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Summary: Reaction of {(η5-C5Me5)Fe}2(µ-H)4 with tBu2-
SiH2 provides the first dinuclear iron µ-silane complex,
{(η5-C5Me5)Fe}2(µ-H)2(µ-η2:η2-H2SitBu2), in which two
Si-H σ-bonds are coordinated to two iron centers. The
coordinated Si-H bond is readily cleaved and the
µ-silane ligand is eliminated to give a dinuclear iron
active species which reacts in situ with organic sub-
strates.

Coordinatively unsaturated transition-metal cluster
complexes often undergo efficient and unique organic
transformations by the synergy of the adjacent metal
centers.1 We have demonstrated examples of the coop-
erative activation of organic substrates on a bimetallic
site in the dinuclear ruthenium tetrahydride complex
{(η5-C5Me5)Ru}2(µ-H)4 (1)2 and have recently synthe-
sized the dinuclear iron analogue {(η5-C5Me5)Fe}2(µ-H)4
(2).3 The latter, like the ruthenium complex 1, can
generate a reactive species. As anticipated from the
vertical trends of the transition elements, diiron tetra-
hydride 2 is much more reactive than the ruthenium
complex 1 and, also, is less stable. Several years ago,
we prepared a µ-H2SitBu2 complex of ruthenium, {(η5-
C5Me5)Ru}2(µ-H)2(µ-η2:η2-H2SitBu2) (3).4 We have now
prepared the analogous diiron complex {(η5-C5Me5)Fe}2-
(µ-H)2(µ-η2:η2-H2SitBu2) (4) and find it to be more stable
than 2; hence, it is more useful as a synthetic reagent.
Mononuclear late-transition-metal complexes having a
Si-H-M 3c-2e bond often generate unsaturated metal
intermediates by eliminating a Si-H σ-bond.5 Our novel
diiron µ-η2:η2-silane complex 4 serves as a precursor for
bimetallic active species, presumably {(η5-C5Me5)Fe}2-
(µ-H)2, by elimination of the bridging silane ligand.

Treatment of 2 with di-tert-butylsilane in toluene at
room temperature gave 4, in which two Si-H σ-bonds
are coordinated to two iron centers (eq 1).6 To our

knowledge, this is the first dinuclear iron µ-silane
complex. The µ-silane complex 4 is less reactive than 2
toward air and moisture, both in solution and in the
solid state. Its 29Si resonance occurs at δSi 71. This shift
is comparable to that observed for 3 at δSi 75.4 A broad
band was observed at 1736 cm-1 in the infrared spec-
trum of 4. This absorption was assigned as νSi-H-Fe by
subtracting the spectrum of 4-d4 from that of 4, as
shown in Figure 1. Compared with a νSi-H value of 1790
cm-1 in 3 and 2116 (sharp) cm-1 in free tBu2SiH2, this
indicates reduction in the Si-H bond order due to the
Fe-H-Si 3c-2e interaction. The 1H NMR of 4 at room
temperature showed three signals at δ 1.86 (30 H), 0.85
(18 H), and -16.25 (4 H) attributable to C5Me5, tBu, and
hydride ligands, respectively. The signal of the hydride
at room temperature (δ -16.25) split into two sharp
singlets at δ -5.28 and -27.12 at -110 °C. This clearly
shows that an exchange of the hydride ligands occurs
between Fe-H-Si and Fe-H-Fe in 4 by way of Si-H
bond cleavage. Line shape analysis of the variable-
temperature spectra gave the free activation energy at
the coalescence temperature ∆Gq(-50 °C) ) 8.6 kcal/
mol. This value is also similar to that of the ruthenium
analogue 3 (∆Gq(-60 °C) ) 8.5 kcal/mol).4

The structure of 4 was confirmed by an X-ray diffrac-
tion study.7 The perspective view of 4 is shown in Figure
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2, along with selected bond lengths and angles in the
caption. The hydride ligands of Fe-H-Si are almost on
the Fe2Si plane, in agreement with the determined
M-H-Si complexes. The Fe-Si lengths of 2.376(1) Å
(average) are longer than the usual σ-bond and typical
for the M-H-Si complexes.5b The Si-H lengths of 1.62-
(5) Å (average) are also in the range of the reported
Si-H lengths for the M-H-Si interaction. The Fe-Fe
distance of 2.5055(8) Å is indicative of an iron-iron
double bond,8 as expected from the EAN rule.

The µ-silane complex 4 undergoes C-H bond activa-
tion with benzene (eq 2). When a C6D6 solution of 4 was

warmed to 60 °C, a gradual decrease in the intensity of
the hydride NMR signal was observed. The intermo-
lecular H/D exchange between the hydride ligands in 4
and C6D6 was completed within 24 h at 60 °C, leading
to 4-d4. In contrast, the H/D exchange reaction between
the ruthenium analogue 3 and C6D6 required more than
13 days at 80 °C.

The µ-η2:η2-H2SitBu2 group in 4 was easily replaced
by various organic substrates. Representative examples
are summarized in Scheme 1. Treatment of 4 with CO

at atmospheric pressure afforded exclusively {(η5-C5-
Me5)Fe}2(CO)4 (5)9 and tBu2SiH2. Complex 4 also re-
acted with cyclopentadiene to give the µ-η2:η2-cyclopen-
tadiene complex {(η5-C5Me5)Fe}2(µ-H)2(µ-η2:η2-C5H6) (6)
together with free tBu2SiH2. These results indicate the
generation of a reactive bimetallic intermediate in the
reactions formed by elimination of the silane ligand. In
contrast, the diisopropylsilane analogue {(η5-C5Me5)-
Fe}2(µ-H)2(µ-η2:η2-H2SiiPr2)6 does not undergo such µ-si-
lane displacement reactions. This suggests that steric
repulsion between the tert-butyl group on the bridging
silane and the C5Me5 group most likely is responsible
for the silane displacement reactions of 4. The reactions
of the parent iron tetrahydride complex 2 with CO and
cyclopentadiene gave 5 or 6, respectively, together with
several unidentified byproducts, but the corresponding
reactions of 4 yielded 5 or 6 cleanly, without any
byproduct formation. The yields of 5 and 6 based on the
diiron tetrahydride 2 were 70% and 61%, respectively,
while the same reactions of 4 resulted in quantitative
formation of 5 and 6.

The cyclopentadiene complex 6 was identified on the
basis of its 1H NMR spectral data (Chart 1). The signal
for one of the methylene protons (endo-H) was observed
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Figure 1. Infrared spectra of (a) 4, (b) 4-d4, and the
difference spectrum between (a) and (b).

Figure 2. Molecular structure of {(η5-C5Me5)Fe}2(µ-H)2-
(µ-η2:η2-tBu2SiH2) (4), with thermal ellipsoids at the 30%
probability level. Selected bond lengths (Å) and angles
(deg): Fe(1)-Fe(2) ) 2.5055(8), Fe(1)-Si(1) ) 2.3820(12),
Fe(2)-Si(1) ) 2.3692(13), Fe(1)-H(3) ) 1.51(5), Fe(2)-
H(4) ) 1.51(5), Si(1)-H(3) ) 1.60(5), Si(1)-H(4) )
1.64(5); Fe(1)-Si(1)-Fe(2) ) 63.64(3), C(1)-Si(1)-C(5) )
112.5(2).

Scheme 1
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at δ 3.52 coupled with the hydride signal at δ -43.19
(J ) 6.3 Hz). The structure of 6 was confirmed by an
X-ray diffraction study (Figure 3).10 The two Cp* ligands
tilt to the same side with respect to the dinuclear
framework. The cyclopentadiene ligand is coordinated
to the two iron atoms in an µ-η2:η2 fashion. The iron-
iron distance of 2.483(1) Å lies in the range of iron-
iron double bonds.8

The reactions of 4 with diphenylsilane and diphen-
ylphosphine proceeded at room temperature, resulting
in quantitative formation of the known3 µ-silylene
complex 7 and bis(µ-diphenylphosphido) complex 8 via
Si-H and P-H bond cleavage, respectively (Scheme 1).
In contrast to tBu2SiH2, the Si-H bond of Ph2SiH2 is
cleaved easily to afford the µ-silylene complex 7. The
reactivity of the coordinated hydrosilane is dominated
by the steric properties of the SiR2 group. The Cp*
ligands in the µ-silylene complex 7 are almost perpen-
dicular to the Fe-Fe vector, while these ligands in the

µ-silane complex 4 are mutually cis with respect to the
Fe-Fe vector. In the case of the bulky R group, the
transformation from µ-silane complex to µ-silylene
complex generates steric repulsion between Cp* and R.
Thus, the transformation of the iPr2SiH2 complex needs
to be heated,6 and complex 4 cannot afford the corre-
sponding µ-silylene complex.

The results illustrated in Scheme 1 show that the
silane complex 4 can substitute well for the unstable
diiron tetrahydride 2. This is the first example of a
dihydrosilane acting as a labile bridging ligand.
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(10) X-ray structural determination of 6: crystals of 6 were grown
at -30 °C from a diethyl ether solution of the compound. Data were
collected at -50 °C on an RAXIS-II imaging plate area detector
equipped with graphite-monochromated Mo KR radiation. The com-
pound crystallizes in space group P21/n, with a ) 16.0682(3) Å, b )
19.6255(8) Å, c ) 16.2646(5) Å, â ) 117.618(2)°, V ) 4544.6(3) Å3, Z )
8, dcalcd ) 1.316 g cm-3. A total of 9554 unique reflections were recorded
in the range 5° e 2θ e 55°, of which 5662 were used (F > 3σ(F)) for
solution and refinement. In the reduction of the data, Lorentz/
polarization corrections were applied to the data. The structure was
solved by the Patterson method (DIRDIF92 PATTY), and all non-
hydrogen atoms were refined anisotropically by using full-matrix least-
squares techniques on F. The final structure of 6 was refined to R )
0.049, Rw ) 0.044, and GOF ) 2.12 for 487 parameters. Crystal-
lographic data for 6 have been deposited with the Cambridge Crystal-
lographic Data Centre as Supplementary Publication No. CCDC-
153550. Copies of the data can be obtained free of charge on application
to the CCDC, 12 Union Road, Cambridge CB2 1EZ, U.K. (fax, (+44)-
1223-336-033; e-mail, deposit@ccdc.cam.ac.uk).

Chart 1

Figure 3. Molecular structure of {(η5-C5Me5)Fe}2(µ-H)2-
(µ-η2:η2-C5H6) (6), with thermal ellipsoids at the 30%
probability level. Selected bond lengths (Å): Fe(1)-Fe
(2) ) 2.483(1), Fe(1)-C(2) ) 2.075, Fe(1)-C(3) ) 2.095,
Fe(2)-C(4) ) 2.173(6), Fe(2)-C(5) ) 2.067(4), C(1)-
C(2) ) 1.487(8), C(1)-C(5) ) 1.468(8), C(2)-C(3) ) 1.385-
(8), C(3)-C(4) ) 1.434(8), C(4)-C(5) ) 1.377(7).
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