Evaluation of the Stereoelectronic Parameters of Fluorinated Phosphorus(III) Ligands. The Quantitative **Analysis of Ligand Effects (QALE)**

Anthony L. Fernandez, Matthew R. Wilson, Alfred Prock,* and Warren P. Giering*

Department of Chemistry, Metcalf Science and Engineering Center, Boston University, Boston, Massachusetts 02215

Received January 24, 2001

Using the QALE model, we determined the QALE stereoelectronic parameters for the following ligands: P(CF₃)₃ ($\chi_d = 33 \pm 2$, $\theta = 137 \pm 13^\circ$, $E_{ar} = 0$, $\pi_p = 11.1 \pm 0.6$), P(CH₂- $CH_2C_6F_{13}$)₃ ($\chi_d = 9 \pm 3$, $\theta = 137 \pm 2^\circ$, $E_{ar} = 0$, $\pi_p = 2.5 \pm 0.4$), $P[p-(F_{13}C_6)C_6H_4]_3$ ($\chi_d = 23 \pm 0.4$) 1, $\theta = 145^{\circ}$, $E_{ar} = 2.7$, $\pi_p = 0$), and P(C₆F₅)₃ ($\chi_d = 34 \pm 2$, $\theta = 191 \pm 13^{\circ}$, $E_{ar} = 4.3 \pm 0.5$, π_p = 0). In addition, we evaluated the parameters for P[Pyr-3,4-(CO₂Et)₂]₃ (Pyr = pyrroly); χ_d = 43 ± 2, θ = 145°, E_{ar} = 3.3, π_p = 2 ± 1). Revised parameters for PF₃ are also presented: $\chi_{\rm d}$ = 33 ± 2, θ = 110 ± 24°, $E_{\rm ar}$ = 0, $\pi_{\rm p}$ = 13.2 ± 0.5. The absence of an indicated error means that these values were assigned initially to the particular parameters in the analyses or that the parameters are statistically indistinguishable from zero. Where a comparison can be made, we find that our calculated values of θ are indistinguishable from those of Tolman; therefore, we suggest the continued use of Tolman's values. It is observed that the perfluoroalkyl groups are highly π acidifying and that this effect is transmitted through intervening CH₂ groups.

Introduction

There has been an explosive growth of the application of fluorinated phosphorus(III) ligands in biphasic catalysis.¹⁻⁹ The coordination of ligands such as P(CH₂-CH₂C₆F₁₃)₃ imparts solubility in liquid and supercritical CO₂ as well as fluorocarbon solvents.¹⁰ Furthermore, the electron-withdrawing effects of the C₆F₁₃ group should increase the oxidative stability of the phosphine, while the ethylene group tends to insulate the phosphorus atom from the extreme electron-withdrawing effects of the C₆F₁₃ group.¹⁰ The relative inertness of the C-F groups further enhances the stability of the ligand.¹⁰ It has been observed that the electronic effect of the fluoroalkyl group on the ligating atom can be "finetuned" by varying the number of CH₂ groups between the phosphorus atom and the fluoroalkyl groups.^{11,12}

- (1) Richter, B.; Spek, A. L.; van Koten, G.; Deelman, B. J. J. Am. Chem. Soc. 2000, 122, 3945
- (2) Richter, B.; de Wolf, E.; van Koten, G.; Deelman, B. J. J. Org. Chem. 2000, 65, 3885.
- (3) Barthel-Rosa, L. P.; Gladysz, J. A. Coord. Chem. Rev. 1999, 190-192. 587.
- (4) Lindner, E.; Schneller, T.; Auer, F.; Mayer, H. A. Angew. Chem., Int. Ed. 1999, 38, 2154.
- (5) Fish, R. H. Chem. Eur. J. 1999, 5, 1677.
- (6) Juliette, J. J. J.; Rutherford, D.; Horvath, I. T. G. J. Am. Chem. Soc. 1999, 121, 2696.
- (7) Sinou, D.; Pozzi, G.; Hope, E. G.; Stuart, A. M. Tetrahedron Lett. **1999**, 40, 849
- (8) Bhattacharyya, P.; Goodmunsen, D.; Hope, E. G.; Kemmitt, R. D. W.; Paige, D. R.; Sturat, A. M. J. Chem. Soc., Perkin Trans. 11997, 24, 3609.
- (9) Palo, D. R.; Erkey, C. Organometallics 2000, 19, 81. (10) Stibrany, R. T.; Gorun, S. M. J. Organomet. Chem. 1999, 579,
- 217
- (11) Rocaboy, C.; Bauer, W.; Gladysz, J. A. Eur. J. Org. Chem. 2000, 14. 2621.

It has long been thought that pendant fluoro- or trifluoromethyl groups impart unusual stereoelectronic properties to the phosphorus(III) ligands.¹³ For example, fluorine directly attached to phosphorus is thought to make PF_3 a π acid comparable to CO.¹⁴ Indeed, we recently reported that the π acidity of PF₃ is almost 3 times that of PCl_3 and 5 times that of $P(OR)_3$ (R = alkyl).^{14,15} We now extend our evaluation of the stereoelectronic properties of phosphorus(III) ligands to the series of fluorinated ligands P(CF₃)₃, P(CH₂CH₂C₆F₁₃)₃, $P[p-(C_6F_{13})C_6H_4]_3$, and $P(C_6F_5)_3$. We also include an evaluation of the stereoelectronic properties of P[Pyr- $3,4-(CO_2Et)_2]_3$ (Pyr = pyrrolyl) as well as a reassessment of the stereoelectronic properties of PF₃.

Methodology

Recently, we reported our method for determining the stereoelectronic parameters of phosphorus(III) ligands.¹⁴ In the QALE model, each physicochemical property is described by its own QALE equation (e.g., eq 1) in terms of the stereoelec-

$$\text{prop} = a\chi_{d} + b(\theta - \theta_{st})\lambda + cE_{ar} + d\pi_{p} + e \qquad (1)$$

tronic parameters of the phosphorus(III) ligands.^{15,16} In these equations, χ_d is the σ donor capacity of the ligand, θ is Tolman's

⁽¹²⁾ Alvey, L. J.; Meier, R.; Soos, T.; Bernatis, P.; Gladysz, J. A. Eur. J. Inorg. Chem. 2000, 9, 1975.

⁽¹³⁾ Grobe, J.; Le Van, D.; Meyring, W. Z. Anorg. Allg. Chem. 1990, 586. 149.

⁽¹⁴⁾ Woska, D.; Prock, A.; Giering, W. P. Organometallics 2000, 19, 4629

⁽¹⁵⁾ Fernandez, A. L.; Reyes, C.; Prock, A.; Giering, W. P. *J. Chem. Soc., Perkin Trans. 2* 2000, 1033.
(16) Fernandez, A. L.; Reyes, C.; Wilson, M. R.; Woska, D. C.; Prock, A.; Giering, W. P. *Organometallics* 1997, *16*, 342.

Table 1. Stereoelectronic Parameters of Phosphorus(III) Compounds (PZ_3 , Z = Any Pendant Group)^{*a*}

10	ble 1. Stereoencent	me i a	amett	15 01	I nospi	101 u.3(1	(123, 2)	- Ally I	ciiuaii	uiu	P)
no.	PZ_3	χd^b	θ^{c}	$E_{\rm ar}^{d}$	$\pi_{\mathrm{p}}{}^{e}$	no.	PZ_3	$\chi_{d}{}^{b}$	θ^c	E_{ar}^{d}	$\pi_{\mathrm{p}}{}^{e}$
1	DU	17	07	0	07	70	DB ₁₁ (CH CH CN)	0.9	195	0	0.4
1	PH3 DMall	1/	07	0	3.7	70	$PDu_2(CH_2CH_2CN)$	9.2	133	0	0.4
2	PMeH ₂	14.2	97	0	2.5	/1	$PEt(CF_3)_2$	Z4.1	133	U	7.4
3	P(OCH ₂) ₃ CEt	20.2	101	0.2	5	72	$P(Pent)_3$	5	136	0	0
4	$P(Oct)H_2$	13	103	0	2.5	73	P(Octyl) ₃	5	136	0	0
5	$PBuH_2$	13.1	103	0	2.5	74	PBu ₃	5.25	136	0	0
6	$P(CF_3)H_2$	22.3	104	0	6.2	75	PPhEt ₂	8.6	136	1.1	0
7	PF ₃	33	104	0	13.2	76	PPh ₂ Me	12.6	136	2.2	0
8	P(i-Bu)H ₂	13.2	106	0	2.5	77	PPh ₂ Vi	13.65	136		0
9	PPhH ₂	15.8	106	1	2.5	78	PPh(CH ₂ CH ₂ CN) ₂	15.8	136	1	0.8
10	P(OMe) ₂	17.9	107	1	2.8	79	P(CH ₂ CH ₂ C _e F ₁₂) ₂	9	137	0	2.5
11	PMe ₂ H	11.4	108	Ō	12	80	$P(CF_{2})_{2}$	33	137	Õ	11.1
12	$P(OFt)_{0}$	15.8	100	11	2.0	Q1	DDhDro	8	138	1	0
10	DMoE	940	103	1.1	2.3 00	01	DDb.Cl	0 99 0	100	24	10
13		24.9 15 0	110	1.0	0.0	02		22.0 E 7	100	0.4	1.0
14	$P(OBU)_3$	15.9	110	1.3	2.1	83	P(l-Bu)Me ₂	5.7	139	0	0
15	$P(OPT)_3$	15.9	110	1.3	2.7	84	$PPnBu_2$	8.1	139	1.3	0
16	$P(OCH_2CH_2CI)_3$	20.4	110	0.4	3.6	85	$PPh_2(OC_6H_4)$	16.7	139	2.4	1.4
17	PMe(OEt) ₂	13.4	112	0.7	1.9	86	PPh ₂ Et	11.1	140	2.3	0
18	PMe ₂ F	16.7	113	0	4.4	87	$PPh_2(CH_2CH_2CN)$	14.5	140	2	0.4
19	PMe ₂ (OEt)	11	115	0.4	1	88	$PMe_2(C_6F_5)$	17.3	140	1.4	0
20	PCyH ₂ '	11.8	115	0	2.5	89	PPh ₂ Pr	10.6	141	2	0
21	P(CH ₂ CH ₂ CN) ₂ H	17	117	0	2	90	PPh ₂ Bu	11.3	142	2.1	0
22	PMe ₂	8.55	118	Ō	0	91	PPh ₂ (CH ₂ CH ₂ C ₄ F ₁₂)	11.8	142	2	0.8
23	$P(t_Bu)H_0$	11.3	110	Ő	25	92	$P(i_Bu)_{\alpha}$	5 7	1/3	õ	0
21	P(Oot) H	0	120	0	2.5	02	D(t Bu)Cl	20.7	143	27	25
24 95		9	120	0	1.2	93	$P(1-Du) C I_2$	20 C C	143	2.1	0.1
20		9.2	120	0	1.2	94	PCy_2H	0.0	144	0	0.4
26	$P[O(1-Bu)]_3$	15.5	120	1.4	3	95	$PCI_2(C_6F_5)$	39.6	144	4.1	3.5
27	P(OMe) ₂ Ph	16.4	120	1.7	1.9	96	$P(p-Me_2NC_6H_4)_3$	5.25	145	2.7	0
28	PMe ₂ Cl	19.7	120	1.4	1.8	97	$P(p-MeOC_6H_4)_3$	10.5	145	2.7	0
29	PH(CF ₃) ₂	27.7	120	0	8.6	98	$PPh_2(p-Me_2NC_6H_4)$	10.6	145	2.7	0
30	P(OEt) ₂ Ph	15	121	1.7	1.9	99	$P(p-MeC_6H_4)_3$	11.5	145	2.7	0
31	PPhMe ₂	10.5	122	1	0	100	$PCy(CH_2CH_2CN)_2$	11.8	145	0	0.8
32	PMeCl ₂	30.9	122	2.7	3.5	101	$PPh_2(p-MeC_6H_4)$	12.1	145	2.7	0
33	PMe₂Eť	7.8	123	0	0	102	$PPh_{2}(p-MeOC_{e}H_{4})$	12.3	145	2.7	0
34	PM _e ₂ (CH ₂ CH ₂ CN)	11 /	123	Ő	0.4	102	$P(C_0H_z)_0$	13.25	1/5	27	Ő
25	$D(i P_{11}) \cdot U$	0.5	120	0	1.9	103	$DDh_{2}(n C C_{2}U_{2})$	14.4	145	27	0
30 90	$P(I-DU)_2\Pi$	9.0	124	0	1.2	104	$PFII_2(p-CIC_6\Pi_4)$	14.4	145	2.1	0
30	$PMe_2(CF_3)$	10.7	124	U	3.7	100	$P(p-FC_6H_4)_3$	10.7	145	2.1	0
37	PCI ₃	42	124	4.1	5.3	106	$PPh_2[p-(F_{13}C_6)C_6H_4]$	16.5	145	Z.7	U
38	PPh ₂ H	14.5	126	2	0.4	107	$P(p-CIC_6H_4)_3$	16.8	145	2.7	0
39	$PF(CF_3)_2$	33	126	0	11.8	108	PPh[<i>p</i> -(F ₁₃ C ₆)C ₆ H ₄] ₂	19.8	145	2.7	0
40	PMeEt ₂	7.1	127	0	0	109	$PPh_2(Pyr)^{f}$	19.5	145	3.1	0.6
41	PPrCl ₂	29.8	127	2.7	3.5	110	$P(p-F_3CC_6H_4)_3$	20.5	145	2.7	0
42	PMe(CH ₂ CH ₂ CN) ₂	14.2	128	0	0.8	111	$P[p-(F_{13}C_6)C_6H_4]_3$	23	145	2.7	0
43	$P(O-p-MeC_6H_4)_3$	22.4	128	1.4	4.1	112	PPh(Pvr) ₂ ^f	25.7	145	3.2	1.3
44	$P(O-n-MeOC_eH_4)_2$	22.5	128	1.4	3.8	113	$P(Pvr)_{2g}$	31.9	145	3.3	1.9
45	$P(OC_{o}H_{z})_{o}$	23.6	128	13	4 1	114	$\mathbf{P}[\mathbf{Pvr}_{3} 4_{4}(\mathbf{CO}_{0}\mathbf{Ft})_{0}]_{0}^{f}$	43	145	33	2
16	$P(O_n C C_n H_n)$	27.9	128	1.0	4	115	DDh[Dyr_2 4_(CO_Ft)_] $_{1}^{f}$	22.1	145	29	14
40	$DP_{11}C1$	20.0	120	1.5	-+ 9 5	110	DDb $[D_{rm} 2 A (CO Et)]^{f}$	999	145	9.1	1.4
47	$P D U C I_2$	29.0	120	2.1	3.5	117	$PFII_2[PyI-3,4-(CO_2EI)_2]^{r}$	43.4	140	3.1	0.7
48	$P(O-p-NCC_6H_4)_3$	31.7	120	1	3.7	117	$P(INC_4H_8)_{3^5}$	-1.2	140	-0.6	0.9
49	$P(CF_3)Cl_2$	39	128	Z.7	7.Z	118	$P(m-MeC_6H_4)_3$	11.3	148	2.7	0
50	$P(O-i-Pr)_3$	13.4	130	1.3	2.9	119	$P(m-CIC_6H_4)_3$	19.6	148	2.7	0
51	P(t-Bu)F ₂	22	130	0	8.8	120	$PEt_2(t-Bu)_2$	4.2	149	0	0
52	$PMe(CF_3)_2$	24.9	131	0	7.4	121	P(t-Bu) ₂ H	5.7	150	0	1.2
53	$P(p-MeOC_6H_4)Cl_2$	31.5	131	3.7	3.5	122	P(i-Pr)Ph ₂	9.6	150	1.7	0
54	PPhCl ₂	32.4	131	3.7	3.5	123	$P(i-Pr)_2(CH_2CH_2C_6F_{13})$	5.3	152	0	0.8
55	PEt3	6.3	132	0	0	124	PPh ₂ Cv	9.1	153	1.6	0
56	PMe ₂ (i-Pr)	6.9	132	0	0	125	PPh(i-Pr) ₂	10	155	2	0
57	PFt ₂ (CH ₂ CH ₂ CN)	99	132	Ő	04	126	P(t-Bu) = F	11	156	õ	Ă A
58	PEt(CH ₂ CH ₂ CN)	13 /	132	0	0.4	197	$P(CH_{a}CH_{a}CN)C_{Va}$	66	157	0	0.4
50	D(OMo)Dh	14.0	120	99	0.0	190	$DDh_{a}(t_{B}y)$	0.0	157	9	0.4
59	D(CH CH CN)	14.0	100	د.ى 0	0.9	140	$\mathbf{DDh} (\mathbf{C} \mathbf{E})$	0.0	107	۵.	0
00	$\Gamma(UH_2UH_2UN)_3$	1/	152	U	1.2	129	$rrn_2(U_6r_5)$	۵U.4	108	3.4	U
61	$P(octyl)(CH_2CH_2CN)_2$	13	133	0	0.8	130	$PCy_2(CH_2CH_2C_6F_{13})$	3.9	159	0	0.8
62	P(OEt)Ph ₂	14.1	133	2.4	1	131	P(i-Pr ₃)	3.45	160	0	0
63	$P(OMe)_2(C_6F_5)$	23.5	133	2.0	1.9	132	PPhCy ₂	5.7	162	1.6	0
64	PCl(CF ₃) ₂	36	133	1.4	9.2	133	P(t-Bu) ₂ Cl	14	163	1.4	1.8
65	PPr ₃	5.4	134	0	0	134	PCy ₃	1.4	170	0	0
66	PBu(CH ₂ CH ₂ CN) ₂	13.1	134	0	0.8	135	$PPh(C_6F_5)_2$	27.6	171	3.7	0
67	PPh(OC ₆ H ₅) ₂	20.2	134	1.9	2.7	136	$P(o-MeC_6H_4)$	10.65	178	2.7	0
68	PMe(i-Bu) ₂	6.7	135	0	0	137	P(t-Bu) ₃	0	182	0	Ō
69	P(Oct) ₂ (CH ₂ CH ₂ CN)	9	135	õ	04	138	$P(C_{e}F_{e})_{e}$	34 8	184	41	ň
	- (000/2(01120112011)	0	100	0	0.1	100	- (-0- 3/3	0 1.0	101	4+ I	v

Table 2. Systems, Properties, and Ligands from in the QALE Analyses Used to Determine the Coefficientsa-e of Eqs 1 and 2

no.	syst	property	ligands used	ligands excluded	refs
1	PZ ₃	vertical	3, 10, 12, 22, 28, 31, 32, 37, 54, 55, 74, 76,	$PZ_{3-i}H_i^a$	23-32
		ionization potentials	93, 96, 97, 99, 103, 105, 107, 110, 131, 136, 137		
2	$Cr(CO)_5(PZ_3)$	$\nu_{\rm CO}$	3, 10, 12, 14, 22, 37, 43, 45, 55, 74, 97, 99, 103, 107, 110, 131, 134		15, 33, 34
3	trans-Cr(CO) ₄ (PZ ₃) ₂	$\nu_{\rm CO}$	7, 10, 12, 22, 45, 74, 99, 103, 118		35 - 37
4	$Cr(1,3,5-MeC_{6}H_{3})(CO)_{2}(PZ_{3})$	$\nu_{\rm CO}$	10, 12, 14, 22, 37, 38, 43, 45, 55, 74, 103, 134		33
5	$Fe(CO)_4(PZ_3)$	$\nu_{\rm CO}$	10, 12, 22, 37, 45, 55, 74, 103, 105, 110, 134, 136, 137		33, 39-41
6	$Fe(CO)_3(PZ_3)_2$	$-\Delta H_{\rm rx}$	22, 31, 55, 74, 76, 86, 97, 99, 103, 105, 107, 109,		42 - 45
			110, 112, 113, 117, 124, 131, 132, 134		
7	$Fe(CO)_3(PZ_3)_2$	$\nu_{\rm CO}$	10, 22, 55, 74, 97, 99, 103, 105, 107, 109, 110,		42, 43,
			112, 113, 117, 131, 134, 137		45 - 47
8	$Ir(CO)(Cl)(PZ_3)_2$	$\nu_{\rm CO}$	10, 45, 55, 74, 96, 97, 99, 103, 105, 107, 110, 131, 134		48 - 50
9	$Mn(Cp)(CO)_2(PZ_3)$	νco	10, 12, 14, 22, 37, 43, 45, 55, 74, 99, 103, 131, 134		33
10	$Mo(CO)_5(PZ_3)$	$\nu_{\rm CO}$	1, 3, 10, 12, 22, 37, 45, 55, 60, 74, 103, 118, 137, 134		51
11	$Mo(CO)_4(PZ_3)_2$	ν _{CO}	1, 3, 10, 12, 22, 37, 45, 50, 55, 60, 74, 99, 103,		51, 52
			118, 131, 134		
12	$Mo(CO)_3(PZ_3)_3$	νco	1, 3, 10, 12, 22, 37, 45, 50, 54, 55, 74, 82, 103	60 ^b	51
13	$[(CO)_2RhCl]_2 + 4 PZ_3 =$	$-\Delta H_{\rm rx}$	10, 22, 31, 45, 55, 76, 97, 99, 103, 105, 107,	113^{c}	53 - 55
	$2Rh(CO)(Cl)(PZ_3)_2 + 2CO$		109. 110. 112. 131. 134		
14	$Rh(CO)(Cl)(PZ_3)_{2}$	νco	10, 22, 45, 55, 97, 99, 103, 105, 107, 109, 110,	117^{d}	53 - 55
		00	112, 113, 131, 134		
15	Rh(CO)(Cl)(PZ ₃) ₂	Rh–P bond length	22, 31, 76, 77, 99, 103, 105, 113, 117, 131, 134		53, 56-66
16	$Ru(Cp)(cod)Cl + 2PZ_3 =$	$-\Lambda H_{rx}$	3, 22, 31, 45, 50, 55, 74, 76, 97, 99, 105,	10 ^e	67 - 69
	$Ru(Cp)(Cl)(PZ_2)_2 + cod$		107, 109, 110, 112, 113, 117		
17	$Ru(Cn^*)(cod)Cl + 2PZ_3 =$	$-\Lambda H_{rx}$	3. 22. 31. 45. 50. 55. 74. 76. 97. 105. 107. 109.		67 - 69
	$Ru(Cn^*)(Cl)(PZ_2)_2 + cod$		110 112 113		0. 00
18	$W(CO)_5(PZ_3)$	$\nu_{\rm CO}$	3, 12, 22, 22, 37, 45, 55, 74, 103, 134, 136		33, 34,
10	$O_{\mathcal{D}}(\mathcal{C}\mathcal{O})$ (D7)	Oc. Dhand	2 10 27 45 55 77 00 102 105 110 124		30, 70 71
19	$OS_3(CO)_{11}(PZ_3)$	US-P DOILU	5, 10, 27, 45.55, 77, 99, 105, 105, 110, 154,		/1
90	$\mathbf{N}_{\mathbf{r}}^{\mathbf{r}}(\mathbf{CO})$ (D7)	length			95
20	$NI(CO)_3(PZ_3)$	$\nu_{\rm CO}$	5, 10, 12, 20, 22, 57, 45, 40, 40, 50, 55, 00, 74, 00, 00, 07, 00, 100, 107, 107, 101, 104, 107		20
91	$E_{0} C_{T} (CO) + DZ =$	log h	92, 96, 97, 99, 103, 105, 107, 131, 134, 137		79
21	$Fe_2Cp_2(CO)_3 + PL_3 =$	log k	10, 40, 50, 74, 105, 129, 151, 154, 157, 155		12
00	$re_2 Cp_2(CU)_3 PZ_3$	1. <i> 1</i> .	10 10 07 45 50 55 50 74 07 00 100 105 107		70
22	$l - DUOOH + PL_3 =$	log K	10, 12, 27, 40, 50, 55, 59, 74, 97, 99, 103, 105, 107		13
	$O-PL_3 + I-DUOH$				

^{*a*} $PZ_{3-i}H_i$ are excluded because their inclusion might require an additional parameter *i*, which refers to the number of hydrogens.¹⁴ ^{*b*} Deviates from the line determined by the other ligands by 8 σ . ^{*c*} Deviates from the line determined by the other ligands by 5 σ . ^{*d*} Deviates from the line determined by the other ligands by 5 σ . ^{*e*} Deviates from the line determined by the other ligands by 5 σ .

cone angle and is a measure of the size of the ligand, $E_{\rm ar}$ is an extra electronic effect originally associated with the number of aromatic pendant groups but is now thought to be more general, 15 and $\pi_{\rm p}$ is a measure of the π acidity. In eq 1, $\theta_{\rm st}$ is the steric threshold 17 and λ is the switching function that turns on the steric term after the size of the ligand surpasses the steric threshold. 17 In the absence of a steric threshold, this equation can be reduced to eq 2. In the QALE model, eqs 1

$$prop = a\chi_{d} + b\theta + cE_{ar} + d\pi_{p} + e$$
(2)

and 2 are generally applicable to all phosphorus(III) ligands.

Normally, in a QALE analysis we examine the manner in which a physicochemical property changes as the nature of the phosphorus(III) ligand changes. Beginning with the known parameters of the ligands in the particular data set, we then determine the values of the coefficients (a-e) of the QALE equations via regression analysis. On the other hand, if we want to determine the parameters of a given ligand, we can turn this procedure around. Beginning with a number of QALE equations with known coefficients for a number of different properties of a given ligand, we can determine the unknown parameters for this ligand. With a view toward obtaining the parameters of the fluorinated phosphorus(III) ligands, we obtained the QALE equations listed in Table 3 by regression analysis for 22 physicochemical properties (Table 2). We chose

these properties because they have been measured not only for the fluorinated ligands of interest but also for a number of other π acidic phosphorus(III) ligands as well as alkyl- and arylphosphines. In deriving the QALE equations, we omit the fluorinated ligands but include alkyl- and arylphosphines (PR₃ and P(*p*-XC₆H₄)₃, respectively), alkyl and aryl phosphites (P(OR)₃ and P(O-*p*-XC₆H₄)₃, respectively), and the π acidic ligands PH₃, PCl₃, P(CH₂CH₂CN)₃, and P(Pyr)₃, for which the stereoelectronic parameters are known (see Table 1).

Before using the QALE equations in Table 3 to determine the parameters for PZ₃ (Z and Y are used to indicate any pendant group), we weighted them and made them dimensionless by dividing each one by its estimated standard deviation (*s*). We then put them into the standard form of eq 3. a'-d'

$$a'\chi_{\rm d} + b'\theta + c'E_{\rm ar} + d'\pi_{\rm p} + e' = 0 \tag{3}$$

are the QALE coefficients divided by the estimated standard deviation (*s*). *e'* is the sum of all constant terms divided by *s*. Regression analysis of the collection of equations for a single phosphorus(III) ligand gives estimated values of the QALE parameters and *e'*_{calcd}. We used the "Minitab" program for all statistical calculations. For illustrative purposes, we have displayed the output, which shows the standard deviation (standard error), "*t* ratios" and "*p* values" of the parameters as well as the estimated standard deviation (*s*) and *r*² value of the analysis.

Occasionally, within a set of data or within a set of equations, we find an outlier. A data point is identified

⁽¹⁷⁾ Liu, H.-Y.; Eriks, E.; Prock, A.; Giering, W. P. *Organometallics* **1990**, *9*, 1758.

Table 3.	Results of	f Regression Ana	lyses (vi	ia Eq 1	or 2)) of the Ph	vsiochemical Pro	operties Listed in T	able 24
			. /						

			· (·						
no.	а	b	С	d	е	$\theta_{\rm st}$ (deg)	п	σ	r^2
1	0.115 ± 0.003	0	-0.47 ± 0.03	0	7.63 ± 0.05		23	0.1185	0.985
2	0.50 ± 0.02	-0.047 ± 0.007	0	1.67 ± 0.09	2063 ± 1		17	0.3842	0.998
3	1.6 ± 0.2	0.24 ± 0.05	0	7.2 ± 0.4	133 ± 6		9	1.777	0.999
4	2.1 ± 0.1	0.16 ± 0.04	-2.2 ± 0.9	0	1842 ± 6		12	1.907	0.993
5	0.66 ± 0.09	-0.06 ± 0.01	-1.6 ± 0.5	2.0 ± 0.3	2054 ± 2		13	0.7684	0.996
6	-0.78 ± 0.07	-0.45 ± 0.02	-1.4 ± 0.3	-1.3 ± 0.6	46.7 ± 0.5	134	20	0.8994	0.991
7	1.40 ± 0.08	-0.13 ± 0.02	4.5 ± 0.4	12.3 ± 0.5	1875 ± 3		16	1.053	0.999
8	1.42 ± 0.09	-0.13 ± 0.03	4.9 ± 0.4	6.5 ± 0.4	1951 ± 4		13	1.091	0.998
9	1.8 ± 0.1	0.15 ± 0.02	-2.0 ± 0.6	1.5 ± 0.5	1899 ± 3		13	1.140	0.998
10	0.51 ± 0.06			1.6 ± 0.3	2066.1 ± 0.6		14	1.350	0.979
11	1.3 ± 0.1			2.4 ± 0.5	2006 ± 1		16	2.238	0.984
12	2.6 ± 0.2			4.8 ± 0.9	1911 ± 2		13	3.701	0.990
13	-1.4 ± 0.1	-0.40 ± 0.03	-2.5 ± 0.7	-1.5 ± 0.6	136 ± 5		16	1.501	0.990
14	1.7 ± 0.1	-0.24 ± 0.03	4.1 ± 0.5	5.8 ± 0.5	1980 ± 4		15	1.276	0.998
15	-0.0011 ± 0.0002	$0.000~69\pm0.00009$		-0.011 ± -003	2.24 ± 0.01		11	0.004 04	0.969
16		-0.90 ± 0.07	0.9 ± 0.3		36.3 ± 0.5	135	18	1.15	0.962
17		-0.72 ± 0.7	1.0 ± 0.4		31.8 ± 0.05	127	15	1.069	0.959
18	0.54 ± 0.05			1.5 ± 0.2	2064.6 ± 0.5		11	0.8137	0.994
19	-0.0026 ± 0.0009	0.0015 ± 0.0003		-0.006 ± 0.003	2.17 ± 0.05		14	0.016 27	0.940
20	0.92 ± 0.04			2.0 ± 0.2	2057		23	1.1111	0.993
21	-0.04 ± 0.01	-0.032 ± 0.004	0.35 ± 0.07		9.7 ± 0.6		8	0.1234	0.983
22	-0.9 ± 0.2	-0.08 ± 0.1	0.20 ± 0.08	-0.52 ± 0.07	1.7 ± 0.2	128	13	0.1344	0.982

^a The letters *a*-*e* are the regression coefficients of these equations. Entry numbers correspond to the entry numbers in Table 2.

Table 4. List of Ligands and Equations Used To Determine the Stereoelectronic Parameters of the Phosphorus(III) Compounds Listed in Column 2

no.	PZ_3	χd	θ (deg)	$E_{\rm ar}$	$\pi_{ m p}$	n ^a	σ	r ²	eqs^b	ligands used ^c	ligands excluded ^c	refs
1	PF ₃	33 ± 2	110 ± 24	0	13.2 ± 0.5	19	4.876	0.992	1	7, 13, 18,		28, 31
										51, 126		
									2, 5, 47, 49,	7		24, 33, 36,
									10, 12, 18			37, 41, 52,
									11	7 13 18		52
									11	51 126		02
									19	7, 126		71
2	$P(CF_3)_3$	33 ± 2	137 ± 13	0	11.1 ± 0.6	20	2.352	0.992	1	36, 49, 52,		75, 76
	0/0									64.80		
									2	52, 80	36 ^e	77
									3, 10, 11, 18	36, 52, 80		77
									5	80		78
3	$P(CH_2CH_2-$	9 ± 3	137 ± 2	0	2.5 ± 0.4	14	1.667	0.999	6	91, 123, 130		47
	$C_6F_{13})_3$								0		ant	
									8	70 100 100	79 ¹	70
									13	79, 123, 130	918	79
									14	120		79
									15	130		70 80
									16 17	79, 91		80 81
4^{h}	$P(p_{12}C_{\theta})$ -	22.7 ± 1.1	145	2.7	0	4			8.14	111		82
-	$C_{e}H_{A}$	2200 ± 101	110	2	0	-			0,11			
5^d	$P(C_6F_5)_3$	34 ± 2	184 ± 13	4.1 ± 0.5	0	13	3.002	0.987	1	63, 88, 95,		83, 84
	,.									129		
									13,27,28	138		22, 71, 85
									21	129, 135, 138		86
									29	129 , 135		72
									30	129		73
6	P[Pyr-3,4-	43 ± 2	145	3.3	2 ± 1	6	0.8308	1.000	20	114 - 116		87
	$(CO_2Et)_2]_3$								91	114 116		07
									<i>4</i> ۱	114-110		0/

^{*a*} Numbers of equations from Table 3 that were used in the analyses. ^{*b*} Numbers refer to the properties and equations listed in Tables 2 and 3. ^{*c*} Numbers refer to the entry numbers in Table 1. ^{*d*} We found in the literature three values of ν_{CO} for Fe(CO)₄(PF₃) and two values of ν_{CO} for Fe(CO)₃(PF₃)₂. Each of these values was included as a separate data point. ^{*e*} Deviates by 3.6 standard deviations (3.6 σ) (see text). ^{*f*} Deviates by 9.4 σ . ^{*g*} Deviates by 5.6 σ . ^{*h*} See text for the method of analysis.

statistically as an outlier in the following manner.¹⁸ We obtain the predicted values and the residuals of the property based on regression analysis, where we omit the suspect data point. Using the regression equation, we calculate the predicted value of the suspect data point. If the difference between the predicted value and the experimental value is greater than 3.5 standard deviations from the set of residuals, then it is an outlier. Within the 22 data sets listed in Table 2 we found only 4 outliers out of 324 data. (The range of r^2 is 0.940–0.999 with a median of 0.990.) In the analyses listed in Table 4, we found 3 outliers out of the 76 equations.

Results

Reevaluation of the Stereoelectronic Parameters of PF₃. Our original analysis of PF₃ was based on a limited set of data.¹⁴ Accordingly, we revisited this ligand and added 6 new properties to the analysis.

⁽¹⁸⁾ Moore, D. S.; McCabe, G. P. Introduction to the Practice of Statistics, 3rd ed.; Freeman and Company: New York, 1999; p 163.

This gave us 19 equations. (The total number of equations is obtained by summing the product of the number of equations by the number of ligands involved.). In addition, we found 3 values for ν_{CO} for Fe(CO)₄(PZ₃) and 2 values for Fe(CO)₃(PZ₃)₂. Each of these values was included in the analysis as a separate equation, bringing the total number of equations to 22 (see entry 1, Table 4). The output of the Minitab program for the analysis of this set of equations gives the results

predictor	coeff	st dev	t ratio	р
χd	30.671	5.531	5.55	0.000
θ	119.87	31.37	3.82	0.001
$E_{\rm ar}$	0.817	1.561	0.52	0.607
$\pi_{ m p}$	13.894	1.459	9.52	0.000

with *s* (estimated standard deviation) = 4.977 and r^2 = 0.992. This regression analysis shows that $E_{\rm ar}$ is statistically indistinguishable from zero by virtue of its small t ratio and large p value. Hence, E_{ar} was set to zero and dropped from the final analysis. Repeating the analysis in terms of χ_d , θ , and π_p only, we obtained

predictor	coeff	st dev	t ratio	р
χd	33.029	3.146	10.50	0.000
θ	109.55	23.91	4.58	0.000
$\pi_{ m p}$	13.1882	0.5480	24.07	0.000

with *s* = 4.876 and *r*² = 0.992. We see that χ_d (33 ± 3) is smaller than our earlier reported value of 44 ± 4 ; π_p decreased slightly from 14 \pm 1 to 13.2 \pm 0.5. The analysis provides $\theta = 110 \pm 24^\circ$, which overlaps Tolman's value²² of 104°. We suggest the continued use of Tolman's value. This new value of χ_d indicates that its σ donor capacity is between that of PCl₃ and P(O*p*-CNC₆H₄)₃ (see Table 1). Its π_p value of 13.2 indicates that PF_3 is the most π acidic phosphorus(III) ligand in our present listing of ligands.

The new stereoelectronic parameters for PF₃ and those for the other ligands considered in this study are presented in Table 4.

Determination of the Stereoelectronic Param eters of P(CF₃)₃. We used the equations listed in entry 2 of Table 4 for the determination of the parameters of P(CF₃)₃. To include the small set of data for ν_{CO} for *trans*- $Cr(CO)_4L_2$, we added the data point for PF₃ to obtain the QALE equation (entry 3, Table 3). Combining the appropriate data for $P(CF_3)_3$ with data for the mixed ligands containing the CF_3 groups gave us 20 equations. When we performed the analysis of these equations in terms of the four QALE parameters, we found E_{ar} to be indistinguishable from zero. The results of the regression analysis using χ_{d} , θ , and π_{p} gave the results

predictor	coeff	st dev	t ratio	р
$\chi_{ m d} \ heta$	33.188 137.31 11.0629	2.413 12.51 0.5636	13.75 10.97 19.63	$0.000 \\ 0.000 \\ 0.000$

(19) Bartik, T.; Himmler, T.; Schulte, H.; Seevogel, K. J. J. Organomet. Chem. 1984, 272, 29.

- (20) Fernandez, A. L.; Lee, T. Y.; Reyes, C.; Prock, A.; Giering, W.
- P.; Haar, C. M.; Nolan, S. P. J. Chem. Soc., Perkin Trans. 2 1999, 2631.
 (21) Fernandez, A. L.; Reyes, C.; Lee, T. Y.; Prock, A.; Giering, W.
 P.; Haar, C. M.; Nolan, S. P. J. Chem. Soc., Perkin Trans. 2 2000, 1349. (22) Tolman, C. A. Chem. Rev. 1977, 77, 313.

with s = 2.352 and $r^2 = 0.992$. Therefore, the values of $\chi_{\rm d}$, θ and $\pi_{\rm p}$ are 33 \pm 2, 137 \pm 13°, and 11.1 \pm 0.6, respectively.

Determination of the Stereoelectronic Parameters of P(CH₂CH₂C₆F₁₃)₃. Initial inspection of the 14 equations listed in entry 3 of Table 4 revealed a correlation between the coefficients of the electronic terms. As a result, we were unable to evaluate the separate contributions of the electronic parameters without assigning a value to one of the parameters. Accordingly, we assigned a value of zero to E_{ar} since $P(CF_3)_3$ has this value, as do the other PR_3 species (R = alkyl). The final regression analysis gives the results

predictor	coeff	st dev	t ratio	р
$\stackrel{\chi_{ ext{d}}}{ heta}_{\pi_{ ext{p}}}$	8.880	1.678	5.29	0.000
	137.054	1.801	76.08	0.000
	2.4553	0.4307	5.70	0.000

with s = 1.667 and $r^2 = 0.999$. Thus, we obtain values of 9 \pm 2, 137 \pm 3°, and 2.5 \pm 0.4 for χ_d , θ , and π_p , respectively.

Determination of the Stereoelectronic Parameters of P[p-(C₆F₁₃)C₆H₄]₃. Only two properties of this ligand have been reported.⁸² Accordingly, the results we report must be considered tentative. We performed the analysis in the following manner. We assumed that this para-substituted triarylphosphine behaves in no exceptional way as compared to other $P(p-XC_6H_4)_3$ species.

- (23) Weiner, M. A.; Lattman, M.; Grim, S. O. J. Org. Chem. 1975, 40, 1292.
- (24) Stelzer, O.; Unger, E. Chem. Ber. 1975, 108, 1246.
 (25) Puddephatt, R. J.; Dignard-Bailey, L.; Bancroft, G. M. Inorg. Chim. Acta 1985, 96, L91.
- (26) Worley, S. D.; Hargis, J. H.; Chang, L.; Mattson, G. A. J. Electron Spectrosc. Related Phenom. 1982, 25, 135.
- (27) Cowley, A. H.; Lattman, M.; Montag, R. A.; Verkade, J. G. Inorg.
- Chim. Acta 1977, 25, L151. (28) Boch, H. Pure Appl. Chem. 1975, 44, 343.
- (29) Cowley, A. H.; Lattman, M.; Montag, R. A.; Verkade, J. G. Inorg. Chem. 1984, 23, 3378.
- (30) Schafer, W.; Schweig, A. Angew. Chem., Int. Ed. Engl. 1972, 11.836.
- (31) Lappert, M. F.; Pedley, J. B.; Wilkins, B. T.; Stelzer, O.; Unger, E. J. Chem. Soc., Dalton Trans. 1975, 1207.
- (32) Bancroft, G. M.; Dignard-Bailey, L.; Puddephatt, R. J. Inorg. Chem. 1986, 25, 3675.
- (33) Strohmeier, W.; Müller, F. J. Chem. Ber. 1967, 100, 2812.
- (34) Aroney, M. J.; Davies, M. S.; Hambley, T. W.; Pierens, R. K. J. Chem. Soc., Dalton Trans. 1994, 91.
- (35) Bond, A. M.; Colton, R.; Kevekordes, J. E. Inorg. Chem. 1986, 25, 749.
- (36) von Apel, J.; Bacher, R.; Grobe, J.; Le Van, D. Z. Anorg. Allg. Chem. 1979, 453, 39.
- (37) Denham, E. L.; Clark, R. J. J. Chromatography 1984, 301, 253. (38) Brunner, H.; Knott, A.; Benn, R.; Rufinska, A. J. Organomet. Chem. 1985, 295, 211.
- (39) van Rentergen, M.; van der Kelen, G. P.; Claeys, E. C. J. Mol. Struct. 1982, 80, 317.
- (40) Howell, J. A. S.; Fey, N.; Lovatt, J. D.; Yates, P. C.; McArdle, P.; Cunningham, D.; Sadch, E.; Gottlieb, H. E.; Goldschmidt, Z.; Hursthouse, M. B.; Light, M. E. *J. Chem. Soc., Dalton Trans.* **1999**,
- 3015 (41) Tripathi, J. B. P.; Bigorgne, M. J. Organomet. Chem. 1967, 9,
- 307.
- (42) Serron, S. A.; Nolan, S. P. *Inorg. Chim. Acta* 1996, *252*, 107.
 (43) Li, C.; Nolan, S. P. *Organometallics* 1995, *14*, 1327.
 (44) Li, C.; Stevens, E. D.; Nolan, S. P. *Organometallics* 1995, *14*,
- 3791
- (45) Luo, L.; Nolan, S. P. *Inorg. Chem.* **1993**, *32*, 2410.
 (46) Haar, C. M.; Nolan, S. P. *Inorg. Chim. Acta* **1999**, *291*, 32.
 (47) Smith, D. C.; Klaman, A. L.; Kadoret, J.; Nolan, S. P. *Inorg.* Chim. Acta 2000, 300-302, 987.
- (48) Field, L. D.; Lawrenz, E. T.; Ward, A. J. Polyhedron 1999, 18, 3031
- (49) Kubota, M. K.; G. W.; Ishikawa, R. M.; Bencala, K. E. Inorg. Chim. Acta 1973, 7, 195.

Thus, we assigned values of 145°, 2.7, and 0 to θ , E_{ar} , and π_p , respectively. The lack of π acidity for P(C₆F₅)₃ supports the assumption that π_p is zero for P[*p*-(C₆F₁₃)- $C_6H_4]_3$ (vide infra). We then used the χ_d dependence of v_{CO} for M(CO)Cl[P(*p*-XC₆H₄)₃]₂ (M = Rh, Ir) (eqs 3 and 4, respectively) to calculate χ_d for this ligand. Using

$$v_{\rm CO}({\rm Rh}) = (1.70 \pm 0.02)\chi_{\rm d} +$$

(1955.5 ± 0.3) $n = 6, r^2 = 0.999$ (3)

 $\nu_{\rm CO}({\rm Ir}) = (1.46 \pm 0.02)\chi_{\rm d} +$ (1945.7 ± 0.3) $n = 7, r^2 = 0.999$ (4)

these two experimental ν_{CO} values for P[p-(C₆F₁₃)C₆H₄]₃, (1993 and 1979 cm^{-1} , respectively), we calculated the corresponding values for χ_d . We repeated this operation for all variations of the standard errors and averaged the extreme results to obtain 23 \pm 1 for χ_d . This is noteworthy (vide infra), since the χ_d value of 23 is close to the value of 20.5 for $P(p-F_3CC_6H_4)_3$.

Determination of the Stereoelectronic Parameters of P(C₆F₅)₃. We found 7 sets of data that included $P(C_6F_5)_3$ or related phosphines. This gave us 13 equations (entry 5, Table 4). Regression analysis in terms of

- (51) Alyea, E. C.; Song, S. Comments Inorg. Chem. 1996, 18, 189.
 (52) Barbeau, C.; Turcotte, J. Can. J. Chem. 1975, 54, 1603. (53) Wilson, M. R.; Fernandez, A. L.; Prock, A.; Giering, W. P.; Haar,
- C. M.; Nolan, S. P.; Foxman, B. M. Submitted for publication. (54) Serron, S.; Nolan, S. P. Organometallics 1996, 15, 4301
- (55) Serron, S.; Nolan, S. P.; Moloy, K. G. Organometallics 1996, 15, 4301.
- (56) Schumann, H.; Jurgis, S.; Eisen, M.; Blum, J. Inorg. Chim. Acta **1990**, *172*, 191.
- (57) Otto, S.; Mzamane, S. N.; Roodt, A. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1999, C55, 67.
 (58) Chen, Y. J.; Wang, J. C.; Wang, Y. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1991, C47, 2441.
 (50) Moley K. C. Patersen, L. J. Am. Cham. Soc. 1995, 117, 7666.
- (59) Moloy, K. G.; Petersen, J. L. J. Am. Chem. Soc. 1995, 117, 7696.
 (60) Kessler, J. M.; Nelson, J. H.; Frye, J. S.; DeCian, A.; Fischer, J. Inorg. Chem. 1993, 32, 1048.
- (61) Dahan, F.; Choukroun, R. Acta Crystallogr. 1985, C41, 704.
- (62) Monge, A.; Gutierrez-Puebla, E.; Heras, J. V.; Pinilla, E. Acta Crystallogr. 1983, C39, 446.
- (63) Dunbar, K. R.; Haefner, S. C. *Inorg. Chem.* **1992**, *31*, 3676. (64) Chaloner, P. A.; Claver, C.; Hitchcock, P. B.; Masdeu, A. M.; Ruiz, A. *Acta Crystallogr.* **1991**, *C47*, 1307.
- (65) Ceriotti, A.; Ciani, G.; Sironi, A. J. Organomet. Chem. 1983, 247, 345.
- (66) Boyd, S. E.; Field, L. D.; Hambley, T. W.; Partridge, M. G. Organometallics 1993, 12, 1720.
- (67) Serron, S. A.; Luo, L.; Stevens, E. D.; Nolan, S. P.; Jones, N. L.; Fagan, P. J. Organometallics 1996, 15, 5209.
- (68) Luo, L.; Nolan, S. P.; Fagan, P. J. Organometallics 1993, 12, 4305
- (69) Serron, S. A.; Luo, L.; Li, C.; Cucullu, M. E.; Stevens, E. D.; Nolan, S. P. Organometallics 1995, 14, 5290.
 - (70) Keiter, R. L.; Verkade, J. G. Inorg. Chem. 1969, 8, 2115.
- (71) Biradha, K.; Hansen, V. M.; Leong, W. K.; Pomeroy, R. K.; Zaworotko, M. J. *J. Cluster Sci.* **2000**, *11*, 285.
 - (72) Zhang, S.; Brown, T. L. Organometallics 1992, 11, 4166.
 - (73) Shulman, J. I. J. Org. Chem. 1977, 42, 3970. (74) Haas, H.; Sheline, R. K. J. Chem. Phys. 1967, 47, 2996.
- (75) Gleiter, R.; Goodmann, W. D.; Schafer, W.; Grobe, J.; Apel, J. Chem. Ber. 1983, 116, 3745.
- (76) Cowley, A. H.; Dewar, M. J. S.; Goodman, D. W. J. Am. Chem. Soc. 1975, 97, 3653.
 - (77) Apel, J.; Gorbe, J. Z. Anorg. Allg. Chem. 1979, 453, 53.
 (78) Burg, A. B. Inorg. Chem. 1986, 25, 4751.
- (79) Smith, D. C.; Stevens, E. D.; Nolan, S. P. Inorg. Chem. 1999, 38, 5277.
- (80) Guillevic, M. A.; Rocaboy, C.; Arif, A. M.; Horvath, I.; Gladysz, J. A. Organometallics 1998, 17, 707.
- (81) Li, C.; Nolan, S. P.; Horvath, I. T. Organometallics 1998, 17, 452
- (82) Fawcett, J.; Hope, E. G.; Kemmitt, R. D.; Paige, D. R.; Russell, D. R.; Stuart, A. M. J. Chem. Soc., Dalton Trans 1998, 3751.

the four QALE parameters showed that $\pi_{\rm p}$ was indistinguishable from zero. Accordingly, it was dropped from the final analysis, which gave the following results

predictor	coeff	st dev	t ratio	р
$\stackrel{\chi_{ m d}}{ heta}_{E_{ m ar}}$	33.915 190.63 4.2595	1.622 13.14 0.5418	20.91 14.51 7.86	$0.000 \\ 0.000 \\ 0.000$

with s = 3.020 and $r^2 = 0.987$. Thus, we obtain values of 34 \pm 2, 191 \pm 13°, and 4.3 \pm 0.5 for χ_d , θ , and E_{ar} , respectively.

Determination of the Stereoelectronic Parameters of P[Pyr-3,4-(CO₂Et)₂]₃ (Pyr = Pyrrolyl). Our results for this analysis must be considered tentative, since there are only two reported properties on which to base our analysis (entry 6 in Table 4). This gave us six equations. Since E_{ar} does not change for P(p-XC₆H₄)₃ as X is varied, we assumed that this is also true for substituted pyrrolylphosphines. Accordingly, for P[Pyr- $3,4-(CO_2Et)_2]_3$ we set $E_{ar} = 3.3$ (the value²¹ for P(Pyr)₃). Nolan⁸⁷ suggested that this ligand is isosteric with $P(Pyr)_3$. Thus, we assigned θ a value of 145°. The results of the regression analysis are

predictor	coeff	st dev	t ratio	р
$\stackrel{\chi_{ ext{d}}}{\pi_{ ext{p}}}$	42.829	2.443	17.53	0.000
	2.0029	0.9722	2.06	0.131

with s = 0.8308 and $r^2 = 100.0$. Thus, the parameters for this ligand are 43 \pm 2, 145°, 3.3, and 2 \pm 1 for χ_d , θ , $E_{\rm ar}$ and $\pi_{\rm p}$, respectively. We discuss the π acidity of this ligand below.

Discussion

It is noteworthy the values of θ that we obtained for PF_3 (110°), $P(CF_3)_3$ (137°), and $P(C_6F_5)_3$ (191°) are remarkably similar to the values reported by Tolman. Tolman does not report θ for P(CH₂CH₂C₆F₁₃)₃. Even so, the value θ (137°) which we report for P(CH₂- $CH_2C_6F_{13}$)₃ is close to the value of θ (136°) that we find works well for PBu₃ in QALE analyses (e.g., see the appropriate analyses in Tables 2 and 3).

PF₃ is the most π acidic of the phosphorus(III) ligands. Our analysis also reveals that P(CF₃)₃ has a large value of π_p , consonant with Grobe's assertion¹³ that this ligand is a strong π acid. Interestingly, P(CH₂CH₂C₆F₁₃)₃ also exhibits a significant π acidity, although it is as good a σ donor as PMe₃. We also note that there appears to be no π acidity associated with P(C₆F₅)₃. Furthermore, in the absence of π acidity, we expect that the χ_d value should be the same as Tolman's value of χ (34.8), as indeed it is. Therefore, we suggest that Tolman's value be used for χ_d . P(C₆F₅)₃ does appear to have one of the largest Ear values of any of the phosphorus(III) ligands.

(87) Huang, A.; Marcone, J. E.; Mason, K. L.; Marshall, W. J.; Moloy, K. G.; Serron, S.; Nolan, S. P. Organometallics 1997, 16, 3377.

⁽⁵⁰⁾ Wilson, M. R.; Liu, H.-Y.; Prock, A.; Giering, W. P. Organometallics 1993, 12, 2044.

⁽⁸³⁾ Petrachenko, N. E.; Vovna, V. I.; Furin, G. G. Zh. Fiz. Khim. 1992. 66. 515

⁽⁸⁴⁾ Krupoder, S. A.; Furin, G. G.; Yakobson, G. G.; Dolenko, G. N.; Mazalov, L. N.; Sultanov, A. S.; Furley, I. I. J. Fluorine Chem. 1983, 22. 305.

⁽⁸⁵⁾ Holloway, J. H.; Hope, E. G.; Russell, D. R.; Saunders, G. C.; Atheron, M. J. Polyhedron 1996, 15, 173.

⁽⁸⁶⁾ Kemmitt, R. D. W.; Nichols, D. I.; Peacock, R. D. J. Chem. Soc. A 1968, 1898.

The lack of π acidity for P(C₆F₅)₃ reinforces our contention that P[*p*-(C₆F₁₃)C₆H₄]₃ is not a π acid.

The χ_d value for P[Pyr-3,4-(CO₂Et)₂]₃ is the largest that we have determined, making it the poorest σ donor ligand, so far. Interestingly, even though π_p has a large error, its value is very close to the π_p value (1.9) of P(Pyr)₃, and thus we believe that it is real. The similarity of π_p for P[Pyr-3,4-(CO₂Et)₂]₃ and P(Pyr)₃ is reminiscent of the P(O-*p*-XC₆H₄)₃ ligands, whose π_p parameters are independent of the para substituent.¹⁵

The availability of the stereoelectronic parameters of the fluorinated phosphorus(III) compounds gives us the opportunity to explore how the electronic influence of the fluoroalkyl group is attenuated by intervening atoms (spacers). To accomplish this, we treat the C₆F₁₃ like a CF₃ group. Certainly, the similarity of χ_d and π_p for P[p- $(C_6F_{13})C_6H_4]_3$ ($\chi_d = 23$ and $\pi_p = 0$) and P(p-F_3CC_6H_4)_3 $(\chi_d = 20.5 \text{ and } \pi_p = 0)$ suggests that this is possible. In support of our view, we note that Hope also concluded that CF₃ and C₆F₁₃ have similar electronic properties.⁸² By treating perfluoroalkyl groups as trifluoromethyl groups, we can generate a homologous series of fluorinated phosphorus(III) ligands. For example, P(CH₂-CH₂C₆F₁₃)₃ is treated like P(CH₂CH₂CF₃)₃. To incorporate PF₃ into the analysis, we multiplied its π_p value by 3, since all the other ligands possess the equivalent of nine fluorine atoms.

Examination of the data presented in Table 4 reveals that the π acidifying effect of the CF₃ group does not end abruptly as "spacers" are inserted between the phosphorus and the perfluoroalkyl group. Rather, the π effect is smoothly attenuated as the number of atoms separating phosphorus and fluorine increases. This is shown in Figure 1, where we plot π_p vs "n", the number of atoms between phosphorus and the fluorines. We note that the π_p contribution of CF₃ appears to have vanished by the time there are five intervening atoms separating the fluorine and phosphorus atoms. Qualitatively, our observation agrees with that of Gladysz, who noted that the (total) electronic effect of the fluoroalkyl group is still observable with five intervening CH₂ groups and nearly disappears with six CH₂ groups.¹²

This essentially smooth monotonic attenuation of the π effect is not mirrored in the changes in χ_d . For example, the para CF₃ group in P(*p*-F₃CC₆H₄)₃ causes a nine unit increase in χ_d as compared with P(*p*-MeC₆H₄)₃. In contrast, the C₆F₃ group (which is closer to the phosphorus) in P(CH₂CH₂C₆F₁₃)₃ causes only a 3.6 unit increase in χ_d as compared to PPr₃.

Hope compared the ν_{CO} values for Ir(CO)(Cl)-[P(CH₂CH₂C₆F₁₃)₃]₂ with Ir(CO)(Cl)[PEt₃]₂ and, simi-

Figure 1. Plot of the π_p values of fluorinated phosphorus-(III) ligands vs the number of atoms (*n*) separating the phosphorus and fluorine atoms.

larly, ν_{CO} for Ir(CO)(CI)[P[p-(F₁₃C₆)C₆H₄]₃]₂ with Ir(CO)-(CI)(PPh₃)₂. He noted that the phenyl ring better insulates the phosphorus from the F₁₃C₆ than does the array of two CH₂ groups.⁸² We note that Hope's conclusion is based on the total electronic effect of the phosphine on ν_{CO} . However, ν_{CO} is strongly influenced by both σ and π effects. When the electronic effect is separated into its components, we see that two CH₂ groups, indeed, strongly attenuate the effect on χ_d more so than does the phenyl group. However, because there is a significant π contribution to ν_{CO} and since P(CH₂-CH₂C₆F₁₃)₃ is a π acid, its relative effect on ν_{CO} is greater than that for P[p-(F₁₃C₆)C₆H₄]₃.

Conclusions

The QALE parameters for a series of fluorinated phosphorus(III) compounds are reported. PF₃ and P(CF₃)₃ are by far the most π acidic ligands we have encountered. The π acidifying effect of the fluorine atoms is transmitted to the phosphorus through at least three bonds and appears to have vanished by five bonds. P(CH₂CH₂C₆F₁₃)₃ is unique in that it is a good σ donor as well as a modest π acid. P(C₆F₅)₃, which is not a π acid, is a very large and very poor σ donor ligand. The calculated values of θ for PF₃, P(CF₃)₃, and P(C₆F₅)₃ are in excellent agreement with Tolman's values. The calculated value of θ for P(CH₂CH₂C₆F₁₃)₃ is virtually the same as θ for PBu₃.

OM010057+