{**(***η***5-C5Me5)Fe**}**2(***µ***-H)2(***µ***-***η***2:***η***2-H2Sit Bu2), a Versatile Precursor for Bimetallic Active Species**

Yasuhiro Ohki,† Takahiro Kojima, Masato Oshima, and Hiroharu Suzuki*

Department of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology and CREST, Japan Science and Technology Corporation (JST), O-okayama, Meguro-ku, Tokyo 152-8552, Japan

Received February 15, 2001

Summary: Reaction of {*(η5-C5Me5)Fe*}*2(µ-H)4 with ^t Bu2- SiH2 provides the first dinuclear iron µ-silane complex,* {*(η5-C5Me5)Fe*}*2(µ-H)2(µ-η2:η2-H2Sit Bu2), in which two Si*-*^H ^σ-bonds are coordinated to two iron centers. The coordinated Si*-*H bond is readily cleaved and the µ-silane ligand is eliminated to give a dinuclear iron active species which reacts in situ with organic substrates.*

Coordinatively unsaturated transition-metal cluster complexes often undergo efficient and unique organic transformations by the synergy of the adjacent metal centers.¹ We have demonstrated examples of the cooperative activation of organic substrates on a bimetallic site in the dinuclear ruthenium tetrahydride complex $\{(\eta^5\text{-}C_5\text{Me}_5)\text{Ru}\}_2(\mu\text{-}H)_4$ (1)² and have recently synthesized the dinuclear iron analogue $\{(\eta^5\text{-}C_5Me_5)Fe\}_2(\mu\text{-}H)_4$ (**2**).3 The latter, like the ruthenium complex **1**, can generate a reactive species. As anticipated from the vertical trends of the transition elements, diiron tetrahydride **2** is much more reactive than the ruthenium complex **1** and, also, is less stable. Several years ago, we prepared a *μ*-H₂Si^tBu₂ complex of ruthenium, {(*η*⁵- $C_5Me_5)Ru$ ₂ $(\mu$ -H₂ $(\mu$ - η ²: η ²-H₂Si^tBu₂) (3).⁴ We have now prepared the analogous diiron complex $\{(\eta^5\text{-}C_5\text{Me}_5) \text{Fe}\}_2$ -(*µ*-H)2(*µ*-*η*2:*η*2-H2Sit Bu2) (**4**) and find it to be more stable than **2**; hence, it is more useful as a synthetic reagent. Mononuclear late-transition-metal complexes having a Si-H-M 3c-2e bond often generate unsaturated metal intermediates by eliminating a Si-H σ-bond.⁵ Our novel diiron *µ*-*η*2:*η*2-silane complex **4** serves as a precursor for bimetallic active species, presumably $\{(\eta^5\text{-}C_5\text{Me}_5) \text{Fe}\}_2$ - $(\mu$ -H)₂, by elimination of the bridging silane ligand.

(3) Ohki, Y.; Suzuki, H. *Angew. Chem., Int. Ed.* **2000**, *39*, 3120. (4) Takao, T.; Yoshida, S.; Suzuki, H. *Organometallics* **1995**, *14*, 3855.

Treatment of **2** with di-*tert*-butylsilane in toluene at room temperature gave **⁴**, in which two Si-^H *^σ*-bonds are coordinated to two iron centers (eq 1).6 To our

knowledge, this is the first dinuclear iron *µ*-silane complex. The *µ*-silane complex **4** is less reactive than **2** toward air and moisture, both in solution and in the solid state. Its ²⁹Si resonance occurs at $\delta_{\rm Si}$ 71. This shift is comparable to that observed for **3** at δ_{Si} 75.4 A broad band was observed at 1736 cm^{-1} in the infrared spectrum of **4**. This absorption was assigned as $ν_{Si-H-Fe}$ by subtracting the spectrum of $4-d_4$ from that of 4 , as shown in Figure 1. Compared with a $v_{\text{Si-H}}$ value of 1790 cm^{-1} in **3** and 2116 (sharp) cm^{-1} in free ^tBu₂SiH₂, this indicates reduction in the Si-H bond order due to the Fe-H-Si 3c-2e interaction. The 1H NMR of **⁴** at room temperature showed three signals at *δ* 1.86 (30 H), 0.85 (18 H), and -16.25 (4 H) attributable to C_5Me_5 , ^tBu, and hydride ligands, respectively. The signal of the hydride hydride ligands, respectively. The signal of the hydride at room temperature $(δ -16.25)$ split into two sharp singlets at δ -5.28 and -27.12 at -110 °C. This clearly shows that an exchange of the hydride ligands occurs between Fe-*H*-Si and Fe-*H*-Fe in **⁴** by way of Si-^H bond cleavage. Line shape analysis of the variabletemperature spectra gave the free activation energy at the coalescence temperature $\Delta G^{\dagger}(-50 \degree C) = 8.6 \text{ kcal/}$ mol. This value is also similar to that of the ruthenium analogue **3** ($\Delta G^{\dagger}(-60 \degree C) = 8.5 \text{ kcal/mol}$.⁴

The structure of **4** was confirmed by an X-ray diffraction study.7 The perspective view of **4** is shown in Figure

^{*} To whom correspondence should be addressed. Fax: Int. code +(81) 3-5734-3913. E-mail: hiroharu@n.cc.titech.ac.jp. † Present address: Department of Chemistry, Graduate School of

Science, Nagoya University.

^{(1) (}a) Süss-Fink, G.; Meister, G. Adv. Organomet. Chem. **1993**, 35, 41. (b) Metal Clusters in Catalysis; Gates, B. C., Guzci, L., Knozinger, V. H., Eds.; Elsevier: Amsterdam, 1986. (c) Catalysis by Di- and Polynuclear Met Wiley-VCH: New York, 1998.

^{(2) (}a) Suzuki, H.; Omori, H.; Moro-oka, Y. *Organometallics* **1988**, *7*, 2579. (b) Omori, H.; Suzuki, H.; Take, Y.; Moro-oka, Y. *Organometallics* **1989**, *8*, 2270. (c) Omori, H.; Suzuki, H.; Moro-oka, Y. *Organometallics* **1989**, *8*, 1576. (d) Suzuki, H.; Takao, T.; Tanaka, M.; Moro-oka, Y. *J. Chem. Soc., Chem. Commun*. **1992**, 476. (e) Suzuki, H.; Omori, H.; Lee, D. H.; Yoshida, Y.; Fukushima, M.; Tanaka, M.; Moro-oka, Y. *Organometallics* **1994**, *13*, 1129. (f) Takao, T.; Suzuki, H.; Tanaka, M. *Organometallics* **1994**, *13*, 2554. (g) Ohki, Y.; Suzuki, H. *Angew. Chem., Int. Ed.* **2000**, *39*, 3463.

⁽⁵⁾ For reviews, see: (a) Schubert, U. *Adv. Organomet. Chem.* **1990**, *30*, 151. (b) Corey, J. Y.; Braddock-Wilking, J. *Chem. Rev.* **1999**, *99*, 175.

⁽⁶⁾ The reaction of **2** with ${}^{\mathrm{i}}\mathrm{Pr}_2\mathrm{SiH}_2$ affords the analogous μ -silane complex {($η$ ⁵-C₅Me₅)Fe}₂(*μ*-H)₂(*μ-η*²: $η$ ²-H₂SiⁱPr₂). The preliminary result of the X-ray diffraction study showed the dinuclear structure bridged

by the *μ*-*η*²:*η*²-H₂SiⁱPr₂ ligand. See the Supporting Information.
(7) X-ray structural determination of **4**: crystals of **4** were grown at -30 °C from a diethyl ether solution of the compound. Data were
collected at -40 °C on an RAXIS-II imaging plate area detector
equipped with graphite-monochromated Mo Kα radiation. The comequipped with graphite-monochromated Mo Kα radiation. The com-
pound crystallizes in space group \overline{RS} , with $a = 18.6083(4)$ Å, $\alpha = 58.1220(7)^\circ$, $V = 4360(2)$ Å³, $Z = 6$, $d_{\text{calc}} = 1.208$ g cm⁻³. A total of
6640 which 4405 were used ($F > 2\sigma(F)$) for solution and refinement. In the reduction of the data, Lorentz/polarization corrections were applied to the data. The structure was solved by direct methods (SHELXS 97), and all non-hydrogen atoms were refined anisotropically by using SHELXL 97 on F^2 . The final structure of **4** was refined to $R1 = 0.076$, $wR2 = 0.149$, and $GOF = 1.07$ for 313 parameters.

Figure 1. Infrared spectra of (a) **4**, (b) $4-d_4$, and the difference spectrum between (a) and (b).

Figure 2. Molecular structure of $\{(\eta^5 \text{-} C_5\text{Me}_5) \text{Fe}\}_2(\mu \text{-}H)_2$ -(*µ*-*η*2:*η*2-t Bu2SiH2) (**4**), with thermal ellipsoids at the 30% probability level. Selected bond lengths (Å) and angles (deg): $Fe(1)-Fe(2) = 2.5055(8)$, $Fe(1)-Si(1) = 2.3820(12)$, $Fe(2) - Si(1) = 2.3692(13), Fe(1) - H(3) = 1.51(5), Fe(2) H(4) = 1.51(5), Si(1)-H(3) = 1.60(5), Si(1)-H(4) =$ 1.64(5); Fe(1)-Si(1)-Fe(2) = 63.64(3), C(1)-Si(1)-C(5) = 112.5(2).

2, along with selected bond lengths and angles in the caption. The hydride ligands of Fe-*H*-Si are almost on the $Fe₂Si$ plane, in agreement with the determined ^M-H-Si complexes. The Fe-Si lengths of 2.376(1) Å (average) are longer than the usual *σ*-bond and typical for the M-H-Si complexes.^{5b} The Si-H lengths of 1.62-(5) Å (average) are also in the range of the reported Si-H lengths for the M-H-Si interaction. The Fe-Fe distance of 2.5055(8) \AA is indicative of an iron-iron double bond,⁸ as expected from the EAN rule.

The μ -silane complex **4** undergoes C-H bond activation with benzene (eq 2). When a C_6D_6 solution of 4 was

warmed to 60 °C, a gradual decrease in the intensity of the hydride NMR signal was observed. The intermolecular H/D exchange between the hydride ligands in **4** and C_6D_6 was completed within 24 h at 60 °C, leading to **4**-*d*4. In contrast, the H/D exchange reaction between the ruthenium analogue 3 and C_6D_6 required more than 13 days at 80 $°C$.

The *µ*-*η*2:*η*2-H2Sit Bu2 group in **4** was easily replaced by various organic substrates. Representative examples are summarized in Scheme 1. Treatment of **4** with CO

Scheme 1

at atmospheric pressure afforded exclusively {(*η*5-C5- Me5)Fe}2(CO)4 (**5**)9 and ^t Bu2SiH2. Complex **4** also reacted with cyclopentadiene to give the *µ*-*η*2:*η*2-cyclopentadiene complex $\{(\eta^5\text{-}C_5\text{Me}_5)\text{Fe}\}_2(\mu\text{-}H)_2(\mu\text{-}\eta^2\text{-}\eta^2\text{-}C_5\text{H}_6)$ (6) together with free ${}^{t}Bu_2SiH_2$. These results indicate the generation of a reactive bimetallic intermediate in the reactions formed by elimination of the silane ligand. In contrast, the diisopropylsilane analogue $\{(\eta^5 - C_5 M \mathbf{e}_5) Fe$ ₂ $(\mu$ -H)₂ $(\mu$ - η ²: η ²-H₂SiⁱPr₂)⁶ does not undergo such μ -silane displacement reactions. This suggests that steric repulsion between the *tert*-butyl group on the bridging silane and the C_5Me_5 group most likely is responsible for the silane displacement reactions of **4**. The reactions of the parent iron tetrahydride complex **2** with CO and cyclopentadiene gave **5** or **6**, respectively, together with several unidentified byproducts, but the corresponding reactions of **4** yielded **5** or **6** cleanly, without any byproduct formation. The yields of **5** and **6** based on the diiron tetrahydride **2** were 70% and 61%, respectively, while the same reactions of **4** resulted in quantitative formation of **5** and **6**.

The cyclopentadiene complex **6** was identified on the basis of its ¹H NMR spectral data (Chart 1). The signal for one of the methylene protons (*endo-*H) was observed

⁽⁸⁾ For example, see: (a) Schmitt, H.-J.; Ziegler, M. L. *Z. Naturforsch., B* **1973**, *28*, 508. (b) Jonas, K.; Koepe, G.; Schieferstein, L.;
Mynott, R.; Krüger, C.; Tsay, Y.-H. *Angew. Chem., Int. Ed. Engl.* **1983**, *22*, 620. (c) Schaufele, H.; Pritzkow, H.; Zenneck, U. *Angew. Chem., Int. Ed. Engl.* **1988**, *27*, 1519. (d) Cotton, F. A.; Daniels, L. M.; Falvello, L. R.; Matonic, J. H.; Murillo, C. A. *Inorg. Chim. Acta* **1997**, *256*, 269. (e) Bo¨ttcher, H.-C.; Merzweiler, K.; Wagner, C. *Z. Anorg. Allg. Chem.* **1999**, *625*, 857.

⁽⁹⁾ Teller, R. G.; Williams, J. M. *Inorg. Chem.* **1980**, *19*, 2770.

at δ 3.52 coupled with the hydride signal at δ -43.19 $(J = 6.3$ Hz). The structure of **6** was confirmed by an X-ray diffraction study (Figure 3).¹⁰ The two Cp^* ligands tilt to the same side with respect to the dinuclear framework. The cyclopentadiene ligand is coordinated to the two iron atoms in an μ - η ²: η ² fashion. The ironiron distance of 2.483(1) Å lies in the range of ironiron double bonds.8

The reactions of **4** with diphenylsilane and diphenylphosphine proceeded at room temperature, resulting in quantitative formation of the known³ μ -silylene complex **7** and bis(*µ*-diphenylphosphido) complex **8** via Si-H and P-H bond cleavage, respectively (Scheme 1). In contrast to ^t Bu_2SiH_2 , the Si-H bond of Ph_2SiH_2 is cleaved easily to afford the *u*-silylene complex 7. The cleaved easily to afford the *µ*-silylene complex **7**. The reactivity of the coordinated hydrosilane is dominated by the steric properties of the Si*R*² group. The Cp* ligands in the *µ*-silylene complex **7** are almost perpendicular to the Fe-Fe vector, while these ligands in the

Figure 3. Molecular structure of $\{(\eta^5 \text{-} C_5\text{Me}_5) \text{Fe} \}_{2}(\mu \text{-}H)_{2}$ $(\mu - \eta^2 \cdot \eta^2 - C_5 H_6)$ (6), with thermal ellipsoids at the 30% probability level. Selected bond lengths (Å): Fe(1)-Fe $(2) = 2.483(1), \text{ Fe}(1)-\text{C}(2) = 2.075, \text{ Fe}(1)-\text{C}(3) = 2.095,$ $Fe(2)-C(4) = 2.173(6), Fe(2)-C(5) = 2.067(4), C(1)$ $C(2) = 1.487(8), C(1) - C(5) = 1.468(8), C(2) - C(3) = 1.385$ (8), $C(3) - C(4) = 1.434(8)$, $C(4) - C(5) = 1.377(7)$.

µ-silane complex **4** are mutually cis with respect to the Fe-Fe vector. In the case of the bulky R group, the transformation from μ -silane complex to μ -silylene complex generates steric repulsion between Cp* and R. Thus, the transformation of the ⁱPr₂SiH₂ complex needs to be heated,⁶ and complex 4 cannot afford the corresponding *µ*-silylene complex.

The results illustrated in Scheme 1 show that the silane complex **4** can substitute well for the unstable diiron tetrahydride **2**. This is the first example of a dihydrosilane acting as a labile bridging ligand.

Acknowledgment. We are grateful to Kanto Chemical Co., Inc., for a generous gift of pentamethylcyclopentadiene.

Supporting Information Available: A table of 1H, 13C, and²⁹Si $\{^1H\}$ NMR spectral assignments for **4**, a table of 1H and 13C NMR spectral assignments for **6**, ORTEP diagrams, text describing X-ray procedures, and tables of X-ray data, positional and thermal parameters, and distances and angles for **4** and **6**. This material is available free of charge via the Internet at http://pubs.acs.org.

OM0101238

⁽¹⁰⁾ X-ray structural determination of **6**: crystals of **6** were grown at -30 °C from a diethyl ether solution of the compound. Data were collected at -50 °C on an RAXIS-II imaging plate area detector equipped with graphite-monochromated Mo K α radiation. The comequipped with graphite-monochromated Mo K α radiation. The com-
pound crystallizes in space group $P2_1/n$, with $a = 16.0682(3)$ Å, $b = 19.6255(8)$ Å, $c = 16.2646(5)$ Å, $\beta = 117.618(2)^\circ$, $V = 454.6(3)$ Å³, $Z =$
8, d polarization corrections were applied to the data. The structure was solved by the Patterson method (DIRDIF92 PATTY), and all nonhydrogen atoms were refined anisotropically by using full-matrix least-squares techniques on *F*. The final structure of **6** was refined to $R =$ squares techniques on *F*. The final structure of **6** was refined to *R* =
0.049, *R_w* = 0.044, and GOF = 2.12 for 487 parameters. Crystal-
lographic data for **6** have been deposited with the Cambridge Crystallographic data for **6** have been deposited with the Cambridge Crystallographic Data Centre as Supplementary Publication No. CCDC-153550. Copies of the data can be obtained free of charge on application to the CCDC, 12 Union Road, Cambridge CB2 1EZ, U.K. (fax, (+44)- 1223-336-033; e-mail, deposit@ccdc.cam.ac.uk).