$\{(\eta^{5}-C_{5}Me_{5})Fe\}_{2}(\mu-H)_{2}(\mu-\eta^{2}:\eta^{2}-H_{2}Si^{t}Bu_{2}), a Versatile\}$ **Precursor for Bimetallic Active Species**

Yasuhiro Ohki,† Takahiro Kojima, Masato Oshima, and Hiroharu Suzuki*

Department of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology and CREST, Japan Science and Technology Corporation (JST), O-okayama, Meguro-ku, Tokyo 152-8552, Japan

Received February 15, 2001

Summary: Reaction of { $(\eta^5 - C_5 Me_5)Fe$ } $_2(\mu - H)_4$ with tBu_2 -SiH₂ provides the first dinuclear iron μ -silane complex, $\{(\eta^5 - C_5 Me_5)Fe\}_2(\mu - H)_2(\mu - \eta^2 - H_2 Si^t Bu_2), \text{ in which two}$ $Si-H\sigma$ -bonds are coordinated to two iron centers. The coordinated Si-H bond is readily cleaved and the μ -silane ligand is eliminated to give a dinuclear iron active species which reacts in situ with organic substrates.

Coordinatively unsaturated transition-metal cluster complexes often undergo efficient and unique organic transformations by the synergy of the adjacent metal centers.¹ We have demonstrated examples of the cooperative activation of organic substrates on a bimetallic site in the dinuclear ruthenium tetrahydride complex $\{(\eta^5-C_5Me_5)Ru\}_2(\mu-H)_4$ (1)² and have recently synthesized the dinuclear iron analogue $\{(\eta^5-C_5Me_5)Fe\}_2(\mu-H)_4$ (2).³ The latter, like the ruthenium complex 1, can generate a reactive species. As anticipated from the vertical trends of the transition elements, diiron tetrahydride **2** is much more reactive than the ruthenium complex 1 and, also, is less stable. Several years ago, we prepared a μ -H₂Si^tBu₂ complex of ruthenium, {(η^{5} - $C_5Me_5)Ru_{2}(\mu-H)_{2}(\mu-\eta^{2}:\eta^{2}-H_2Si^{t}Bu_{2})$ (3).⁴ We have now prepared the analogous diiron complex $\{(\eta^5-C_5Me_5)Fe\}_2$ - $(\mu-H)_2(\mu-\eta^2:\eta^2-H_2Si^tBu_2)$ (4) and find it to be more stable than 2; hence, it is more useful as a synthetic reagent. Mononuclear late-transition-metal complexes having a Si-H-M 3c-2e bond often generate unsaturated metal intermediates by eliminating a Si-H σ -bond.⁵ Our novel diiron μ - η^2 : η^2 -silane complex **4** serves as a precursor for bimetallic active species, presumably $\{(\eta^5-C_5Me_5)Fe\}_2$ - $(\mu$ -H)₂, by elimination of the bridging silane ligand.

Treatment of 2 with di-tert-butylsilane in toluene at room temperature gave 4, in which two Si-H σ -bonds are coordinated to two iron centers (eq 1).⁶ To our

knowledge, this is the first dinuclear iron μ -silane complex. The μ -silane complex **4** is less reactive than **2** toward air and moisture, both in solution and in the solid state. Its ²⁹Si resonance occurs at δ_{Si} 71. This shift is comparable to that observed for **3** at δ_{Si} 75.⁴ A broad band was observed at 1736 cm⁻¹ in the infrared spectrum of **4**. This absorption was assigned as $\nu_{Si-H-Fe}$ by subtracting the spectrum of $4 - d_4$ from that of 4, as shown in Figure 1. Compared with a ν_{Si-H} value of 1790 cm^{-1} in **3** and 2116 (sharp) cm^{-1} in free ^tBu₂SiH₂, this indicates reduction in the Si-H bond order due to the Fe-H-Si 3c-2e interaction. The ¹H NMR of **4** at room temperature showed three signals at δ 1.86 (30 H), 0.85 (18 H), and -16.25 (4 H) attributable to C₅Me₅, ^tBu, and hydride ligands, respectively. The signal of the hydride at room temperature (δ -16.25) split into two sharp singlets at δ -5.28 and -27.12 at -110 °C. This clearly shows that an exchange of the hydride ligands occurs between Fe-H-Si and Fe-H-Fe in 4 by way of Si-H bond cleavage. Line shape analysis of the variabletemperature spectra gave the free activation energy at the coalescence temperature $\Delta G^{\ddagger}(-50 \text{ °C}) = 8.6 \text{ kcal/}$ mol. This value is also similar to that of the ruthenium analogue **3** ($\Delta G^{\ddagger}(-60 \ ^{\circ}C) = 8.5 \ \text{kcal/mol}).^4$

The structure of 4 was confirmed by an X-ray diffraction study.⁷ The perspective view of **4** is shown in Figure

^{*} To whom correspondence should be addressed. Fax: Int. code +(81) 3-5734-3913. E-mail: hiroharu@n.cc.titech.ac.jp.

Present address: Department of Chemistry, Graduate School of Science, Nagoya University.

^{(1) (}a) Süss-Fink, G.; Meister, G. Adv. Organomet. Chem. 1993, 35, 41. (b) Metal Clusters in Catalysis; Gates, B. C., Guzci, L., Knozinger, V. H., Eds.; Elsevier: Amsterdam, 1986. (c) Catalysis by Di- and Polynuclear Metal Cluster Complexes; Adams, R. D., Cotton, F. A., Ed.; Wiley-VCH: New York, 1998.

^{(2) (}a) Suzuki, H.; Omori, H.; Moro-oka, Y. Organometallics **1988**, 7, 2579. (b) Omori, H.; Suzuki, H.; Take, Y.; Moro-oka, Y. Organome-tallics **1989**, 8, 2270. (c) Omori, H.; Suzuki, H.; Moro-oka, Y. Organometallics 1989, 8, 1576. (d) Suzuki, H.; Takao, T.; Tanaka, M.; Moro-oka, Y. J. Chem. Soc., Chem. Commun. **1992**, 476. (e) Suzuki, H.; Omori, H.; Lee, D. H.; Yoshida, Y.; Fukushima, M.; Tanaka, M.; Moro-oka, Y. Organometallics **1994**, *13*, 1129. (f) Takao, T.; Suzuki, Holotoka, I. Organometallics 1994, 13, 2554. (g) Ohki, Y.; Suzuki,
H. Angew. Chem., Int. Ed. 2000, 39, 3463.
(3) Ohki, Y.; Suzuki, H. Angew. Chem., Int. Ed. 2000, 39, 3120.
(4) Takao, T.; Yoshida, S.; Suzuki, H. Organometallics 1995, 14,

³⁸⁵⁵

⁽⁵⁾ For reviews, see: (a) Schubert, U. *Adv. Organomet. Chem.* **1990**, *30*, 151. (b) Corey, J. Y.; Braddock-Wilking, J. *Chem. Rev.* **1999**, *99*, 175.

⁽⁶⁾ The reaction of 2 with ${}^{i}Pr_{2}SiH_{2}$ affords the analogous μ -silane complex $\{(\eta^5 - C_5 Me_5)Fe\}_2(\mu - H)_2(\mu - \eta^2 - H_2Si^iPr_2)$. The preliminary result of the X-ray diffraction study showed the dinuclear structure bridged by the $\mu \cdot \eta^2 \cdot \eta^2 \cdot H_2$ Si'Pr₂ ligand. See the Supporting Information. (7) X-ray structural determination of **4**: crystals of **4** were grown

at -30 °C from a diethyl ether solution of the compound. Data were collected at -40 °C on an RAXIS-II imaging plate area detector equipmed with graphits graphic accession of the component of the second secon equipped with graphite-monochromated Mo K α radiation. The compound crystallizes in space group R3, with a = 18.6083(4) Å, $\alpha = 58.1220(7)^\circ$, V = 4360(2) Å³, Z = 6, $d_{calcd} = 1.208$ g cm⁻³. A total of 6640 unique reflections were recorded in the range 5° $\leq 2\theta \leq 55^\circ$, of which 4405 were used ($F > 2\sigma(F)$) for solution and refinement. In the raduction of the data Lagrantz/malarization corrections were complied reduction of the data, Lorentz/polarization corrections were applied to the data. The structure was solved by direct methods (SHELXS 97), and all non-hydrogen atoms were refined anisotropically by using SHELXL 97 on F^2 . The final structure of **4** was refined to R1 = 0.076, wR2 = 0.149, and GOF = 1.07 for 313 parameters.

Figure 1. Infrared spectra of (a) **4**, (b) **4**- d_4 , and the difference spectrum between (a) and (b).

Figure 2. Molecular structure of $\{(\eta^5-C_5Me_5)Fe\}_2(\mu-H)_2-(\mu-\eta^2:\eta^2-t^Bu_2SiH_2)$ (**4**), with thermal ellipsoids at the 30% probability level. Selected bond lengths (Å) and angles (deg): Fe(1)-Fe(2) = 2.5055(8), Fe(1)-Si(1) = 2.3820(12), Fe(2)-Si(1) = 2.3692(13), Fe(1)-H(3) = 1.51(5), Fe(2)-H(4) = 1.51(5), Si(1)-H(3) = 1.60(5), Si(1)-H(4) = 1.64(5); Fe(1)-Si(1)-Fe(2) = 63.64(3), C(1)-Si(1)-C(5) = 112.5(2).

2, along with selected bond lengths and angles in the caption. The hydride ligands of Fe–H–Si are almost on the Fe₂Si plane, in agreement with the determined M–H–Si complexes. The Fe–Si lengths of 2.376(1) Å (average) are longer than the usual σ -bond and typical for the M–H–Si complexes.^{5b} The Si–H lengths of 1.62-(5) Å (average) are also in the range of the reported Si–H lengths for the M–H–Si interaction. The Fe–Fe distance of 2.5055(8) Å is indicative of an iron–iron double bond,⁸ as expected from the EAN rule.

The μ -silane complex **4** undergoes C–H bond activation with benzene (eq 2). When a C₆D₆ solution of **4** was

warmed to 60 °C, a gradual decrease in the intensity of the hydride NMR signal was observed. The intermolecular H/D exchange between the hydride ligands in **4** and C_6D_6 was completed within 24 h at 60 °C, leading to **4**-*d*₄. In contrast, the H/D exchange reaction between the ruthenium analogue **3** and C_6D_6 required more than 13 days at 80 °C.

The μ - η^2 : η^2 -H₂Si^tBu₂ group in **4** was easily replaced by various organic substrates. Representative examples are summarized in Scheme 1. Treatment of **4** with CO

Scheme 1

at atmospheric pressure afforded exclusively { $(\eta^5-C_5 Me_5)Fe_2(CO)_4$ (5)⁹ and tBu_2SiH_2 . Complex 4 also reacted with cyclopentadiene to give the μ - η^2 : η^2 -cyclopentadiene complex { $(\eta^5-C_5Me_5)Fe$ } $_2(\mu-H)_2(\mu-\eta^2:\eta^2-C_5H_6)$ (6) together with free ^tBu₂SiH₂. These results indicate the generation of a reactive bimetallic intermediate in the reactions formed by elimination of the silane ligand. In contrast, the diisopropylsilane analogue $\{(\eta^5-C_5Me_5) Fe_{2}(\mu-H)_{2}(\mu-\eta^{2}:\eta^{2}-H_{2}Si^{i}Pr_{2})^{6}$ does not undergo such μ -silane displacement reactions. This suggests that steric repulsion between the tert-butyl group on the bridging silane and the C₅Me₅ group most likely is responsible for the silane displacement reactions of 4. The reactions of the parent iron tetrahydride complex 2 with CO and cyclopentadiene gave 5 or 6, respectively, together with several unidentified byproducts, but the corresponding reactions of 4 yielded 5 or 6 cleanly, without any byproduct formation. The yields of 5 and 6 based on the diiron tetrahydride 2 were 70% and 61%, respectively, while the same reactions of 4 resulted in quantitative formation of 5 and 6.

The cyclopentadiene complex **6** was identified on the basis of its ¹H NMR spectral data (Chart 1). The signal for one of the methylene protons (*endo*-H) was observed

⁽⁸⁾ For example, see: (a) Schmitt, H.-J.; Ziegler, M. L. Z. Naturforsch., B **1973**, 28, 508. (b) Jonas, K.; Koepe, G.; Schieferstein, L.; Mynott, R.; Krüger, C.; Tsay, Y.-H. Angew. Chem., Int. Ed. Engl. **1983**, 22, 620. (c) Schaufele, H.; Pritzkow, H.; Zenneck, U. Angew. Chem., Int. Ed. Engl. **1988**, 27, 1519. (d) Cotton, F. A.; Daniels, L. M.; Falvello, L. R.; Matonic, J. H.; Murillo, C. A. Inorg. Chim. Acta **1997**, 256, 269. (e) Böttcher, H.-C.; Merzweiler, K.; Wagner, C. Z. Anorg. Allg. Chem. **1999**, 625, 857.

⁽⁹⁾ Teller, R. G.; Williams, J. M. Inorg. Chem. 1980, 19, 2770.

at δ 3.52 coupled with the hydride signal at δ -43.19 (J = 6.3 Hz). The structure of **6** was confirmed by an X-ray diffraction study (Figure 3).¹⁰ The two Cp* ligands tilt to the same side with respect to the dinuclear framework. The cyclopentadiene ligand is coordinated to the two iron atoms in an μ - η^2 : η^2 fashion. The iron-iron distance of 2.483(1) Å lies in the range of iron-iron double bonds.⁸

The reactions of **4** with diphenylsilane and diphenylphosphine proceeded at room temperature, resulting in quantitative formation of the known³ μ -silylene complex **7** and bis(μ -diphenylphosphido) complex **8** via Si-H and P-H bond cleavage, respectively (Scheme 1). In contrast to ^tBu₂SiH₂, the Si-H bond of Ph₂SiH₂ is cleaved easily to afford the μ -silylene complex **7**. The reactivity of the coordinated hydrosilane is dominated by the steric properties of the Si R_2 group. The Cp* ligands in the μ -silylene complex **7** are almost perpendicular to the Fe-Fe vector, while these ligands in the

Figure 3. Molecular structure of $\{(\eta^5-C_5Me_5)Fe\}_2(\mu-H)_2-(\mu-\eta)^2:\eta^2-C_5H_6\}$ (6), with thermal ellipsoids at the 30% probability level. Selected bond lengths (Å): Fe(1)–Fe (2) = 2.483(1), Fe(1)–C(2) = 2.075, Fe(1)–C(3) = 2.095, Fe(2)–C(4) = 2.173(6), Fe(2)–C(5) = 2.067(4), C(1)–C(2) = 1.487(8), C(1)–C(5) = 1.468(8), C(2)–C(3) = 1.385-(8), C(3)–C(4) = 1.434(8), C(4)–C(5) = 1.377(7).

 μ -silane complex **4** are mutually cis with respect to the Fe–Fe vector. In the case of the bulky R group, the transformation from μ -silane complex to μ -silylene complex generates steric repulsion between Cp^{*} and R. Thus, the transformation of the ⁱPr₂SiH₂ complex needs to be heated, ⁶ and complex **4** cannot afford the corresponding μ -silylene complex.

The results illustrated in Scheme 1 show that the silane complex **4** can substitute well for the unstable diiron tetrahydride **2**. This is the first example of a dihydrosilane acting as a labile bridging ligand.

Acknowledgment. We are grateful to Kanto Chemical Co., Inc., for a generous gift of pentamethylcyclopentadiene.

Supporting Information Available: A table of ¹H, ¹³C, and²⁹Si{¹H} NMR spectral assignments for **4**, a table of ¹H and ¹³C NMR spectral assignments for **6**, ORTEP diagrams, text describing X-ray procedures, and tables of X-ray data, positional and thermal parameters, and distances and angles for **4** and **6**. This material is available free of charge via the Internet at http://pubs.acs.org.

OM0101238

⁽¹⁰⁾ X-ray structural determination of **6**: crystals of **6** were grown at -30 °C from a diethyl ether solution of the compound. Data were collected at -50 °C on an RAXIS-II imaging plate area detector equipped with graphite-monochromated Mo K α radiation. The compound crystallizes in space group $P2_1/n$, with a = 16.0682(3) Å, b = 19.6255(8) Å, c = 16.2646(5) Å, $\beta = 117.618(2)^\circ$, V = 4544.6(3) Å³, Z = 8, $d_{calcd} = 1.316$ g cm⁻³. A total of 9554 unique reflections were recorded in the range $5^\circ \le 2\theta \le 55^\circ$, of which 5662 were used ($F > 3\sigma(F)$) for solution and refinement. In the reduction of the data, Lorentz/polarization corrections were applied to the data. The structure was solved by the Patterson method (DIRDIF92 PATTY), and all nonhydrogen atoms were refined anisotropically by using full-matrix least-squares techniques on *F*. The final structure of **6** was refined to R = 0.049, $R_w = 0.044$, and GOF = 2.12 for 487 parameters. Crystallographic data for **6** have been deposited with the Cambridge Crystallographic Data Centre as Supplementary Publication No. CCDC-153550. Copies of the data can be obtained free of charge on application to the CCDC, 12 Union Road, Cambridge CB2 1EZ, U.K. (fax, (+44)-1223-336-033; e-mail, deposit@ccdc.cam.ac.uk).