
Na(1)—N(1) = 2.395(5), Na(1)—N(2) = 2.491(6), Na(1)—N(3)
= 2.486(5), Na(1)—0(2) = 2.323(5), Na(2)—N(2) = 2.538(6),
Na(2)—N(3) = 2.544(6), Na(2)—N(4) = 2.391(5), Na(2)—0(1)
= 2.384(5); Centroid(1)—Sm—Centroid(2) = 98.2(3), Cen-
troid(1)—Sm—Centroid(3) = 118.1(3), Centroid(1)—Sm—
Centroid(4) = 114.1(3), Centroid(2)—Sm—Centroid(3) =
113.6(4), Centroid (2)—Sm—Centroid(4) = 117.2(3), Cen-
troid(3)—Sm—Centroid(4) = 96.9(3), Sm--:Sm---Sm =
153.6(1).

inating from two ligands (Figure 1). The coordination
geometry around each Sm atom is therefore pseudo-
tetrahedral, with the centroids of the four rings defining
the vertexes of the coordination tetrahedron. The N
atoms are o-bonded to two Na(THF) units, which are
in turn o-bonded to two other N atoms of another
asymmetric unit, thus building a polymeric structure
where the Sm atoms form a nearly linear array. The
coordination geometry around each Na atom is tetra-
hedral and is defined by three N atoms of three
o-bonded pyrrolide rings and one O atom from coordi-
nated THF.

Complex 1 contains samarium in a +2 oxidation state
and exhibits the expected magnetic moment.2=* The
divalent oxidation state and the presence of four sym-
metrically bonded pyrrolide rings around the same
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metal assigns a formal 30-electron count to the Sm
center. To the best of our knowledge, complex 1 provides
the first example of a lanthanide in a #>-CpsM type
geometry which has in the tetravalent CpsU complex
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the only precedent.® The formal 30-electron count is
among the highest in lanthanide chemistry, and it is
surpassed only by [(COT),Yb]Kz(crown),° formally con-
taining a 34-electron configuration. The unique ligand
arrangement of 1 stands out even more when compared
to other existing CpnLn!! compounds, which have so far
indicated that lanthanides can only accommodate up to
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three 5°-bonded Cp rings in their coordination spheres.
In addition, the tendency of a pyrrolide anion toward
n°-coordination is expected to be far lower than that of
a regular Cp ring due to the possible formation of robust
Ln—N o-bonds. The low oxidation state and consequent
expansion of the atomic dimensions may play a signifi-
cant role in accommodating the four rings in the
coordination sphere.

Finally, the formation of 1 implies not only reduction
of samarium centers to the divalent state but also
removal of one samarium atom from one ligand. Our
previous work has shown that the attack of the first two
Na atoms on {[1,1-H1oCs(a-C4H3N)2]1SM} 4(THF)2(x-N2)
occurs on the dinitrogen moiety with each N atom
coordinating one of the two alkali-metal cations.* How-
ever, rather than cleaving Ny, the reaction results in
the reduction of two of the four Sm centers while the
N—N single bond remains nearly unperturbed. Assum-
ing that a similar process also occurs during the attack
of an additional 2 equiv of Na, the reduction should
result in the formation of a divalent “(ligand)sSm4N,-
[Na(THF)]4” intermediate (Scheme 1). The formation of
1 would simply require formal elimination of 2 equiv of
SmN. Accordingly, no N, gas was released during the
reduction and no NHj3; or hydrazine could be detected
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upon hydrolysis of the reaction mixture followed by
careful acidification (warning! fire hazard). The possible
formation of a potentially important binary compound
such as SmN via a mild condition reaction pathway and
its presumable resistance to hydrolysis is of course just
speculation, since no conclusive evidence has been
obtained so far. At this stage, it is interesting to observe
that in the chemistry of dinitrogen fixation promoted
by low-valent Sm and supported by the closely related
calix[4]tetrapyrrole ligand system,’? a Sm metal also
deprived of its ligand system was found attached to a
N2 unit, possibly indicating that the elimination of SmN
is not an unrealistic possibility.
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