Synthesis and Structures of [((Me₃Si)₃CAIF₂)₂(µ-O)Li₂(THF)₄] and [{Li(Me₃Si)₃CAIF₃(THF)}₃LiF(THF)]

Hagen Hatop, Marcus Schiefer, Herbert W. Roesky,* Regine Herbst-Irmer, and Thomas Labahn

> Institut für Anorganische Chemie der Universität Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany

> > Received February 7, 2001

Summary: The synthesis of $[((Me_3Si)_3CAIF_2)_2(\mu-O)Li_2(THF)_4]$ (1) and $[{Li(Me_3Si)_3CAIF_3(THF)}_3LiF(THF)]$ (2) is reported. Compound 1 was obtained either by the reaction of $(Me_3Si)_3CAIMe_2$ THF and Me_3SnF in the presence of Li_2O or by the reaction of $[(Me_3Si)_3CAIF_2]_3$ and Li_2O . 1 is an interesting example of an oxygen- and fluorine-containing alkyl aluminum compound. Complex 2 was prepared by the reaction of $(Me_3Si)_3CAIF_2$ THF with $LiOCH(CF_3)_2$ as an unexpected result that illustrates the variety of possible structures obtainable by the combination of $[(Me_3Si)_3CAIF_2]_3$ and LiF.

Introduction

Recently we reported the synthesis of soluble aluminum fluorides containing alkali metals such as [Na(Me₃- $Si_{3}CAlF_{3}(THF)]_{4}$ (3) and $[((Me_{3}Si)_{3}C)_{4}Al_{4}K_{2}(\mu-F)_{2}F_{8}-$ (THF)₄] (4), as well as a silver derivative of composition $[Ag(toluene)_3]^+[{((Me_3Si)_3C)_2Al_2(\mu-F)F_4}_2Li]^-$ (5) (THF = tetrahydrofuran).^{1a-c} [Li(Me₃Si)₃CAlF₃(THF)]₄^{1d} (6) and [Na(Me₃Si)₃CAlF₃(THF)]₄ are isostructural. These compounds contain the chelating $[(Me_3Si)_3CAlF_3]^-$ (3) and **6**) or [(Me₃Si)₃CAlF₂(*µ*-F)F₂AlC(SiMe₃)₃]⁻ (**4** and **5**) anion, and the cations are structure directing to yield cubic arrays or unusual aggregates. The [(Me₃Si)₃CAlF₂- $(\mu$ -O)F₂AlC(SiMe₃)₃] species in **1** is comparable to the [(Me₃Si)₃CAlF₂(µ-F)F₂AlC(SiMe₃)₃] part in [((Me₃Si)₃C)₄- $Al_4K_2(\mu-F)_2F_8(THF)_4$] and in $[Ag(toluene)_3]^+[{((Me_3-Me_3)_3)^+}]$ $Si_3C_2Al_2(\mu$ -F)F₄ $_2Li$ ⁻, where two of these units coordinate to a metal center. The reaction of (Me₃Si)₃CAlF₂. THF with LiOCH(CF₃)₂ afforded the unexpected compound [{Li(Me₃Si)₃CAlF₃(THF)}₃LiF(THF)] (2). We were not able to isolate an adduct of (Me₃Si)₃CAlF₂·THF and LiOCH(CF₃)₂. However, **1**, **2**, and **6** indicate the variety of products obtained in reactions of [(Me₃Si)₃CAlF₂]₃ with various lithium derivatives.

Results and Discussion

Compound 1 is prepared by the reaction of $(Me_3-Si)_3CAIF_2$ ·THF and Li_2O in THF (Scheme 1). A more

^{(1) (}a) Hatop, H.; Roesky, H. W.; Labahn, T.; Fischer, A.; Schmidt, H.-G.; Noltemeyer, M. Organometallics **2000**, *19*, 937. (b) Schnitter, C.; Klimek, K.; Roesky, H. W.; Albers, T.; Schmidt, H.-G.; Röpken, C.; Parisini, E. Organometallics **1998**, *17*, 2249. (c) Hatop, H.; Roesky, H. W.; Labahn, T.; Röpken, C.; Sheldrick, G. M., Bhattacharjee, M. Organometallics **1998**, *17*, 4326. (d) Avent, A. G.; Chen, W.-Y.; Eaborn, C.; Gorrel, I. B.; Hitchcock, P. B.; Smith, J. D. Organometallics **1996**, *15*, 4343.

convenient route to **1** is the in situ generation of $(Me_3Si)_3CAlF_2$ ·THF by the action of Me_3SnF on $(Me_3Si)_3CAlMe_2$ ·THF in the presence of Li_2O . The structure of **1** consists of an eight-membered $(Al-F-Li-F)_2$ ring with a transannular Al-O-Al bridge. The Li-F bond lengths are in the range 1.835(5)-1.854(4) Å and comparable to the mean Li-F distances (1.852 Å) in [Li(Me_3Si)_3CAlF_3(THF)]_4. The average Al-F bond length (1.733 Å) in **1** is slightly shorter than those in

^{*} To whom correspondence should be addressed. Fax: +49551393373. E-mail: hroesky@gwdg.de.

 $(Cp_2ZrMe)(\mu$ -F)[(Me₃Si)₃CAlF₂] (bridging 1.779(2) Å). The Al–O distance (av 1.709 Å) is shorter than those in [{(Me₃Si)₃CAl}₄(μ -O)₂(μ -OH)₄] (1.79 Å).² The C–Al–F angle (109.17(9)–111.06(10)°) is narrower than those in [Li(Me₃Si)₃CAlF₃(THF)]₄ (111.9–115.2°). Obviously, due to a lesser steric influence in **1**, the angles at fluorine are in the range 120.60(15)–128.51(17)° and much narrower than those at fluorine in [Li(Me₃Si)₃CAlF₃-(THF)]₄ (140.0–162.9°). The O–Al–F angles in **1** (105.08(8)–107.10(8)°) differ significantly from those in [(C(CH₂COOEt)₂(COOEt))OAlFMe]₂ (127.7° and 90.7–96.8°).³

Compound **2** is obtained by reacting $[(Me_3Si)_3CAIF_2]_3$ with LiOCH(CF₃)₂ (Scheme 2). The X-ray structural analysis reveals that **2** consists of three $(Me_3Si)_3CAIF_3^$ anions interconnected with three Li cations to form a 12-membered ring. In the center on one side of this ring is a fluorine atom that is coordinated to three lithiums of the 12-membered ring. The opposite side of the ring is occupied by a lithium atom that is coordinated to three fluorine atoms, each of which is coordinated to an aluminum atom of the ring. The fourth coordination site of each of the Li atoms is occupied by an oxygen atom of a THF molecule. There is a 3-fold axis (Figure 2) going through Li(2) and F giving a molecule of high symmetry.

Figure 1. Structure of **1.** 50% probability of thermal ellipsoids. Selected bond lengths (Å) and angles (deg): Al(1)-O(1) = 1.7083(18), Al(2)-O(1) = 1.7097(17), Al(1)-F(2) = 1.7373(15), Al(2)-F(5) = 1.7294(16), Li(1)-F(2) = 1.854(4), Li(2)-F(5) = 1.835(5); F(2)-Al(1)-C(1) = 111.06(10), F(3)-Al(1)-C(1) = 109.17(9), Al(1)-F(2)-Li(1) = 120.60(15), Al(1)-F(3)-Li(2) = 128.51(17), O(1)-Al(1)-F(3) = 107.10(8), O(1)-Al(2)-F(4) = 105.08(8).

The consequence of this symmetrical arrangement is that the three Li atoms of the 12-membered ring form a perfect triangle of Li₃ (Li–Li–Li 60°). The Al–F bond distances are in a narrow range (1.694(2)–1.701(2) Å).

⁽²⁾ Schnitter, C.; Roesky, H. W.; Albers, T.; Schmidt, H.-G.; Röpken,
C.; Parisini, E.; Sheldrick, G. M. *Chem. Eur. J.* **1997**, *3*, 1783.
(3) Rennekamp, C.; Wessel, H.; Roesky, H. W.; Müller, P.; Schmidt,

⁽³⁾ Rennekamp, C.; Wessel, H.; Roesky, H. W.; Müller, P.; Schmidt, H.-G.; Noltemeyer, M.; Usón, I.; Barron, A. R. *Inorg. Chem.* **1999**, *38*, 5235.

Figure 2. Structure of **2.** 50% probability of thermal ellipsoids. Selected bond lengths (Å) and angles (deg): F(1)-Al(1) = 1.694(2), F(3)-Al(1) = 1.701(2), F(1)-Li(1)#1 = 1.873(6), F-Li(1) = 1.801(6); Al(1)-F(1)-Li(1)#1 = 125.3(2), Al(1)-F(3)-Li(2) = 149.6(3), F(1)-Al(1)-C = 113.36(11), F(3)-Al(1)-C = 115.74(13), Li(1)#1-Li(1)-Li(1)#2 = 60. Symmetry transformations used to generate equivalent atoms: #1 - y, x-y-1, z, #2 - x+y+1, -x, z.

They are comparable to those in $[Li(Me_3Si)_3CAlF_3-(THF)]_4$ (av 1.688 Å) but are considerably shorter than the Al–F(bridging) distances in $[(Me_3Si)_3CAlF_2]_3$ (1.795– 1.815 Å).^{1b} The Li–F bond lengths are in the range 1.801(6)–1.873(6) Å and close to the Li–F distances in 1 (1.835(5)–1.854(4) Å). The C–Al–F angles cover a range of 113.36(11)–115.74(13)° and are wider than those in 1 (109.17(9)–111.06(10)°). The Al–F–Li angles range from 125.3(2)° to 149.6(3)° (1 120.60(15)– 128.51(17)°). We assume that the four LiF molecules necessary for the formation of **2** are formed by an exchange reaction of LiOCH(CF₃)₂ with (Me₃Si)₃CAlF₂·THF, where the (CF₃)₂HCO⁻ is replacing a F⁻. The easy generation of **2** is due to its insolubility in toluene. However, we were not able to isolate a compound of composition [(Me₃-Si)₃CAlF(OCH(CF₃)₂)]·THF in proof of this assumption. Compound **2** shows good stability in the gas phase, which is demonstrated by a FAB experiment that gives an anion of **2** minus a lithium and a THF molecule.

The known examples of aluminum compounds containing unsubstituted oxygen and fluorine atoms that are soluble in organic solvents are rare.⁴ In the series of the alkali metals the lithium derivative $\mathbf{2}$ has a different structural arrangement compared to those of the analogous compounds of the heavier alkali metals.

Experimental Section

General Data. All experiments were carried out using standard Schlenk techniques under a dry nitrogen atmosphere due to the sensitivity of the reactants and products toward air and moisture. A Braun MB 150-GI box was used to store the compounds and to prepare the samples for spectroscopic characterization. All solvents were distilled from sodium/ benzophenone and degassed prior to use. [(Me₃Si)₃CAlF₂]₃,^{1b} Me₃SnF,⁵ and (Me₃Si)₃CAlMe₂·THF² were prepared as described in the literature. Elemental analyses were performed at the Analytisches Labor des Instituts für Anorganische Chemie der Universität Göttingen. NMR spectra were recorded on a Bruker Avance 200 or Bruker AC 250 and were referenced to Me₄Si, C₆F₆, and LiCl, respectively. FT-IR spectra were measured on a Bio-Rad FTS-7 as KBr plates in the range 4000-400 cm⁻¹. Mass spectra were obtained on a Finnigan MAT 95. Melting points were measured in sealed glass tubes on a Büchi 540 instrument and are reported uncorrected.

Crystal structure solutions and refinements for compounds 1 and 2 are shown in Table 1. Data for compound 1 were collected on a Stoe-Siemens-Huber four-circle diffractometer

Fabl	le 1.	Crystal	Data	and	Structure	Ref	inement	for	1	and	2
------	-------	---------	------	-----	-----------	-----	---------	-----	---	-----	---

	1	2
empirical formula	$C_{36}H_{86}Al_2F_4Li_2O_5Si_6$	$C_{50}H_{121}Al_3F_{10}Li_4O_5Si_9$
fw	911.43	1353.98
temp (K)	133(2)	133(2)
cryst syst	triclinic	rhombohedral
cryst group	$P\overline{1}$	<i>R</i> 3
a (Å)	12.953(2)	14.899(2)
b (Å)	13.442(2)	14.899(2)
c (Å)	16.391(2)	30.472(6)
α (deg)	89.33(2)	90
β (deg)	88.04(2)	90
γ (deg)	70.02(2)	120
cell vol (Å ³)	2680.6(7)	5857.9(16)
Z	2	3
$\rho_{\rm c} ({\rm g \ cm^{-3}})$	1.129	1.151
μ (mm ⁻¹)	0.236	0.247
F(000)	988	2184
cryst size (mm)	0.70 imes 0.70 imes 0.60	0.60 imes 0.60 imes 0.60
$2\check{ heta}$ range (deg)	4 - 50	3.5 - 50
index ranges	-15 < h < 15, -16 < k < 11,	$-17 \le h \le 17, -17 \le k \le 17,$
-	-19 < l < 19	$-35 \le l \le 35$
no. of data measd	33 521	37 248
no. of unique reflens	9477	4425
R(int)	0.0409	0.0490
$R^{a}_{,a} WR2^{b} (I > 2\sigma(I))$	0.0490, 0.1171	0.0323, 0.0841
R, wR2 (all data)	0.0730, 0.1313	0.0336, 0.0873
goodness-of-fit on F ²	1.049	1.086
no. of data/restraints/params	9477/924/706	4425/822/410
largest diff peak/hole (e Å ⁻³)	0.316 and -0.313	0.268 and -0.125

with a Siemens SMART CCD area detector. Data for compound **2** were collected on a Stoe IPDS II system. Mo K α radiation ($\lambda = 0.71073$ Å) was used in all cases. A semiempirical absorption correction for **1** was performed using the program SADABS.⁶ All structures were solved by direct methods⁷ and refined anisotropically with SHELXTL. Hydrogen atoms were included using the riding model with U_{iso} tied to the U_{iso} of the parent atom.

In both structures one $C(SiMe_3)_3$ and some of the THF groups are disordered. They were refined with distance restraints and restraints for the anisotropic displacement parameters. The uncoordinated THF in **2** was refined as a disordered C_5H_{10} ring. Again restraints were used. The data of **2** are severely twinned by a combination of obverse/reverse twinning and merohedral twinning. The twinning was taken into account and the fractional contributions refined to 0.004(2) (operation $-1 \ 0 \ 0 \ -1 \ 0, \ 0 \ 0 \ 1)$, 0.135(1) (operation 0 $1 \ 0, \ 1 \ 0, \ 0 \ 0 \ 1)$. Because of the twinning the absolute structure could not be reliably determined. Crystallographic data (excluding structure factors) have been deposited with the Cambridge Crystallographic Data Centre under the numbers CCDC-160782– 160783.

[((Me₃Si)₃CAlF₂)₂(μ-O)Li₂(THF)₄] (1). First method: A mixture of [(Me₃Si)₃CAlF₂]₃ (0.66 mmol, 589 mg) and Li₂O (1.0 mmol, 30 mg) in THF (20 mL) was stirred for 2 days. The mixture was filtered. Crystallization at -20 °C resulted in a colorless crystalline solid 1 (0.62 g, 0.68 mmol, 68%), mp 178–179 °C. ¹H NMR (C₆D₆, 200 MHz, ppm): δ 0.43 (s, 54 H, Si–CH₃), 0.90 (m_c, 16 H, CH₂–CH₂–O), 3.79 (m_c, 16 H, CH₂–CH₂–O), ¹⁹F NMR (C₆D₆, 188 MHz, ppm): δ 3.8 (s). ²⁹Si NMR (C₆D₆, 50 MHz, ppm): δ –3.37. ⁷Li NMR (C₆D₆, 97 MHz, ppm): δ –0.82. IR (KBr, cm⁻¹): 2957 vs, 2903 vs, 1262 s, 1098

s, 1047 s, 1020 s, 855 vs, 718 vs, 674. Anal. Calcd for $C_{36}H_{86}$ -Al₂F₄Li₂O₅Si₆: C, 47.44; H, 9.51. Found: C, 46.8; H, 9.4.

Second method: A mixture of $(Me_3Si)_3CAlMe_2$ ·THF (2.0 mmol, 722 mg), Me_3SnF (4.0 mmol, 732 mg), and Li₂O (1.0 mmol, 30 mg) in THF (20 mL) was heated at reflux for 6 h. All solvents were removed in vacuo. The residue was dissolved in THF (20 mL) and filtered. Crystallization at -20 °C afforded 1 (0.73 g, 0.81 mmol, 81%) as a colorless crystalline solid, mp 177–179 °C.

[{Li(Me₃Si)₃CAlF₃(THF)}₃LiF(THF)] (2). MeLi (3.75 mL, 1.6 M in Et₂O, 6 mmol) was added to (CF₃)₂CH(OH) (1.0 g, 6 mmol) in THF (30 mL), and the mixture was stirred for 3 h. This solution was added to [(Me₃Si)₃CAlF₂]₃ (1.79 g, 2.0 mmol) in THF (30 mL), and the resulting mixture was stirred for 3 days. The THF was removed in vacuo. The residue was dissolved in toluene/THF (30 mL, 20:1) and filtered. Crystallization at -20 °C afforded 2 (0.30 g, 0.22 mmol, 11%) after 2 weeks as a colorless crystalline solid, mp >300 °C. ¹H NMR (THF-d₈, 200 MHz, ppm): δ 0.15 (s, Si-CH₃), 1.77 (m_c, CH₂-CH2-O), 3.61 (mc, CH2-CH2-O). ¹⁹F NMR (THF-d8, 188 MHz, ppm): at δ -4.2 (s) the main resonance, with a very small resonance at -40.5 (s). ²⁹Si NMR (THF- d_8 , 99 MHz, ppm): δ -1.83. ⁷Li NMR (THF- d_8 , 97 MHz, ppm): δ -0.5. FAB m/z(%): 1202 (M - Li - THF), 1057 (M - Li - 3 THF). IR (KBr, cm⁻¹): 2978 vs, 2956 vs, 2900 vs, 1463 w, 1292 s, 1212 w, 1054 vs, 874 vs, 837 vs, 755 s, 724 s, 708 s, 674 vs, 626 s. For the elemental analysis the crystals of composition $\mathbf{2} + \text{THF}$ were used. Anal. Calcd for C₅₀H₁₂₁Al₃F₁₀Li₄O₅Si₉: C, 44.35; H, 9.01. Found: C, 44.8; H, 9.0.

Acknowledgment. This work was supported by the Deutsche Forschungsgemeinschaft.

Supporting Information Available: Tables giving positional and thermal parameters and estimated standard deviations for all atoms, bond distances and angles, and anisotropic thermal parameters of compounds **1** and **2**. This material is available free of charge via the Internet at http://pubs.acs.org.

OM0100941

⁽⁴⁾ Waezsada, S. D.; Liu, F.-Q.; Barnes, C. E.; Roesky, H. W.; Montero, M. L.; Usón, I. Angew. Chem. **1997**, *109*, 2738; Angew. Chem., Int. Ed. Engl. **1997**, *36*, 2625.

⁽⁵⁾ Krause, E. Ber. Dtsch. Chem. Ges. 1918, 51, 1447.

⁽⁶⁾ Sheldrick, G. M. *SADABS*, Program for absorption correction of Siemens area detector data; University of Göttingen: Göttingen, Germany, 1996.

⁽⁷⁾ Sheldrick, G. M. Acta Crystallogr. 1990, A46, 467.