Selective Formation of Homoleptic and Heteroleptic 2,5-Bis(N-aryliminomethyl)pyrrolyl Yttrium Complexes and Their Performance as Initiators of ϵ -Caprolactone **Polymerization**

Yutaka Matsuo, Kazushi Mashima,* and Kazuhide Tani

Department of Chemistry, Graduate School of Engineering Science, Osaka University Toyonaka, Osaka 560-8531, Japan

Received March 8, 2001

Tridentate 2,5-bis(N-aryliminomethyl)pyrroles (**1a**, aryl = 4-methoxylphenyl; **1b**, aryl = 4-methylphenyl; 1c, aryl = 2-methylphenyl; 1d, aryl = 2,6-dimethylphenyl; 1e, aryl = 2,6diisopropylphenyl) have been prepared, and their reactions with a homoleptic $Y{N(SiMe_3)_2}_3$ (2) have been investigated. The number of pyrrolyl ligands introduced to an yttrium atom can be controlled by varying the bulkiness of the ligand to give mono(pyrrolyl) (3), bis(pyrrolyl) (4), or tris(pyrrolyl) complexes (5) upon aminolysis. When bulky ligands such as 1d and 1e were used, a mono(pyrrolyl) complex $Y(Xyl_2-pyr)\{N(SiMe_3)_2\}_2$ (**3d**, $Xyl_2-pyr = 2,5-bis\{N-(2,6-dimethylphenyl)iminomethyl}pyrrolyl) and a bis(pyrrolyl) complex <math>Y(DIP_2-pyr)_2\{N(SiMe_3)_2\}$ $(4e, DIP_2-pyr = 2.5-bis\{N-(2.6-diisopropylphenyl)iminomethyl\}pyrrolyl)$ were predominantly obtained, respectively, with the release of hexamethyldisilazane. Both complexes adopt fivecoordination geometries, a distorted trigonal bipyramidal mode for 3d and a distorted squarepyramidal one for 4e, in which the N,N-bidentate coordination of 1e to the yttrium atom was found in solution and the solid state presumably due to the bulkiness of the isopropyl substituents. In the case of *p*-substituted ligands, 1a and 1b, we obtained homoleptic tris-(pyrrolyl) yttrium complexes **5a** and **5b**, respectively. The complex **5a** has three N, N, N'tridentate pyrrolyl ligands, and the yttrium center adopts a three-face-centered trigonal prismatic mode of nine-coordination, while we found the eight-coordinated, square-antiprismatic geometry for **5b** with two N, N, N'-tridentate and one N, N-bidentate pyrrolyl ligand. Thus, we demonstrated that the yttrium atom was able to have a five-, eight-, and nine-coordination number, depending on the congestion by the bis(aryliminomethyl)pyrrolyl ligands. We also found that these newly prepared mono(pyrrolyl) (3d) and bis(pyrrolyl) (4e) complexes catalyzed polymerization of ϵ -caprolactone and that complex **4e** acted as a singlesite catalyst to give a polyester with a narrow molecular weight distribution ($M_w/M_n = 1.2$).

Introduction

Recent development of organolanthanide chemistry enables us to design the ligand environments of lanthanide complexes for efficient or selective catalysts.^{1,2} In the past two decades, extensive studies directed to organic transformation reactions³⁻⁷ and polymerizations⁸⁻¹⁵ have been carried out using metallocene and half-metallocene complexes of lanthanide and group 3 metals. As tunable ancillary ligands, nitrogen-based polydentate ligands¹⁶ are anticipated to be alternatives of cyclopentadienyl-based ligands in organolanthanide and yttrium chemistry. For example, benzamidinates,¹⁷ β -diketiminates,¹⁸ aminotroponiminates,¹⁹ diamido ligands,²⁰ and oligopyrrolyl ligands^{21,22} have been utilized for preparing lanthanide and yttrium complexes. We have been interested in the pyrrolyl derivatives as nitrogenbased polydentate ancillary ligands for early transition metals, and we and the other group prepared 2-(Naryliminomethyl)pyrrolyl complexes of group 4 metals as catalyst precursors for ethylene polymerization.^{23,24} As an extension of our continuous interest in the

^{*} Corresponding author. E-mail: mashima@chem.es.osaka-u.ac.jp. Fax: 81-6-6850-6296.

⁽¹⁾ Schumann, H.; Meese-Marktscheffel, J. A.; Esser, L. Chem. Rev. 1995 95 865.

⁽²⁾ Edelmann, F. T. Comprehensive Organometallic Chemistry II;

⁽²⁾ Edelmann, F. T. Comprehensive Organometallic Chemistry II;
Abel, E. W., A. Stone, F. G., Wilkinson, G., Lappert, M. F., Eds.;
Pergamon: Oxford, 1995; Vol. 4, p 11.
(3) (a) Jeske, G.; Lauke, H.; Mauermann, H.; Schumann, H.; Marks,
T. J. J. Am. Chem. Soc. 1985, 107, 8111. (b) Molander, G. A.; Hoberg,
J. O. J. Org. Chem. 1992, 57, 3266. (c) Giardello, M. A.; Conticello, V.
P.; Brard, L.; Gagné, M. R.; Marks, T. J. J. Am. Chem. Soc. 1994, 116,
10241. (d) Haar, C. M.; Stern, C. L.; Marks, T. J. Organometallics
1996, 15, 1765. (e) Roesky, P. W.; Denninger, U.; C. L. Stern; Marks,
T. J. Organometallics 1997, 16, 4486.
(A) Sakakura, T.; Lautenschlaber, H., L.; Tanaka, M. J. Chem. Soc.

⁽⁴⁾ Sakakura, T.; Lautenschlaber, H.-J.; Tanaka, M. J. Chem. Soc., Chem. Commun. 1991, 40.

^{(5) (}a) Gagné, M. R.; Marks, T. J. J. Am. Chem. Soc. 1989, 111, 4108. (b) Gagné, M. R.; Nolan, S. P.; Marks, T. J. Organometallics **1990**, *9*, 1716. (c) Gagné, M. R.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc. 1992, 114, 275. (d) Li, Y.; Fu, P.-F.; Marks, T. J. Organometallics 1994, 13, 439. (e) Li, Y.; Marks, T. J. J. Am. Chem. Soc. 1996, 118, 707. (f) Li, Y.; Marks, T. J. Organometallics 1996, 15, 3770. (g) Li, Y.; Marks, T. J. J. Am. Chem. Soc. 1996, 118, 9295. (h) Roesky, P. W.: Stern, C. L.; Marks, T. Organometallics 1996, 16, 4705. (i) Li, Y.; Marks, T. J. L.; Marks, 1. Organometallics **1996**, *16*, 4705. (i) L1, Y.; Marks, 1. J. J. Am. Chem. Soc. **1998**, *120*, 1757. (j) Arredondo, V. A.; McDonald, F. M.; Marks, T. J. J. Am. Chem. Soc. **1998**, *120*, 4871. (k) Arredondo, V. A.; Tian, S.; McDonald, F. M.; Marks, T. J. J. Am. Chem. Soc. **1999**, *121*, 3633. (l) Arredondo, V. A.; McDonald, F. M.; Marks, T. J. Organometallics **1999**, *18*, 1949. (m) Douglass, M. R.; Marks, T. J. J. Am. Chem. Soc. **2000**, *122*, 1824.

^{2292. (}d) Molander, G. A.; Dowdy, E. D.; Noll, B. C. Organometallics 1998, 17, 3754.

⁽⁷⁾ Fu, P.-F.; Brard, L.; Li, Y.; Marks, T. J. J. Am. Chem. Soc. 1995. 117, 7157.

1a: $R^1 = MeO$; $R^2 = H$, $R^3 = H$ (An₂-pyrH) **1b**: $R^1 = Me$; $R^2 = H$, $R^3 = H$ (p-Tol₂-pyrH) 1c: $R^1 = H$; $R^2 = Me$, $R^3 = H$ (o-Tol2-pyrH) **1d**: $R^1 = H$; $R^2 = Me$, $R^3 = Me$ ([Xyl₂-pyrH) **1e**: $R^1 = H$; $R^2 = {}^{i}Pr$, $R^3 = {}^{i}Pr$ (DIP₂-pyrH)

pyrrolyl ligand system, we prepared tridentate bis-(iminomethyl)pyrrolyl ligands (Chart 1) and their yttrium complexes. In this paper we report the selective formation of homoleptic and heteroleptic pyrrolyl complexes of yttrium, whose unique coordination modes have been elucidated by crystallographic studies. Furthermore, we demonstrate that the heteroleptic pyrrolyl complexes have a capability to polymerize ϵ -caprolactone to give polyesters with narrow molecular weight distributions.

Results and Discussion

Synthesis and Characterization of 2,5-Bis(Naryliminomethyl)pyrrolyl Complexes of Yttrium.

(10) Hou, Z.; Zhang, Y.; Tezuka, H.; Xie, P.; Tardif, O.; Koizumi, T.; Yamazaki, H.; Wakatsuki, Y. *J. Am. Chem. Soc.* **2000**, *122*, 10533.

(11) Kaita, K.; Hou, Z.; Wakatsuki, Y. Macromolecules 1999, 32, 9078

(12) (a) Yasuda, H.; Yamamoto, H.; Yokota, K.; Miyake, S.; Naka-mura, A. *J. Am. Chem. Soc.* **1992**, *114*, 4908. (b) Yasuda, H.; Yamamoto, H.; Yamashita, M.; Yokota, K.; Nakamura, A.; Miyake, S.; Kai, Y.; Kanehisa, N. Macromolecules 1993, 26, 7134. (c) Yasuda, H.; Tamai, H. Prog. Polym. Sci. 1993, 18, 1097. (d) Yasuda, H.; Ihara, E.

Bull. Chem. Soc. Jpn. 1997, 70, 1745. (13) Giardello, M. A.; Yamamoto, Y.; Brard, L.; Marks, T. J. J. Am. Chem. Soc. 1995, 117, 3276.

(14) Hultzsch, K. C.; Spaniol, T. P.; Okuda, J. Angew. Chem., Int. Ed. 1999, 38, 227.

(15) Polymerization of cyclic esters: (a) McLain, S. J.; Drysdale, N. E. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 1992, 33, 174. (b) Okuda, J.; Rushkin, I. L. Macromolecules 1993, 26, 5530. (c) Evans, J.; Katsumata, H. Macromolecules 1994, 27, 2330. (d) Evans, W. J.; Katsumata, H. Macromolecules 1994, 27, 4011. (e) Boffa, L.; Novak, S., Ratsunnala, H. Macromolecules 1994, 27, 4011. (e) Boha, L., Flovak,
 B. M. Macromolecules 1994, 27, 6993. (f) Shen, Y.; Shen, Z.; Zhang,
 F.; Zhang, Y. 1995, 27, 59. (g) Yasuda, H.; Ihara, E. Makromol. Chem.
 Phys. 1995, 196, 2417. (h) Yamashita, M.; Takemoto, Y.; Ihara, E.;
 Yasuda, H. Macromolecules 1996, 29, 1798. (i) Stevel, W. M.; Anknoné, M. J. K.; Dijkstra, P. J.; Feijen, J. *Macromolecules* **1996**, *29*, 332. (j) Hultzsch, K. C.; Spaniol, T. P.; Okuda, J. *Organometallics* **1997**, *16*, 4845. (k) Boffa, L. S.; Nvak, B. M. *Macromolecules* **1997**, *27*, 66993. (l) Nishiura, M.; Hou, Z.; Koizumi, T.; Imamoto, T.; Wakatsuki, Y. Macromolecules 1999, 32, 8245. (m) Takeuchi, D.; Nakamura, T.; Aida, T. Macromolecules 2000, 33, 725. (n) Chamberlain, B. M.; Jazdzewski, B. A.; Pink, M.; Hillmyer, M. A.; Tolman, W. B. Macromolecules 2000, 33, 3970.

(16) General review concerning nitrogen-based polymerization cata-lysts: (a) Britovsek, G. P.; Gibson, V. C.; Duncan F. W. *Angew. Chem.*, *Int. Ed.* **1999**, *38*, 428. (b) Ittel, S. D.; Johnson, L. K.; Brookhart, M. Chem. Rev. 2000, 100, 1169.

Tridentate ligands, 2,5-bis(N-aryliminomethyl)pyrroles **1a**–**e** (Chart 1), were prepared by condensation reaction of 2,5-diformylpyrrole with 2 equiv of the corresponding aniline derivative. A series of vttrium complexes having the tridentate ligand was conveniently obtained by amine elimination reaction starting from a homoleptic triamido complex $Y{N(SiMe_3)_2}_3$ (2). Three kinds of yttrium complexes, heteroleptic mono(pyrrolyl) (3) and bis(pyrrolyl) (4) complexes and homoleptic tris(pyrrolyl) complexes (5), are possible; however, the number of pyrrolyl ligands bound to the yttrium atom can be controlled in some cases by changing the congestion of two aromatic rings of the ligand. Treatment of 2 with 1 equiv of 2,5-bis{N-(2,6-dimethylphenyl)iminomethyl}pyrrole (1d) in toluene predominantly afforded a yellow, air and moisture sensitive yttrium mono(pyrrolyl) complex, $Y(Xyl_2-pyr) \{N(SiMe_3)_2\}_2$ (3d, $Xyl_2-pyr = 2,5-bis-$ {*N*-(2,6-dimethylphenyl)iminomethyl}pyrrolyl) in 82% yield along with the release of hexamethyldisilazane (eq 1). Complex 3d was found to be inert to further reaction with **1d** even at elevated temperature (50 °C).

The ¹H NMR spectrum of **3d** in benzene- d_6 consisted of a singlet resonance close to δ 0 due to N(SiMe₃)₂ and one set of signals due to the pyrrolyl ligand in an exact 2:1 ratio. The resonance of the pyrrolyl ring proton appeared in the olefinic region (δ 6.54), suggesting that the pyrrolyl anion coordinated in an η^{1} -N-coordination fashion to a yttrium metal. The singlet signal due to the imino proton was observed in slightly higher field (δ 7.34) compared with that of the free ligand 1d (δ 7.55). In the ¹³C NMR spectrum of **3d**, the resonance of the imino carbon was observed in lower field (δ 164.9)

 (18) (a) Lee, L. W. M.; Piers, W. E.; Elsegood, M. R. J.; Clegg, W.;
 Parvez, M. Organometallics 1999, 18, 2947. (b) Hitchcock, P. B.;
 Lappert, M. F.; Tian, S. J. J. Chem. Soc., Dalton Trans. 1997, 1945.
 (19) (a) Roesky, P. W. Chem. Ber. 1997, 130, 859. (b) Roesky, P. W. Eur. J. Inorg. Chem. 1998, 593. (c) Buergstein, M.; Berberich, H.; Roesky, P. W. Organometallics 1998, 17, 1452. (d) Roesky, P. W. J.

Organomet. Chem. 2000, 603, 161.

 (20) Gountchev, T. I.; Tilley, T. D. Organometallics 1999, 18, 5661.
 (21) (a) Dubé, T.; Conoci, S.; Gambarotta, S.; Yap, G. P. A.;
 Vasapollo, G. Angew. Chem., Int. Ed. Engl. 1999, 38, 3657. (b) Dubé, T.; Gambarotta, S.; Yap, G. P. A. Organometallics 2000, 19, 115. (c) Dubé, T.; Freckmann, D.; Conoci, S.; Gambarotta, S.; Yap, G. P. A. *Organometallics* **2000**, *19*, 209. (d) Dubé, T.; Conoci, S.; Gambarotta, S.; Yap, G. P. A. *Organometallics* **2000**, *19*, 1182. (e) Dubé, T.; Ganesan, M.; Conoci, S.; Gambarotta, S.; Yap, G. P. A. Organometallics 2000, 19. 3716.

(22) (a) Dubé, T.; Gambarotta, S.; Yap, G. P. A.; Vasapollo, G. *Angew. Chem., Int. Ed.* **1999**, *38*, 1432. (b) Dubé, T.; Gambarotta, S.; Yap, G. P. A. Organometallics **2000**, *19*, 121. (c) Dube, T.; Gambarotta, S.; Yap, G. P. A. Organometallics **2000**, *19*, 817. (d) Guan, J.; Dubé, T.; Gambarotta, S.; Yap, G. P. A. Organometallics **2000**, *19*, 4820.
 (23) Matsuo, Y.; Mashima, K.; Tani, K. Chem. Lett. **2000**, 1114.

 (24) (a) Yoshida, Y.; Matsui, S.; Takagi, Y.; Mitani, M.; Nitabaru,
 M.; Nakano, T.; Tanaka, H.; Fujita, T. *Chem. Lett.* **2000**, 1270. (b)
 Dawson, D. M.; Walker, D. A.; Thornton-Pett, M.; Bochmann, M. J. Chem. Soc., Dalton Trans. 2000, 459.

^{(8) (}a) Watson, P. L. J. Am. Chem. Soc. 1982, 104, 337. (b) Watson, P. L.; Roe, D. C. J. Am. Chem. Soc. 1982, 104, 6471. (c) Jeske, G.; Lauke, H.; Mauermann, H.; Swepston, P. N.; Schumann, H.; Marks, T. J. J. Am. Chem. Soc. 1985, 107, 8091. (d) Jeske, G.; Schock, L. E.;
Swepston, P. N.; Schumann, H.; Marks, T. J. J. Am. Chem. Soc. 1985, 107, 8103. (e) Burger, B. J.; Thompson, M. E.; Cotter, W. D.; Bercaw, J. E. J. Am. Chem. Soc. 1990, 112, 1566. (f) Evans, W. J.; Ulibarri, T.;
Ziller, J. W. J. Am. Chem. Soc. 1990, 112, 2314. (g) Evans, W. J.; Keyer, R. A.; Ziller, J. W. J. Organomet. Chem. 1990, 394, 87. (h) Yasuda, H.;
Furo, M.; Yamamoto, H.; Nakamura, A.; Miyake, S.; Kibino, N. Macromolecules 1992, 25, 5115. (i) Evans, W. J.; DeCoster, D. M.;
Greaves, J. Macromolecules 1995, 28, 7929. (j) Ihara, E.; Nodono, M.;
Katsura, K.; Adachi, Y.; Yasuda, H.; Yamagashira, M.; Hashimoto, H.;
Kanehisa, N.; Kai, Y. Organometallics 1998, 17, 3945. (9) Hultzsch, K. C.; Voth, P.; Beckerle, K.; Spaniol, T. P.; Okuda, J. Organometallics 2000, 19, 228. (10) Hou, Z.; Zhang, Y.; Tezuka, H.; Xie, P.; Tardif, O.; Koizumi, T.; T. J. J. Am. Chem. Soc. 1985, 107, 8091. (d) Jeske, G.; Schock, L. E.;

^{(17) (}a) Duchateau, R.; Van Wee, C. T.; Meetsma, A.; Van Duijnen, P. Th.; Teuben, J. H. Organometallics 1996, 15, 2279. (b) Duchateau, R.; Van Wee, C. T.; Teuben, J. H. Organometallics 1996, 15, 2291. (c) Duchateau, Van Wee, C. T.; Meetsma, A.; Teuben, J. H. J. Am. Chem. Soc. 1993, 115, 4931.

than that of **1d** (δ 152.0). These findings indicate that the pyrrolyl ligand coordinated to the yttrium metal in a tridentate *N*,*N*,*N*'-meridional fashion, as confirmed by X-ray analysis (vide infra).

In the case of the much bulkier ligand **1e**, a bis-(pyrrolyl) complex $Y(DIP_2$ -pyr)₂{N(SiMe₃)₂} [**4e**, DIP₂pyr = 2,5-bis{*N*-(2,6-diisopropylphenyl)iminomethyl}pyrrolyl] formed selectively regardless of the molar ratio of **1e** and **2**, and hence a maximum yield was obtained when **2** was treated with 2 equiv of **1e** (eq 2). The two

bulky pyrrolyl ligands of **4e** coordinated to the yttrium metal as N,N-bidentate ones, as revealed by the ¹H NMR spectrum; one imino proton was observed at higher field (δ 7.37) and the other at lower field (δ 8.21) compared with that of the free ligand (δ 7.81), indicating that one of the two N=CH moieties coordinated to the yttrium atom and the other is free from coordination. The pyrrolyl ring protons were accordingly observed as an ABq pattern (δ 6.18 for 3-pyr and δ 5.62 for 4-pyr) with a coupling constant (3.7 Hz). This complexation was further supported by a 2D ¹H-¹H NOESY measurement: the proton of the imino group bound to the metal center correlated with the neighboring pyrrolyl ring proton, while the proton of the noncoordinating imino group correlated with the SiMe₃ group of the amido ligand instead of the pyrrolyl proton. The number of ligands coordinated to the metal was thus controlled to be two, as a result of the steric congestion of **1e**, whose two bulky arylimino moieties prevented the tridentate N, N, N'-coordination. It is noteworthy that one bulky arylimino substituent was not enough to keep the complexation found for 4e. When 2 reacted with 2 equiv of an iminopyrrolyl ligand, 2-{N-(2,6-diisopropylphenyl)iminomethyl}pyrrole (6, DIP-pyrH) instead of 1e, we obtained a mixture of a bis(pyrrolyl) complex Y(DIP pyr_{2} {N(SiMe_{3})₂} (7) and a homoleptic complex Y(DIPpyr)₃ (8); the latter complex was obtained quantitatively upon treating 2 with 3 equiv of 6.

In sharp contrast to **1d** and **1e**, complexation of 2,5bis{*N*-(2-methylphenyl)iminomethyl}pyrrole (**1c**, *o*-Tol₂pyrH) to a yttrium atom could not be controlled. Reaction of **1c** with 1 equiv of **2** in toluene gave a 4:1 mixture of a mono(pyrrolyl) complex, Y(o-Tol₂-pyr)-{N(SiMe₃)₂}₂ (**3c**), and a bis(pyrrolyl) complex, Y(o-Tol₂pyr)₂{N(SiMe₃)₂} (**4c**), from which we isolated **3c** after recrystallization. Unlike the complex **4e**, although **4c** was characterized only by NMR spectroscopy, both of the two pyrrolyl ligands of **4c** coordinated to the yttrium metal in an *N*,*N*,*N*'-meridional fashion.

Much less bulky tridentate pyrrolyl ligands having p-substituted phenyl groups, 2,5-bis(4-methoxylphenyliminomethyl)pyrrole (1a, An₂-pyrH) and 2,5-bis(4methylphenyliminomethyl)pyrrole (**1b**, *p*-Tol₂-pyrH), led to the formation of homoleptic tris(pyrrolyl) complexes, Y(An₂-pyr)₃ (5a) and Y(p-Tol₂-pyr)₃ (5b), respectively. In all cases when 1 or 2 equiv of **1a** and **1b** per **2** was used, small amounts of the corresponding mono(pyrrolyl) and bis(pyrrolyl) complexes were contaminated, but the reaction of **2** with 3 equiv of **1a** and **1b** gave, respectively, **5a** and **5b** in quantitative yields. The 1 H NMR spectra of **5a** and **5b** displayed a symmetric signal pattern of the pyrrolyl ligand with a higher chemical shift value of the imino proton compared with that of the free ligand (δ 7.90 for **1a** and δ 7.60 for **5a**; δ 8.02 for **1b** and δ 7.57 for **5b**). The ¹³C NMR spectra of these complexes also displayed a single resonance due to the imino carbon at lower field (δ 160.2 for **5a** and δ 160.4 for **5b**). The high-field shift of N=CH in the ¹H NMR spectrum and low-field shift of N = CH in the ¹³C NMR spectrum indicate all imino groups coordinate to the metal center, and hence the yttrium atom adopts a ninecoordination geometry in solution, which is not often observed for the yttrium atom.

5a: Ar = C₆H₄-OMe-*p* **5b**: Ar = C₆H₄-Me-*p*

Description of Structures. The structures of heteroleptic complexes **3d** and **4e** and homoleptic complexes **5a** and **5b** were characterized by crystallographic studies. Figure 1 shows the crystal structure of **3d**, and its selected bond distances and angles are listed in Table 1. The yttrium center of **3d** has a distorted trigonal bipyramidal geometry; two nitrogen atoms of two amido N(SiMe₃)₂ groups and one nitrogen atom of the pyrrolyl skeleton occupied equatrial positions, the planarity

Figure 1. Molecular structure of 3d. Hydrogen atoms are omitted for clarity.

Table 1. Selected Bond Distances and Angles for 3d

	J	u	
	Bond Dis	tances (Å)	
Y-N1	2.288(3)	C1-C2	1.403(5)
Y-N2	2.707(3)	C2-C3	1.386(6)
Y-N3	2.776(3)	C3-C4	1.409(5)
Y-N4	2.254(3)	C1-C5	1.425(5)
Y-N5	2.246(3)	C4-C6	1.431(5)
N1-C1	1.358(5)	N2-C5	1.295(5)
N1-C4	1.359(5)	N3-C6	1.295(5)
	Bond An	gles (deg)	
N1-Y-N2	65.2(1)	Y-N1-C1	125.8(2)
N1-Y-N3	63.9(1)	Y-N1-C4	127.6(3)
N1-Y-N4	118.2(1)	C1-N1-C4	106.6(3)
N1-Y-N5	119.9(1)	Y-N2-C5	110.8(2)
N2-Y-N3	129.1(1)	Y-N2-C7	134.1(2)
N2-Y-N4	113.8(1)	C5-N2-C7	113.8(3)
N2-Y-N5	89.0(1)	Y-N3-C6	110.7(3)
N3-Y-N4	90.5(1)	Y-N3-C8	133.8(2)
N3-Y-N5	116.1(1)	C6-N3-C8	114.4(3)
N4-Y-N5	121.9(1)		

around the yttrium atom being revealed by the sum of three angles (360°), while two nitrogen atoms of two imino groups were placed at two apical positions with the angle N2-Y-N3 (129.1(1)°) much deviated from 180° owing to the chelating ligation of 1d. Two phenyl rings in 3d are oriented perpendicular to the plane of the pyrrolyl moiety. The bond distance of Y-N(pyrrolyl) (Y-N1 = 2.288(3) Å) is comparable with that of the lutetium-pyrrolyl complex, LuCp₂(C₄H₄N)(THF) (2.289-(4) Å),²⁵ on taking into account the difference of ionic radii of metals. The metal-imino nitrogen bond distances (Y-N2 = 2.707(3) Å and Y-N3 = 2.776(3) Å)are longer than the Y-N1 distance. The bond distances of Y-N(amido) (Y-N4 = 2.254(3) Å and Y-N5 = 2.246-(3) Å) are comparable with those found for bis(amido) yttrium complexes, Y{N(SiMe₃)₂}₂{OSi^tBu(2-C₆H₄(CH₂-NMe₂))₂} (2.237(9) Å)²⁶ and Y{N(SiMe₃)₂}₂{N-isopropyl-2-(isopropylamino)troponiminato} (2.236(3) Å).^{19b}

Complex 4e adopts a square-pyramidal geometry where four corners of the square plane are occupied by the four nitrogen atoms (N1, N2, N4, and N5) of two bidentate pyrrolyl ligands and an amido ligand is capped, as illustrated in Figure 2, and selected bond distances and bond angles of 4e are listed in Table 2. The yttrium atom deviates from an equatrial N₄-plane by 1.036(2) Å to approach toward the capped amido

ligand. The most remarkable feature of 4e is that two bis(imino)pyrrolyl ligands **1e** coordinate in an N,Nfashion to the yttrium atom. This dissymmetric coordination of the ligand is a consequence of the steric bulkiness induced by the 2,6-diisopropylphenyl groups. The noncoordinated imino moieties are situated opposite each other to minimize the steric congestion, being in good accordance with a NOESY measurement. The bond distances of Y-N(pyrroly) (Y-N1 = 2.347(4) Å and Y-N4 = 2.355(4) Å) are longer by 0.06 Å than that found for **3d** (2.288(3) Å). On the other hand, the bond distances of Y-N(imino) (Y-N2 = 2.437(5) Å and Y-N5 = 2.449(5) Å) are shorter than those of **3d** (2.707(3) and 2.776(3) Å). The distances of imino linkages (N2-C5 = 1.315(6) Å and N5–C13 = 1.290(6) Å) are substantially longer than those of free ones (N3-C6 = 1.270(6) Å and)N6-C14 = 1.264(6) Å). The bond distance of Y-N(amido) (Y-N7 = 2.204(4) Å) is comparable with that of metallocene complexes $Cp_2^Y{N(SiMe_3)_2}$ (2.274(5) and 2.253(5) Å)²⁷ and (R)-(η^{5} -C₅H₄)Si(Me₂)[η^{5} -(-)-menthyl- (C_5H_3)]Y{N(SiMe₃)₂} (2.281(8) and 2.211(8) Å)²⁸ and a half-metallocene amido complex, $[(\eta^5-C_5Me_4)Si(Me_2)-\eta' N^{t}Bu]Y\{N(SiMe_{3})_{2}\}$ (2.184(7) Å).²⁹

The molecular structures of the tris(pyrrolyl) complexes 5a and 5b are shown in Figures 3 and 4, respectively, and their selected bond lengths and angles are listed in Tables 3 and 4. Complex 5a crystallized in cubic space group *Ia*3 and has a *C*₃-axis passing through a yttrium atom. The yttrium atom is accordingly surrounded with nine nitrogen atoms of three tridentate N, N, N'-ligands and adopts a three-face-centered trigonal prismatic mode of nine-coordination, where the two pairs N2, N2', and N2" and N3, N3', and N3" are located at the three corners of each triangle, and N1, N1', and N1" occupy three face-centered positions. This is a quite rare coordination number for the yttrium atom, though many hydrated salts of the lanthanide elements, which have much larger ionic radii, adopt the same geometry. The bond distances of Y-N(imino) (Y-N2 = 2.737(2) Å and Y-N3 = 2.758(3) Å) are similar to that found for **3d**, but the bond distance of Y-N(pyrrolyl) (Y-N1 =2.340(2) Å) is slightly longer than that of **3d**.

On the other hand, the solid-state structure of 5b, despite its solution behavior is quite similar to 5a, and proved to have an eight-coordination number and a square-antiprismatic arrangement around the yttrium atom, where one pyrrolyl ligand attaches in a bidentate N,N-fashion to the yttrium atom and the others coordinate to the yttrium atom as meridional tridentate ligands. The bond distances of Y-N (tridentate pyrrolyl) (Y-N1 = 2.309(5) Å and Y-N4 = 2.306(5) Å) are shorter than that of Y-N(bidentate pyrrolyl) (Y-N7 = 2.401-(6) Å). The bond distances of Y-N(imino) in the tridentate parts (Y-N2 = 2.667(5) Å, Y-N3 = 2.652(5) Å, Y-N5 = 2.652(5) Å, and Y-N6 = 2.716(5) Å) are longer than that of the bidentate one (Y-N8 = 2.484(5) Å).

Polymerization of ϵ -Caprolactone Catalyzed by Pyrrolyl Complexes of Yttrium. Mono(pyrrolyl) 3d

⁽²⁵⁾ Schumann, H.; Lee, P. R.; Dietrich, A. Chem. Ber. 1990, 123, 1331

⁽²⁶⁾ Shao, P.; Berg, D. J.; Bushnell, G. W. Inorg. Chem. 1994, 33, 6334.

⁽²⁷⁾ Den Haan, K. H.; De Boer, J. L.; Teuben, J. H.; Spek, A. L.; (28) Giardello, M. A.; Conticello, V. P.; Brard, L.; Sabat, M.;
 (28) Giardello, M. A.; Conticello, V. P.; Brard, L.; Sabat, M.;
 Rheingold, A. L.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc. 1994, 112 (2014)

^{116, 10212.}

⁽²⁹⁾ Mu, Y.; Piers, W. E.; MacDonald, M.-A.; Zaworotko, M. Can. J. Chem. 1995. 73. 2233.

Figure 2. Molecular structure of 4e. Hydrogen atoms are omitted for clarity.

Гab	le 2.	Selected	Bond	Distances	and	Ang	les f	for
-----	-------	----------	------	-----------	-----	-----	-------	-----

		4e	8
	Bond Di	istances (Å)	
Y-N1	2.347(4)	N2-C5	1.315(6)
Y-N2	2.437(5)	N3-C6	1.270(6)
Y-N4	2.355(4)	N4-C9	1.365(6)
Y-N5	2.449(5)	N4-C12	1.374(6)
Y-N7	2.204(4)	C9-C10	1.394(7)
N1-C1	1.368(6)	C10-C11	1.384(7)
N1-C4	1.352(6)	C11-C12	1.392(7)
C1-C2	1.375(6)	C9-C13	1.429(7)
C2-C3	1.358(7)	C12-C14	1.456(8)
C3-C4	1.371(7)	N5-C13	1.290(6)
C1-C5	1.421(7)	N6-C14	1.264(6)
C4-C6	1.453(7)		
	Bond A	ngles (deg)	
N1-Y-N2	73.2(2)	Y-N1-C4	142.8(4)
N4-Y-N5	71.6(1)	C1-N1-C4	104.5(5)
N1-Y-N5	87.0(1)	Y-N2-C5	110.2(4)
N2-Y-N4	87.4(1)	Y-N2-C7	132.9(4)
N1-Y-N7	110.1(1)	C5-N2-C7	116.1(5)
N4-Y-N7	108.9(1)	Y-N4-C9	113.7(4)
N1-Y-N4	141.0(1)	Y-N4-C12	141.3(4)
N2-Y-N5	116.5(1)	C9-N4-C12	104.2(5)
N2-Y-N7	121.4(2)	Y-N5-C13	112.0(4)
N5-Y-N7	122.2(2)	Y-N5-C15	131.0(3)
Y-N1-C1	112.1(3)	C13-N5-C15	116.7(5)

and bis(pyrrolyl) 4e complexes were found to catalyze polymerization of ϵ -caprolactone, which was consumed within 10 min (Table 5), while homoleptic pyrrolyl complexes 5a and 5b had no activity (entries 5 and 6), suggesting that a Y-N(pyrrolyl) bond did not have any ability to initiate the polymerization. The bis(pyrrolyl) complex 4e, which has one Y-N(amido) bond, gave the poly(ϵ -caprolactone) with narrow polydispersity (M_w/M_n = 1.3) (entry 1), and the polymer using the mono-(pyrrolyl) complex 3d, which has two Y-N(amido) bonds, was inferior in its polydispersity $(M_w/M_n = 2.0)$ (entry 3), indicating that the number of Y-N(SiMe₃)₂ bonds significantly affected molecular weight distributions. The spectral characterization of the polymers showed the presence of a terminal bis(trimethylsilyl)amide group, which was derived from a nucleophilic attack at the lactone-carbon atom followed by acyloxygen bond cleavage. These observations are consistent with the reported polymerization of ϵ -caprolactone using the homoleptic complex **2**, which gave $poly(\epsilon$ -caprolactone) with a very broad polydispersity ($M_w/M_n = 2.9$).³⁰

Figure 3. (a) Molecular structure of **5a**. Hydrogen atoms are omitted for clarity. (b) Schematic drawing of the three-face-centered trigonal prismatic geometry of the yttrium atom.

Polymerization at 0 °C resulted in the polymer having a rather narrower molecular weight distributions (entries 2 and 4; $M_w/M_n = 1.2$ for **4e** and $M_w/M_n = 1.6$ for **3d**).

Conclusion

Several heteroleptic and homoleptic 2,5-bis(*N*-aryliminomethyl)pyrrolyl complexes of yttrium have been prepared by aminolysis of $Y{N(SiMe_3)_2}_3$ with the corresponding pyrrolyl ligand. We found that the number of pyrrolyl ligands coordinated to a yttrium metal can be controlled by changing the substituent(s) on aryl

Figure 4. (a) Molecular structure of **5b**. Hydrogen atoms are omitted for clarity. (b) Schematic drawing of the square-antiprismatic geometry of the yttrium atom.

Table 3.	Selected Bond Distances and Angles for $5a^a$
	Pond Distances (Å)

	Bond Dista	nces (Å)	
Y-N1	2.340(2)	C2-C3	1.341(4)
Y-N2	2.737(2)	C3-C4	1.410(4)
Y-N3	2.758(3)	C1-C5	1.418(4)
N1-C1	1.346(3)	C4-C6	1.424(4)
N1-C4	1.357(4)	N2-C5	1.299(3)
C1-C2	1.417(4)	N3-C6	1.283(3)
	Bond Angl	es (deg)	
N1-Y-N1'	119.965(4)	Y-N1-C4	126.3(2)
N1-Y-N2	63.15(8)	C1-N1-C4	106.1(3)
N1-Y-N2'	75.51(8)	Y-N2-C5	111.8(2)
N1-Y-N2"	137.72(9)	Y-N2-C7	131.0(2)
N1-Y-N3	63.71(8)	C5-N2-C7	117.2(3)
N1-Y-N3'	136.91(8)	Y-N3-C6	111.2(2)
N1-Y-N3"	71.05(8)	Y-N3-C8	130.9(2)
Y-N1-C1	127.6(2)	C6-N3-C8	116.5(3)

^{*a*} Atoms with primes and double-primes are crystallographically equivalent to those having the same number without primes.

rings of the pyrrolyl ligand, resulting in the selective formation of a mono(pyrrolyl) complex **3d**, a bis(pyrrolyl) complex **4e**, and homoleptic tris(pyrrolyl) complexes **5a** and **5b**. Of particular interest is the diversity of the coordination mode; a distorted trigonal bipyramidal geometry and a distorted square-pyramidal one were observed for **3d** and **4e**, respectively, and the homoleptic complexes **5a** and **5b** were found to have rare structures with eight- and nine-coordination numbers, a three-face-

Table 4. Selected Bond Distances and Angles for 5b

	10	1 50	
	Bond Di	istances (Å)	
Y-N1	2.309(5)	C1-C5	1.427(9)
Y-N2	2.667(5)	C4-C6	1.439(9)
Y-N3	2.652(5)	N2-C5	1.308(8)
Y-N4	2.306(5)	N3-C6	1.300(7)
Y-N5	2.652(5)	N7-C9	1.389(8)
Y-N6	2.716(5)	N7-C12	1.354(8)
Y-N7	2.401(6)	C9-C10	1.395(9)
Y-N8	2.484(5)	C10-C11	1.40(1)
N1-C1	1.375(7)	C11-C12	1.405(10)
N1-C4	1.370(7)	C9-C13	1.383(9)
C1-C2	1.387(8)	C12-C14	1.444(10)
C2-C3	1.395(9)	N8-C13	1.309(8)
C3-C4	1.383(9)	N9-C14	1.275(8)
	Bond A	ngles (deg)	
N1-Y-N2	64.3(2)	N5-Y-N6	127.7(2)
N1-Y-N3	64.2(2)	N5-Y-N7	77.0(2)
N1-Y-N4	132.9(2)	N5-Y-N8	75.2(2)
N1-Y-N5	132.0(2)	N6-Y-N7	152.8(2)
N1-Y-N6	83.4(2)	N6-Y-N8	102.2(2)
N1-Y-N7	86.5(2)	N7-Y-N8	70.5(2)
N1-Y-N8	140.0(2)	Y-N1-C1	127.3(4)
N2-Y-N3	128.4(2)	Y-N1-C4	126.8(4)
N2-Y-N4	83.4(2)	C1-N1-C4	105.7(5)
N2-Y-N5	77.8(2)	Y-N2-C5	113.2(4)
N2-Y-N6	91.5(2)	Y-N2-C7	130.9(4)
N2-Y-N7	106.7(2)	C5-N2-C7	115.9(5)
N2-Y-N8	152.7(2)	Y-N3-C6	114.4(4)
N3-Y-N4	131.9(2)	Y-N3-C8	127.2(4)
N3-Y-N5	145.4(2)	C6-N3-C8	116.1(6)
N3-Y-N6	79.0(2)	Y-N7-C9	113.6(4)
N3-Y-N7	73.9(2)	Y-N7-C12	140.7(5)
N3-Y-N8	77.8(2)	C9-N7-C12	105.7(6)
N4-Y-N5	64.7(2)	Y-N8-C13	111.6(5)
N4-Y-N6	63.3(2)	Y-N8-C15	127.2(4)
N4-Y-N7	137.4(2)	C13-N8-C15	120.4(6)
N4-Y-N8	82.0(2)		

Table 5. Polymerization of ϵ -Caprolactone Catalyzed by Yttrium–Pyrrolyl Complexes^a

entry	catalyst	temp (°C)	time (min)	\mathbf{yield}^{c}	$M_{\mathrm{n}}{}^{d}$ (%)	$M_{\rm w}/M_{\rm n}^{d}$
1	4e	20	5	99	58 700	1.3
2	4e	0	5	99	61 300	1.2
3	3d	20	5	99	42 000	2.0
4	3d	0	5	71	66 000	1.6
5	5a	20	300	trace		
6	5b	20	300	trace		
Y{N(S	$iMe_3)_2\}_3{}^b$	20	90	65	524 000	2.9

^{*a*} General conditions: in toluene, [Y] = 20 mM, S/C = 100. ^{*b*} Ref 30. ^{*c*} Yield = weight of polymer obtained/weight of monomer used. ^{*d*} Measured by GPC calibrated with standard polystyrene samples.

centered trigonal prismatic structure for **5a** and a square-antiprismatic one for **5b**. Moreover, the mono-(pyrrolyl) and bis(pyrrolyl) complexes **3d** and **4e** were found to be catalysts for polymerization of ϵ -caprolactone to give polyesters with narrow polydispersities (M_w/M_n = 1.6 for **3d**, M_w/M_n = 1.2 for **4e**). Thus, the complex **4e** acted as a single site initiator of ϵ -caprolactone polymerization. The unique complexation of tridentate pyrrolyl ligands to other metals and their catalytic performance will be described in a subsequent paper.

Experimental Section

General Procedures. All manipulations involving air- and moisture-sensitive yttrium complexes were carried out using standard Schlenk techniques under argon. Hexane, THF, and toluene were dried and deoxygenated by distillation over sodium benzophenone ketyl under argon. Benzene- d_6 was distilled from Na/K alloy and thoroughly degassed by trap-to-

trap distillation before use. ϵ -Caprolactone was purchased and purified before use. 2-{N-(2,6-Diisopropylphenyl)iminomethyl}-pyrrole (**6**),²³ Y{ $N(SiMe_2)_2$ } (**2**),²⁹ and 2,5-diformylpyrrole³¹ were prepared according to the literature.

The ¹H (500, 400, 300, and 270 MHz) and ¹³C (125, 100, 75, and 68 MHz) NMR spectra were measured on a Varian Unity Inova-500, a JEOL JNM-AL400, a Varian Mercury-300, or a JEOL GSX-270 spectrometer. When benzene- d_6 was used as the solvent. The spectra were referenced to the residual solvent protons at δ 7.20 in the ¹H NMR spectra and to the residual solvent carbons at δ 128.0 in the $^{13}\mathrm{C}$ NMR spectra. Assignments for $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR peaks for some complexes were aided by 2D 1H-1H COSY, 2D 1H-1H NOESY, 2D 1H-13C HMQC, and 2D ¹H-¹³C HMBC spectra. Elemental analyses were recorded by a Perkin-Elmer 2400 at the Faculty of Engineering Science, Osaka University. The gel permeation chromatographic analyses were carried out at 40 °C using a Shimadzu LC-10A liquid chromatograph system and a RID-10A refractive index detector, equipped with a Shodex KF-806L column, which was calibrated versus commercially available polystyrene standards (SHOWA DENKO). All melting points were measured in sealed tubes under argon atmosphere and were not corrected.

Preparation of 2,5-Bis(aryliminomethyl)pyrroles: 2,5-**Bis**{*N*-(4-methoxyphenyl)iminomethyl}pyrrole (1a). A solution of p-anisidine (1.00 g, 8.12 mmol) in ethanol (20 mL) was added to a solution of 2,5-diformylpyrrole (0.50 g, 4.06 mmol) in ethanol (20 mL) at room temperature. After the mixture was stirred for 2 h at room temperature, a yellow slurry was formed. The resulting yellow powder was collected by filtration, washed with cold ethanol and hexane, and then dried under vacuum. Yield: 1.18 g (3.55 mmol, 87%), mp 223-232 °C (dec). ¹H NMR (C₆D₆, 35 °C): δ 3.38 (s, 6H, OCH₃), 6.50 (s, 2H, 3,4-pyr), 6.84 (d, 4H, m-C₆H₄), 7.18 (d, 4H, o-C₆H₄), 8.04 (s, 2H, N=CH), 10.32 (br s, 1H, NH). ¹³C NMR (CDCl₃, 35 °C): δ 55.6 (q, ${}^{1}J_{C-H} = 144$ Hz, O*C*H₃), 114.5 (d, ${}^{1}J_{C-H} =$ 158 Hz, *m*-C₆H₄), 116.0 (d, ${}^{1}J_{C-H} = 166$ Hz, 3,4-pyr), 122.0 (d, ${}^{1}J_{C-H} = 158$ Hz, $o-C_{6}H_{4}$), 134.0 (s, 2,5-pyr), 144.3 (s, *ipso-C*₆H₄), 146.7 (d, ${}^{1}J_{C-H} = 161$ Hz, N=*C*H), 158.2 (s, *p*-C₆H₄). EI-MS: m/z 333 (M⁺, base peak), 318 [(M - CH₃)⁺]. Anal. Calcd for C₂₀H₁₉N₃O₂: C, 72.05; H, 5.74; N, 12.60. Found: C, 71.78; H, 5.87; N, 12.58.

2,5-Bis{*N*-(**4-methylphenyl**)**iminomethyl**}**pyrrole** (**1b**): 54% yield, mp 197–198 °C. ¹H NMR (C₆D₆, 35 °C): δ 2.19 (s, 6H, CH₃), 6.47 (s, 2H, 3,4-pyr), 7.05 (d, 4H, *m*-C₆H₄), 7.14 (d, 4H, *o*-C₆H₄), 8.02 (s, 2H, N=C*H*), 10.33 (br s, 1H, NH). ¹³C NMR (C₆D₆, 35 °C): δ 21.2 (q, ¹*J*_{C-H} = 126 Hz, CH₃), 116.1 (d, ¹*J*_{C-H} = 171 Hz, 3,4-pyr), 121.4 (d, ¹*J*_{C-H} = 158 Hz, *o*-C₆H₄), 130.0 (d, ¹*J*_{C-H} = 158 Hz, *m*-C₆H₄), 134.5 (s, 2.5-pyr), 135.7 (s, *p*-C₆H₄), 147.6 (d, ¹*J*_{C-H} = 161 Hz, N=*C*H), 149.3 (s, *ipso*-C₆H₄). EI-MS: *m*/*z* 301 (M⁺, base peak). Anal. Calcd for C₂₀H₁₉N₃: C, 79.70; H, 6.35; N, 13.94. Found: C, 79.57; H, 6.30; N, 13.87.

2,5-Bis{*N*-(2-methylphenyl)iminomethyl}pyrrole (1c): 60% yield, mp 107–108 °C. ¹H NMR (CDCl₃, 35 °C): δ 2.38 (s, 6H, CH₃), 6.70 (s, 2H, 3,4-pyr), 6.94 (d, 2H, C₆H₄), 7.12 (t, 2H, C₆H₄), 7.21 (t, 2H, C₆H₄), 7.23 (d, 2H, C₆H₄), 8.22 (s, 2H, N=C*H*), 10.15 (br s, 1H, NH). ¹³C NMR (CDCl₃, 35 °C): δ 18.2 (q, ¹*J*_{C-H} = 127 Hz, CH₃), 116.5 (d, ¹*J*_{C-H} = 173 Hz, 3,4-pyr), 117.7 (d, ¹*J*_{C-H} = 157 Hz, C₆H₄), 125.9 (d, ¹*J*_{C-H} = 160 Hz, C₆H₄), 126.9 (d, ¹*J*_{C-H} = 160 Hz, C₆H₄), 130.5 (d, ¹*J*_{C-H} = 158 Hz, C₆H₄), 132.3 (s, 2.5-pyr), 134.2 (s, 2-C₆H₄), 148.6 (d, ¹*J*_{C-H} = 163 Hz, N=*C*H), 150.7 (s, 1-C₆H₄). EI-MS: *m*/*z* 301 (M⁺, base peak), 286 [(M - CH₃)⁺]. Anal. Calcd for C₂₀H₁₉N₃: C, 79.70; H, 6.35; N, 13.94. Found: C, 79.51; H, 5.98; N, 14.09.

2,5-Bis{*N*-(**2,6-dimethylphenyl)iminomethyl**}**pyrrole** (**1d**). In a 100 mL round-bottom flask, 2,5-diformylpyrrole (600

mg, 4.87 mmol) and 2.1 equiv of 2,6-dimethylaniline (1.26 mL, 10.2 mmol) were dissolved in toluene (30 mL) at room temperature. After two drops of formic acid was added to the solution, the mixture was refluxed for 12 h using a water separator. After cooling, the solvent was evaporated to dryness. The resulting yellow oil was purified by column chromatography on silica gel (hexane/AcOEt = 10:1) to give 1d as yellow powders. Yield: 1.11 g (3.37 mmol, 69%), mp 139-140 °C. ¹H NMR (CDCl₃, 35 °C): δ 2.19 (s, 12H, CH₃), 6.68 (s, 2H, 3,4pyr), 6.96 (t, ${}^{3}J_{H-H} = 7.5$ Hz, 2H, *p*-C₆H₃), 7.07 (d, ${}^{3}J_{H-H} = 7.5$ Hz, 4H, m-C₆H₃), 8.05 (s, 2H, N=CH), 10.24 (br s, 1H, NH). ¹³C NMR (CDCl₃, 35 °C): δ 18.4 (q, ¹ J_{C-H} = 128 Hz, CH₃), 116.1 (d, ${}^{1}J_{C-H} = 173$ Hz, 3,4-pyr), 123.8 (d, ${}^{1}J_{C-H} = 159$ Hz, $p-C_6H_3$), 127.4 (s, $o-C_6H_3$), 128.1 (d, ${}^1J_{C-H} = 153$ Hz, $m-C_6H_3$), 133.4 (s, 2.5-pyr), 150.6 (s, *ipso*-C₆H₃), 152.0 (d, ${}^{1}J_{C-H} = 163$ Hz, N=CH). EI-MS: m/z 329 (M⁺, base peak), 314 (M - CH₃)⁺. Anal. Calcd for C₂₂H₂₃N₃: C, 80.21; H, 7.04; N, 12.75. Found: C, 80.19; H, 6.70; N, 12.80.

2,5-Bis{N-(2,6-diisopropylphenyl)iminomethyl}pyrrole (1e).^{24b} A solution of 2,6-diisopropylaniline (9.19 mL, 48.7 mmol) in methanol (10 mL) was added to a solution of 2,5-diformylpyrrole (3.00 g, 24.4 mmol) in methanol (20 mL) at room temperature. After a few drops of acetic acid was added, the reaction mixture was stirred for 4 h at 10 °C. The resulting yellow precipitate was collected by filtration and then was dried under vacuum. Recrystallization from hexane gave 1e (4.77 g, 10.8 mmol, 44%), mp 206-208 °C (dec). ¹H NMR (C₆D₆, 35 °C): δ 1.14 (d, 24H, CH*Me*₂), 3.08 (sept, 4H, C*H*Me₂), 6.44 (s, 2H, 3,4-pyr), 7.17 (m, 6H, C₆H₃), 7.81 (s, 2H, N=CH), 10.48 (br s, 1H, NH). $^{13}\mathrm{C}$ NMR (C₆D₆, 35 °C): δ 23.9 (q, $^{1}J_{\mathrm{C-H}}$ = 125 Hz, CHMe₂), 28.5 (d, ${}^{1}J_{C-H}$ = 129 Hz, CHMe₂), 116.2 (d, ${}^{1}J_{C-H} = 172$ Hz, 3,4-pyr), 123.4 (d, ${}^{1}J_{C-H} = 155$ Hz, m-C₆H₃), 124.8 (d, ${}^{1}J_{C-H} = 159$ Hz, $p-C_{6}H_{3}$), 134.0 (s, 2,5-pyr), 138.2 (s, $o-C_6H_3$), 149.4 (s, *ipso*-C_6H_3), 151.8 (d, ¹ $J_{C-H} = 163$ Hz, N= *C*H). EI-MS: m/z 441 (M⁺), 426 [(M - CH₃)⁺], 398 [(M -CHMe₂)⁺, base peak]. Anal. Calcd for C₃₀H₃₉N₃: C, 81.59; H, 8.90; N, 9.51. Found: C, 81.23; H, 9.20; N, 9.46.

Synthesis of Y(o-Tol₂-pyr){N(SiMe₃)₂}₂ (3c). A solution of 2,5-di{*N*-(2-methylphenyl)iminomethyl}pyrrole (1c) (130 mg, 0.433 mmol) in toluene (3 mL) was added to a toluene solution (3 mL) of 2 (247 mg, 0.433 mmol) cooled at -50 °C. The reaction mixture was allowed to warm to room temperature and stirred further for 4 h. After removal of insoluble products by centrifugation, all volatiles were removed in vacuo. The ¹H NMR spectrum of the resulting yellow crystalline solid showed signals due to a complex bis(pyrrolyl) complex 3c and a bis(pyrrolyl) complex Y(o-Tol₂-pyr)₂{N(SiMe₃)₂} (4c) in 4:1 ratio. Recrystallization from a toluene/hexane mixture gave analytically pure yellow crystals of 3c (160 mg, 0.225 mmol, 52% yield), mp 199–205 °C (dec). 3c: ¹H NMR (C₆D₆, 35 °C): δ 0.22 (s, 36H, SiMe₃), 2.30 (s, 6H, C₆H₄-CH₃), 6.56 (s, 2H, 3,4-pyr), 7.03 (t, 2H, 4-C₆H₄), 7.07 (d, 2H, 3-C₆H₄), 7.15 (t, 2H, 5-C₆H₄), 7.39 (d, 2H, 6-C₆H₄), 7.45 (s, 2H, N=CH). ¹³C NMR (C₆D₆, 35 °C): δ 5.4 (q, ${}^{1}J_{C-H} = 117$ Hz, SiMe₃), 19.8 (q, ${}^{1}J_{C-H}$ = 127 Hz, C_6H_4 - CH_3), 118.8 (d, ${}^1J_{C-H}$ = 170 Hz, 3,4-pyr), 124.4 (d, ${}^{1}J_{C-H} = 156$ Hz, 6-C₆H₄), 125.7 (d, ${}^{1}J_{C-H} = 159$ Hz, 5-C₆H₄), 126.8 (d, ${}^{1}J_{C-H} = 159$ Hz, 4-C₆H₄), 131.1 (d, ${}^{1}J_{C-H} = 158$ Hz, 3-C₆H₄), 131.9 (s, 2-C₆H₄), 142.1 (s, 2,5-pyr), 151.1 (s, 1-C₆H₄), 163.8 (d, ${}^{1}J_{C-H} = 167$ Hz, N=CH). Anal. Calcd for $C_{32}H_{54}N_{5}$ -Si₄Y: C, 54.13; H, 7.67; N, 9.86. Found: C, 54.30; H, 7.35; N, 9.59.

4c: ¹H NMR (C_6D_6 , 35 °C): δ 0.13 (s, 18H, SiMe₃), 1.78 (s, 12H, Ar-CH₃), 6.55 (s, 4H, 3.4-pyr), 6.75–7.17 (m, 12H, 3,4,5- C_6H_4), 7.40 (s, 4H, 6- C_6H_4), 7.49 (s, 4H, N=CH).

Preparation of Y(Xyl₂-pyr){**N(SiMe₃)₂**} **(3d).** A solution of 2,5-bis{*N*-(2,6-dimethylphenyl)iminomethyl}pyrrole **(1d)** (127 mg, 0.384 mmol) in toluene (2 mL) was added to a solution of **2** (219 mg, 0.384 mmol) in toluene (2 mL) at room temperature. The reaction mixture was stirred for 2 h at 60 °C to liberate hexamethyldisilazane, detected by GC–MS and ¹H NMR spectroscopy. After insoluble products were separated

⁽³⁰⁾ Hultzsch, K. C.; Spaniol, T. P.; Okuda, J. Organometallics 1997, 16, 4845.

^{(31) (}a) Miller, R.; Olsson, K. Acta Chem. Scand. 1981, B35, 303.
(b) Tayim, H. A.; Salameh, A. S. Polyhedron 1986, 5, 687.

by centrifugation, the supernatant toluene solution was concentrated to ca. 1.5 mL to give a yellow suspension, which was recrystallized from toluene to give yellow crystals of **3d** (232 mg, 82% yield), mp 210–215 °C (dec). ¹H NMR (C₆D₆, 35 °C): δ 0.23 (s, 36H, SiMe₃), 2.33 (s, 12H, Ar–CH₃), 6.54 (s, 2H, 3,4-pyr), 7.00 (s, 6H, C₆H₃), 7.34 (s, 2H, N=CH). ¹³C NMR (C₆D₆, 35 °C): δ 5.5 (q, ¹*J*_{C-H} = 117 Hz, SiMe₃), 21.7 (q, ¹*J*_{C-H} = 127 Hz, Ar-*C*H₃), 119.1 (d, ¹*J*_{C-H} = 170 Hz, 3,4-pyr), 125.9 (d, ¹*J*_{C-H} = 160 Hz, *p*-C₆H₃), 129.1 (d, ¹*J*_{C-H} = 159 Hz, *m*-C₆H₃), 130.3 (s, *o*-C₆H₃), 142.0 (s, 2,5-pyr), 151.2 (s, *ipso*-C₆H₃), 164.9 (d, ¹*J*_{C-H} = 164 Hz, N=CH). Anal. Calcd for C₃₄H₅₈N₅Si₄Y: C, 55.23; H, 7.92; N, 9.49. Found: C, 55.27; H, 7.33; N, 9.52.

Preparation of Y(DIP₂-pyr)₂{N(SiMe₃)₂} (4e). To a solution of 2 (384 mg, 0.674 mmol) in toluene (2.5 mL) at room temperature was added a solution of 2,5-bis{N-(2,6-diisopropylphenyl)iminomethyl}pyrrole (1e) (672 mg, 1.35 mmol) in toluene (2.5 mL). The reaction mixture was stirred for 12 h at 60 °C. The resulting yellow microcrystals were washed with a small amount of cold hexane. These microcrystals (737 mg, 0.652 mmol, 97%) were recrystallized from a mixture of toluene and hexane to give analytically pure yellow crystals of 4e (598 mg, 78% yield), mp 205-210 °C (dec). ¹H NMR (C₆D₆, 35 °C): δ 0.30 (s, 18H, SiMe₃), 0.45 (d, 6H, CHMe₂ (noncoordinated)), 1.01 (d, 6H, CHMe2 (noncoordinated)), 1.15 (d, 6H, CHMe2 (coordinated)), 1.18 (d, 6H, CHMe2 (coordinated)), 1.19 (d, 6H, CHMe2 (noncoordinated)), 1.28 (d, 6H, CHMe2 (coordinated)), 1.30 (d, 6H, CHMe2 (noncoordinated)), 1.77 (d, 6H, CHMe2 (coordinated)), 2.31 (sept, 2H, CHMe2 (noncoordinated)), 2.68 (sept, 2H, CHMe₂ (noncoordinated)), 3.13 (sept, 2H, CHMe₂ (coordinated)), 3.62 (sept, 2H, CHMe2 (coordinated)), 5.62 (d, ${}^{3}J_{H-H} = 3.7$ Hz, 2H, 4-pyr), 6.18 (d, ${}^{3}J_{H-H} = 3.7$ Hz, 2H, 3-pyr), 7.20 (m, 12H, C₆H₃), 7.37 (s, 2H, N=CH (coordinated)), 8.21 (s, 2H, N=CH (noncoordinated)). ¹³C NMR (C₆D₆, 35 °C): δ 5.0 (q, ${}^{1}J_{C-H} = 118$ Hz, SiMe₃), 21.9, 22.4, 23.3, 23.5, 23.8, 24.6, 25.9, and 26.1 (q, ${}^{1}J_{C-H} = 121-126$ Hz, CHMe₂), 27.4, 27.9, 29.6, and 30.2 (q, ${}^{1}J_{C-H} = 127 - 129$ Hz, CHMe₂), 117.2 (d, ${}^{1}J_{C-H}$ = 174 Hz, 4-pyr), 122–128 (d, ${}^{1}J_{C-H}$ = 157–159 Hz, six sets of *p*- and *m*-C₆H₃), 125.8 (d, ${}^{1}J_{C-H} = 172$ Hz, 3-pyr), 134.9 (s, 5-pyr), 135.4, 137.1, 141.0, and 141.4 (s, o-C₆H₃), 144.7 (s, ipso- C_6H_3), 146.7 (s, 2-pyr), 148.5 (s, *ipso*- C_6H_3), 153.7 (d, ${}^1J_{C-H} =$ 170 Hz, N=CH (noncoordinated)), 165.9 (d, ${}^{1}J_{C-H} = 164$ Hz, N=CH (coordinated)). Anal. Calcd for C₆₆H₉₄N₇Si₂Y: C, 70.12; H, 8.38; N, 8.67. Found: C, 69.94; H, 8.41; N, 8.54. FAB-MS: m/z 969 [{M - N(SiMe_3)_2}⁺], 883 [{M - N(SiMe_3)_2 - {}^{i}Pr_2}^+].

Preparation of Y(An₂-pyr)₃ (5a). A mixture of 2,5-di{N-(4-methoxyphenyl)iminomethyl}pyrrole (1a, 526 mg, 1.58 mmol) and 2 (300 mg, 0.526 mmol) in toluene (4 mL) was stirred for 2 h at 60 °C. Supernatant liquid was concentrated in vacuo, and then the resulting yellow microcrystals were washed with a small amount of cold hexane. The microcrystals (544 mg, 0.501 mmol, 95%) were recrystallized from a mixture of toluene and hexane to give analytically pure yellow crystals of 5a (463 mg, 81% yield), mp 150-153 °C (dec). ¹H NMR (C₆D₆, 35 °C): δ 3.37 (s, 18H, OCH₃), 6.31 (d, 12H, *o*-C₆H₄), 6.58 (s, 6H, 3,4-pyr), 6.76 (d, 12H, m-C₆H₄), 7.61 (s, 6H, N= CH). ¹³C NMR (C₆D₆, 35 °C): δ 55.2 (q, ¹*J*_{C-H} = 143 Hz, O*C*H₃), 113.6 (d, ${}^{1}J_{C-H} = 158$ Hz, m-C₆H₄), 116.9 (d, ${}^{1}J_{C-H} = 168$ Hz, 3,4-pyr), 123.5 (d, ${}^{1}J_{C-H} = 159$ Hz, o-C₆H₄), 143.0 (s, 2,5-pyr), 146.9 (s, *ipso*-C₆H₄), 157.6 (s, *p*-C₆H₄), 160.2 (d, ${}^{1}J_{C-H} = 161$ Hz, N=CH). Anal. Calcd for $C_{60}H_{54}N_9O_6Y$: C, 66.36; H, 5.01; N, 11.61. Found: C, 66.75; H, 5.36; N, 11.21.

In the case of 1:1 reaction, the signals due to bis(pyrrolyl) complex $Y(p-An_2-pyr)_2\{N(SiMe_3)_2\}$ (**4a**) were observed together with **5a** and its content was estimated to be 16%. **4a**: ¹H NMR (C₆D₆, 35 °C): δ 0.11 (s, 18H, SiMe_3), 3.30 (s, 18H, OCH₃), 6.68 (d, 8H, *m*-C₆H₄), 6.79 (s, 4H, 3,4-pyr), 6.84 (br, 8H, *o*-C₆H₄), 7.91 (br s, 4H, N=CH). ¹³C NMR (C₆D₆, 35 °C): δ 4.9 (q, ¹*J*_{C-H} = 116 Hz, SiMe_3), 55.1 (q, ¹*J*_{C-H} = 143 Hz, O*C*H₃), 114.0 (d, ¹*J*_{C-H} = 160 Hz, *m*-C₆H₄), 118.3 (d, ¹*J*_{C-H} = 167 Hz, 3,4-pyr),

123.6 (d, ${}^{1}J_{C-H} = 160$ Hz, o-C₆H₄), 143.7 (s, 2,5-pyr), 145.0 (s, *ipso*-C₆H₄), 158.3 (s, *p*-C₆H₄), 158.4 (br, ${}^{1}J_{C-H} = 161$ Hz, N=CH).

Synthesis of Y(*p*-Tol₂-pyr)₃ (5b). A mixture of 2,5-di{*N*-(4-methylphenyl)iminomethyl}pyrrole (1b, 414 mg, 1.374 mmol) and **2** (261 mg, 0.458 mmol) in toluene (6 mL) at room temperature was stirred for 2 h at 60 °C. Yellow precipitates (423 mg, 93%) were recrystallized from a mixture of toluene and hexane to give analytically pure yellow crystals of **5b** (340 mg, 0.344 mmol, 75% yield), mp 156–162 °C (dec). ¹H NMR (C₆D₆, 35 °C): δ 2.17 (s, 18H, CH₃), 6.24 (d, 12H, ρ -C₆H₄), 6.56 (s, 6H, 3,4-pyr), 6.93 (d, 12H, *m*-C₆H₄), 7.57 (s, 6H, N=CH). ¹³C NMR (C₆D₆, 35 °C): δ 21.1 (q, ¹*J*_{C-H} = 126 Hz, *C*H₃), 116.9 (d, ¹*J*_{C-H} = 168 Hz, 3,4-pyr), 122.5 (d, ¹*J*_{C-H} = 159 Hz, ρ -C₆H₄), 128.7 (d, ¹*J*_{C-H} = 158 Hz, *m*-C₆H₄), 133.9 (s, *p*-C₆H₄), 143.0 (s, 2,5-pyr), 151.1 (s, *ipso*-C₆H₄), 160.4 (d, ¹*J*_{C-H} = 161 Hz, N=CH). Anal. Calcd for C₆₀H₅₄N₉Y: C, 72.79; H, 5.50; N, 12.73. Found: C, 72.64; H, 5.89; N, 13.03.

In the case of 1:1 reaction, the signals due to bis(pyrrolyl) complex $Y(p-Tol_2-pyr)_2\{N(SiMe_3)_2\}$ (**4b**) were observed and its content was estimated to be 13%. **4b**: ¹H NMR (C₆D₆, 35 °C): δ 0.09 (s, 18H, SiMe_3), 2.08 (s, 12H, CH_3), 6.79 (s, 4H, 3,4-pyr), 6.86 (br, 16H, C₆H₄), 7.91 (s, 4H, N=CH). ¹³C NMR (C₆D₆, 35 °C): δ 4.8 (q, ¹J_{C-H} = 117 Hz, SiMe_3), 21.0 (q, ¹J_{C-H} = 126 Hz, CH₃), 118.5 (d, ¹J_{C-H} = 167 Hz, 3,4-pyr), 122.5 (d, ¹J_{C-H} = 159 Hz, o-C₆H₄), 129.2 (d, ¹J_{C-H} = 158 Hz, m-C₆H₄), 135.2 (s, *p*-C₆H₄), 143.8 (s, 2,5-pyr), 149.3 (s, *ipso*-C₆H₄), 162.1 (d, ¹J_{C-H} = 166 Hz, N=CH).

Preparation of Y(DIP-pyr)₃ (7) and Y(DIP-pyr)₂{N(Si-Me₃)₂} (8). A solution of **2** (400 mg, 0.702 mmol) in toluene (2 mL) was cooled at -50 °C, and then a solution of 2-{*N*-(2,6-diisopropylphenyl)iminomethyl}pyrrole (**6**, 357 mg, 1.40 mmol) in toluene (2 mL) was added. The resulting mixture was allowed to warm to room temperature and then stirred further for 4 h at 50 °C. After insoluble products were separated by centrifugation, all volatiles were removed in vacuo. The ¹H NMR spectrum of the resulting white microcrystals showed signals due to a homoleptic complex, Y(DIP-pyr)₃ (**7**), and a bis-(pyrrolyl) complex, Y(DIP-pyr)₂{N(SiMe₃)₂} (**8**), in 57:43 ratio.

7: ¹H NMR (400 MHz, C_6D_6 , 35 °C): δ 0.61 (d, 9H, CH*Me*₂), 0.89 (d, 9H, CH*Me*₂), 0.93 (d, 9H, CH*Me*₂), 0.94 (d, 9H, CH*Me*₂), 2.44 (sept, 3H, C*H*Me₂), 2.85 (sept, 3H, C*H*Me₂), 6.40 (dd, ³*J*_{H-H} = 1.6 and 3.6 Hz, 3H, 4-pyr), 6.84 (d, 3H, 3-pyr), 6.89 (br s, 3H, 5-pyr), 7.06 (m, 9H, C_6H_3), 7.63 (s, 3H, N=CH). ¹³C NMR (100 MHz, C_6D_6 , 35 °C): δ 22.9, 23.4, 26.0, and 26.4 (q, ¹*J*_{C-H} = 123–126 Hz, CH*Me*₂), 28.5 and 29.0 (d, ¹*J*_{C-H} = 128 Hz, *C*HMe₂), 113.8 (d, ¹*J*_{C-H} = 168 Hz, 4-pyr), 123.5 (d, ¹*J*_{C-H} = 168 Hz, 3-pyr), 124–127 (d, ¹*J*_{C-H} = 157–159 Hz, *p* and *m*- C_6H_3), 136.6 (s, *o*- C_6H_3), 140.3 (d, ¹*J*_{C-H} = 172 Hz, 5-pyr), 143.1 (s, 2-pyr), 147.2 (s, *ipso*- C_6H_3), 164.3 (d, ¹*J*_{C-H} = 161 Hz, N=*C*H).

8: ¹H NMR (400 MHz, C₆D₆, 35 °C): δ 0.21 (s, 18H, SiMe₃), 0.59 (d, 3H, CH*M*e₂), 0.99 (d, 3H, CH*M*e₂), 1.05 (d, 6H, CH*M*e₂), 1.11 (d, 6H, CH*M*e₂), 1.25 (d, 3H, CH*M*e₂), 1.58 (d, 3H, CH*M*e₂), 2.90 (sept, 2H, C*H*Me₂), 3.71 (sept, 2H, C*H*Me₂), 6.40 (dd, ¹*J*_{H-H} = 2.0 and 3.6 Hz, 2H, 4-pyr), 6.19 (br s, 2H, 5-pyr), 6.63 (d, 2H, 3-pyr), 7.07 (m, 6H, C₆H₃), 7.74 (s, 2H, N=CH). ¹³C NMR (100 MHz, C₆D₆, 35 °C): δ 4.9 (q, ¹*J*_{C-H} = 117 Hz, SiMe₃), 22.4, 22.8, 24.1, 25.7, 26.4, and 26.5 (q, ¹*J*_{C-H} = 123–126 Hz, CH*M*e₂), 29.3 and 29.6 (d, ¹*J*_{C-H} = 128 Hz, C*H*Me₂), 113.4 (d, ¹*J*_{C-H} = 168 Hz, 4-pyr), 123.7 (d, ¹*J*_{C-H} = 168 Hz, 3-pyr), 124–127 (d, ¹*J*_{C-H} = 157–159 Hz, *p*- and *m*-C₆H₃), 136.6 (s, *o*-C₆H₃), 138.4 (d, ¹*J*_{C-H} = 173 Hz, 5-pyr), 141.7 (s, 2-pyr), 146.2 (s, *ipso*-C₆H₃), 163.2 (d, ¹*J*_{C-H} = 162 Hz, N=CH).

Recrystallization from a mixture of toluene and hexane gave analytically pure colorless crystals of 7 in 34% yield, mp 190–198 °C (dec). Anal. Calcd for $C_{51}H_{63}N_6Y$: C, 72.15; H, 7.48; N, 9.90. Found: C, 71.92; H, 7.72; N, 10.00.

Polymerization of ϵ **-Caprolactone.** In a typical reaction, to a solution of **4e** (13.3 mg, 0.0118 mmol) in toluene (0.59 mL, to generate 20 mM solution) was added ϵ -caprolactone

(100 equiv, 0.131 mL, 1.18 mmol) at 0 °C. The yellow solution was stirred for 5 min at 0 °C. The polymerization was terminated by the addition of methanol and aqueous hydrogen chloride. The resulting white polymer was collected by filtration and dried in vacuo at 60 °C. The yield of poly(ϵ -caprolactone) was found to be quantitative. The resulting poly(ϵ -caprolactone) was analyzed by means of gel permeation chromatography.

Characterization of poly(<- caprolactone). Complex 4e (5.0 mg, 4.4 μ mol) and 30 equiv of ϵ -caprolactone (15 mg, 0.133 mmol) were dissolved in 0.58 mL of toluene- d_8 at 0 °C in a 5 ϕ mm NMR tube. After polymerization was complete the ¹H NMR spectrum showed signals due to a terminal N,O-bis-(trimethylsilyl)amide group of poly(ϵ -caprolactone). ¹H NMR (toluene-d₈, 35 °C): δ -0.26 (s, SiMe₃), 0.27 (s, SiMe₃), 1.18 (m, COCH₂CH₂CH₂CH₂CH₂CH₂O), 1.44 (m, COCH₂CH₂CH₂CH₂CH₂-CH₂O), 1.52 (m, COCH₂CH₂CH₂CH₂CH₂O), 2.10 (t, COCH₂- $CH_2CH_2CH_2CH_2O$), 3.97 (t, $COCH_2CH_2CH_2CH_2CH_2O$). Poly(ϵ caprolactone) with $M_n = 16400$ exhibited an end-group signal of NH₂ by hydrolysis of the terminal N,O-bis(trimethylsilyl)amide group, -C(OSiMe₃)=NSiMe₃. ¹H NMR (500 MHz, CDCl₃, 50 °C): δ 1.31 (m, Hh), 1.31 (m, Hm), 1.38 (m, Hc), 1.45 (m, Hn), 1.55 (m, Hd), 1.55 (m, Hg), 1.55 (m, Hi), 1.55 (m, Hl), 1.70 (m, Hb), 2.23 (t, Hf), 2.23 (t, Hk), 2.28 (t, Ha), 3.65 (br s, Ho), 4.00 (t, Hj), 4.24 (t, He).

Crystallographic Data Collections and Structure Determination of 3d, 4e, 5a, and 5b. Crystals of **3d, 4e, 5a**, and **5b** suitable for X-ray diffraction studies were sealed in glass capillaries under an argon atmosphere and were mounted on a Rigaku RAXIS-RAPID imaging plate diffractometer for data collection using Mo K α (graphite monochromated, $\lambda =$ 0.71069) radiation. Crystal data and data statistics are summarized in Table 6. Each indexing was performed from two oscillations. The camera radius was 127.40 mm. Readout was performed in the 0.100 mm pixel mode. A symmetry-related absorption correction using the program ABSCOR³² was applied. Each data was corrected for Lorentz and polarization effects.

The structures of complex 3d, 4e, and 5a were solved by the direct method (SHELXS-97)33 and expanded using Fourier techniques (DIRDIF-94).³⁴ The structure of complex 5b was solved by the heavy-atom Patterson method (PATTY-94)³⁴ and expanded using Fourier techniques (DIRDIF-94).³⁴ The nonhydrogen atoms were refined anisotropically by the full-matrix least-squares method. Hydrogen atoms were placed at calculated positions (C-H = 0.95 Å) and kept fixed. Measured nonequivalent reflections were used for the structure determination. In the subsequent refinement, the function $\sum w(F_0^2)$ $(-F_{c}^{2})^{2}$ was minimized, where $|F_{o}|$ and $|F_{c}|$ are the observed and calculated structure factor amplitudes, respectively. The agreement indices are defined as $R1 = \sum (||F_0| - |F_c||) / \sum |F_0|$ and wR2 = $[\sum w(F_0^2 - F_c^2)^2 / \sum (wF_0^4)]^{1/2}$. All calculations were performed using the teXsan crystallographic software package, and illustrations were drawn by ORTEP. The quality of the crystals of **4e** was not good presumably due to the presence of solvent molecules. The absolute structure parameter (Flack parameter, χ) of **3d** was found to be -0.005(5).

Table 6. Crystal Data and Data CollectionParameters of 3d, 4e, 5a, and 5b

	3d	4e •0.5(hexane)
formula	C34H58N5Si4Y	C ₆₉ H ₁₀₁ N ₇ Si ₂ Y
fw	738.12	1173.68
cryst syst	orthorhombic	monoclinic
space group	Pna21 (No. 33)	$P2_1/n$ (No. 14)
a, A	17.6103(5)	13.8792(4)
b, A	13.4670(4)	26.8160(7)
с, А	16.7900(5)	19.2282(5)
α , deg β , deg		102.3942(8)
γ , deg V, Å ³	3981.9(2)	6989.6(3)
\mathbb{Z} no. of reflns for cell determ (2 θ range)	4 30 314 (3.8–55.0°)	4 70 142 (3.3–55.0°)
D_{calcd} , g/cm ⁻³	1.231	1.115
μ [Mo K α] cm ⁻¹	16 10	9 12
T. K	100(1)	213(1)
cryst size, mm	$0.70 \times 0.64 \times 0.61$	$0.24 \times 0.20 \times 0.16$
no. of images	78	185
total oscillation angles (deg)	232.0	370.0
exposure time (min per deg)	0.30	0.7
$2\theta_{\min}, 2\theta_{\max}, \deg$	5.0, 55.0	5.0, 55.0
no. of refins mease (total)	36 755	89 811
no. of refl. measd (unique)	8982 ($R_{\rm int} = 0.111$)	15978 ($R_{\rm int} = 0.202$)
no. of variables	396	697
RI, WR2 (all data)	0.060, 0.124	0.233, 0.099
$R (I > Z.U\sigma(I))$	0.051	0.057
$A \circ \lambda^{-3}$	1.03 0.48 -0.51	154 - 216
Δ, e A	0.40, 0.31	1.54, 2.10
	5a	5b •1.5(toluene)
formula	5a C ₆₀ H ₅₄ N ₉ O ₆ Y	5b ·1.5(toluene) C _{70.50} H ₆₆ N ₉ Y
formula fw	5a C ₆₀ H ₅₄ N ₉ O ₆ Y 1086.05	5b •1.5(toluene) C _{70.50} H ₆₆ N ₉ Y 1128.26
formula fw cryst syst	5a C ₆₀ H ₅₄ N ₉ O ₆ Y 1086.05 cubic L22 (No. 206)	5b •1.5(toluene) C _{70.50} H ₆₆ N ₉ Y 1128.26 triclinic ZI (No. 2)
formula fw cryst syst space group	5a C ₆₀ H ₅₄ N ₉ O ₆ Y 1086.05 cubic <i>Ia</i> 3 (No. 206) 27 6372	$\frac{5b\cdot 1.5(toluene)}{C_{70.50}H_{66}N_9Y}$ 1128.26 triclinic P_1^{I} (No. 2) 15.4267(2)
formula fw cryst syst space group a, Å b Å	5a C ₆₀ H ₅₄ N ₉ O ₆ Y 1086.05 cubic <i>I</i> a3 (No. 206) 27.6372 27.6372	
formula fw cryst syst space group a, Å b, Å c Å	5a C ₆₀ H ₅₄ N ₉ O ₆ Y 1086.05 cubic <i>Ia</i> 3 (No. 206) 27.6372 27.6372 27 6372	5b •1.5(toluene) C _{70.50} H ₆₆ N ₉ Y 1128.26 triclinic <i>P</i> I (No. 2) 15.4867(2) 16.2113(5) 13.7190(3)
formula fw cryst syst space group a, Å b, Å c, Å c, Å a, deg	5a C ₆₀ H ₅₄ N ₉ O ₆ Y 1086.05 cubic <i>Ia</i> 3 (No. 206) 27.6372 27.6372 27.6372	5b·1.5(toluene) C _{70.50} H ₆₆ N ₉ Y 1128.26 triclinic <i>P</i> I (No. 2) 15.4867(2) 16.2113(5) 13.7190(3) 98.023(3)
formula fw cryst syst space group a, Å b, Å c, Å α, deg β, deg	$\begin{array}{c} \mathbf{5a} \\ \hline C_{60} H_{54} N_9 O_6 Y \\ 1086.05 \\ cubic \\ Ia3 (No. 206) \\ 27.6372 \\ 27.6372 \\ 27.6372 \\ 27.6372 \\ \end{array}$	5b·1.5(toluene) C _{70.50} H ₆₆ N ₉ Y 1128.26 triclinic PI 100.2) 15.4867(2) 16.2113(5) 13.7190(3) 98.023(3) 91.686(2)
formula fw cryst syst space group a, A b, A c, A α, deg β, deg β, deg γ, deg	5a C ₆₀ H ₅₄ N ₉ O ₆ Y 1086.05 cubic <i>Ia</i> 3 (No. 206) 27.6372 27.6372 27.6372	$\begin{array}{c} \textbf{5b} \cdot 1.5(toluene) \\ \hline C_{70.50}H_{66}N_9Y \\ 1128.26 \\ triclinic \\ Pl (No. 2) \\ 15.4867(2) \\ 16.2113(5) \\ 13.7190(3) \\ 98.023(3) \\ 91.686(2) \\ 62.368(2) \\ \end{array}$
formula fw cryst syst space group a, Å b, Å c, Å α, deg β, deg γ, deg $V, Å^3$	5a C ₆₀ H ₅₄ N ₉ O ₆ Y 1086.05 cubic <i>I</i> a3 (No. 206) 27.6372 27.6372 27.6372 27.6372	$\begin{array}{c} \textbf{5b} \cdot 1.5(\text{toluene}) \\ \hline C_{70.50} H_{66} N_9 Y \\ 1128.26 \\ \text{triclinic} \\ P1 (No. 2) \\ 15.4867(2) \\ 16.2113(5) \\ 13.7190(3) \\ 98.023(3) \\ 91.686(2) \\ 62.368(2) \\ 3019.1(1) \end{array}$
formula fw cryst syst space group a, Å b, Å c, Å α, deg β, deg γ, deg γ, deg $V, Å^3$ Z no. of reflns for cell	5a C ₆₀ H ₅₄ N ₉ O ₆ Y 1086.05 cubic <i>Ia</i> 3 (No. 206) 27.6372 27.6372 27.6372 27.6372 27.6372 27.6372	$\begin{array}{c} \textbf{5b} \cdot 1.5(toluene) \\ \hline C_{70.50}H_{66}N_9Y \\ 1128.26 \\ triclinic \\ P\overline{1} \ (No.\ 2) \\ 15.4867(2) \\ 16.2113(5) \\ 13.7190(3) \\ 98.023(3) \\ 91.686(2) \\ 62.368(2) \\ 3019.1(1) \\ 2 \\ 13\ 289(3.8-55.0^\circ) \end{array}$
formula fw cryst syst space group a, A b, A c, A α, \deg β, \deg β, \deg γ, \deg V, A^3 Z no. of reflns for cell determ (2θ range) $D_{calcd,}$ g/cm ⁻³	5a C ₆₀ H ₅₄ N ₉ O ₆ Y 1086.05 cubic <i>Ia</i> 3 (No. 206) 27.6372 27.6372 27.6372 27.6372 27.6372 27.6372 1.09.7 16 77 367 (3.6–55.0°)	$\begin{array}{c} \textbf{5b} \cdot 1.5(\text{toluene}) \\ \hline C_{70.50} H_{66} N_9 Y \\ 1128.26 \\ \text{triclinic} \\ P1 (No. 2) \\ 15.4867(2) \\ 16.2113(5) \\ 13.7190(3) \\ 98.023(3) \\ 91.686(2) \\ 62.368(2) \\ 3019.1(1) \\ 2 \\ 13.289(3.8-55.0^\circ) \\ 1.241 \\ 1.24$
formula fw cryst syst space group a, Å b, Å c, Å α, deg β, deg γ, deg $V, Å^3$ Z no. of reflns for cell determ (2θ range) $D_{catcd}, g/cm^{-3}$ F(000)	$\begin{array}{r} \textbf{5a} \\ \hline C_{60} H_{54} N_9 O_6 Y \\ 1086.05 \\ cubic \\ Ia3 (No. 206) \\ 27.6372 \\ 27.6372 \\ 27.6372 \\ 27.6372 \\ 21109.7 \\ 16 \\ 77 367 (3.6-55.0^\circ) \\ 1.367 \\ 9024.00 \\ 14.69 \\ 0 \end{array}$	$\begin{array}{c} \textbf{5b} \cdot 1.5(\text{toluene}) \\ \hline C_{70.50} H_{66} N_9 Y \\ 1128.26 \\ \text{triclinic} \\ P1 (No. 2) \\ 15.4867(2) \\ 16.2113(5) \\ 13.7190(3) \\ 98.023(3) \\ 91.686(2) \\ 62.368(2) \\ 3019.1(1) \\ 2 \\ 13.289(3.8-55.0^\circ) \\ 1.241 \\ 1182.00 \\ 10.17 \end{array}$
formula fw cryst syst space group a, Å b, Å c, Å α , deg β , deg γ , deg V, Å ³ Z no. of refins for cell determ (2θ range) $D_{calcd,}$ g/cm ⁻³ F(000) μ [Mo K α], cm ⁻¹ T K	$\begin{array}{r} \textbf{5a} \\ \hline C_{60}H_{54}N_9O_6Y \\ 1086.05 \\ \text{cubic} \\ Ia3 (No. 206) \\ 27.6372 \\ 27.6372 \\ 27.6372 \\ 27.6372 \\ 21109.7 \\ 16 \\ 77 367 (3.6-55.0^\circ) \\ 1.367 \\ 9024.00 \\ 11.68 \\ 212(1) \end{array}$	$\begin{array}{c} \textbf{5b} \cdot 1.5(toluene) \\ \hline C_{70.50}H_{66}N_9Y \\ 1128.26 \\ triclinic \\ P\overline{1} (No. 2) \\ 15.4867(2) \\ 16.2113(5) \\ 13.7190(3) \\ 98.023(3) \\ 91.686(2) \\ 62.368(2) \\ 3019.1(1) \\ 2 \\ 13 289(3.8-55.0^\circ) \\ 1.241 \\ 1182.00 \\ 10.17 \\ 212(1) \end{array}$
formula fw cryst syst space group a, A b, A c, A a, deg β, deg γ, deg γ, deg V, A^3 Z no. of reflns for cell determ (2θ range) $D_{calcd,}$ g/cm ⁻³ F(000) μ [Mo K α], cm ⁻¹ T, K cryst size, mm	$\begin{array}{c} \textbf{5a} \\ \hline C_{60} H_{54} N_9 O_6 Y \\ \textbf{1086.05} \\ \textbf{cubic} \\ \textbf{1a3} (No. 206) \\ 27.6372 \\ 27.6372 \\ 27.6372 \\ 27.6372 \\ 27.6372 \\ \hline \textbf{16} \\ 77 367 (3.6-55.0^\circ) \\ \textbf{1.367} \\ \textbf{9024.00} \\ \textbf{11.68} \\ \textbf{213(1)} \\ \textbf{0.32} < \textbf{0.30} < \textbf{0.26} \\ \hline \textbf{0.32} < \textbf{0.30} \\ \textbf{0.32} < \textbf{0.30} < \textbf{0.26} \\ \end{array}$	$\begin{array}{c} \textbf{5b} \cdot 1.5(\text{toluene}) \\\hline C_{70.50}H_{66}N_9Y \\1128.26 \\\text{triclinic} \\PI (No. 2) \\15.4867(2) \\16.2113(5) \\13.7190(3) \\98.023(3) \\91.686(2) \\62.368(2) \\3019.1(1) \\2 \\13.289(3.8-55.0^\circ) \\1.241 \\1182.00 \\10.17 \\213(1) \\0.28 \\0.22 \\0.22 \\0.14 \\0.28 \\0.22 \\0.14 \\0.28 \\0.22 \\0.14 \\0.28 \\0.22 \\0.14 \\0.28$
formula fw cryst syst space group a, Å b, Å c, Å α, \deg β, \deg β, \deg γ, \deg $V, Å^3$ Z no. of refins for cell determ (2θ range) $D_{calcd,}$ g/cm ⁻³ F(000) μ [Mo K α], cm ⁻¹ T, K cryst size, mm no. of images	$\begin{array}{c} \textbf{5a} \\ \hline C_{60} \textbf{H}_{54} \textbf{N}_9 \textbf{O}_6 \textbf{Y} \\ \textbf{1086.05} \\ \textbf{cubic} \\ \textbf{Ia3} (No. 206) \\ 27.6372 \\ 27.6372 \\ 27.6372 \\ 27.6372 \\ 27.6372 \\ \hline \textbf{109.7} \\ \textbf{16} \\ 77 \ 367 \ (3.6-55.0^\circ) \\ \textbf{1.367} \\ \textbf{9024.00} \\ \textbf{11.68} \\ \textbf{213(1)} \\ \textbf{0.32} \times \textbf{0.30} \times \textbf{0.26} \\ \textbf{111} \\ \end{array}$	$\begin{array}{c} \textbf{5b} \cdot 1.5(\text{toluene}) \\\hline \textbf{C}_{70.50} H_{66} N_9 Y \\1128.26 \\triclinic \\P1 (No. 2) \\15.4867(2) \\16.2113(5) \\13.7190(3) \\98.023(3) \\91.686(2) \\62.368(2) \\3019.1(1) \\2 \\13 289(3.8-55.0^\circ) \\1.241 \\1182.00 \\10.17 \\213(1) \\0.28 \times 0.22 \times 0.14 \\74 \end{array}$
formula fw cryst syst space group a, Å b, Å c, Å α , deg β , deg γ , deg V, Å ³ Z no. of reflns for cell determ (2θ range) $D_{calcd.}$ g/cm ⁻³ F(000) μ [Mo K α], cm ⁻¹ T, K cryst size, mm no. of images total oscillation angles (deg)	$\begin{array}{r} \textbf{5a} \\ \hline C_{60} \textbf{H}_{54} \textbf{N}_9 \textbf{O}_6 \textbf{Y} \\ 1086.05 \\ \text{cubic} \\ \textbf{Ia3} (\text{No. 206}) \\ 27.6372 \\ 27.6372 \\ 27.6372 \\ 27.6372 \\ 27.6372 \\ 21109.7 \\ 16 \\ 77367 (3.6-55.0^\circ) \\ 1.367 \\ 9024.00 \\ 11.68 \\ 213(1) \\ 0.32 \times 0.30 \times 0.26 \\ 111 \\ 222.0 \\ \end{array}$	$\begin{array}{c} \textbf{5b} \cdot 1.5(toluene) \\ \hline C_{70.50}H_{66}N_9Y \\ 1128.26 \\ triclinic \\ P1 (No. 2) \\ 15.4867(2) \\ 16.2113(5) \\ 13.7190(3) \\ 98.023(3) \\ 91.686(2) \\ 62.368(2) \\ 3019.1(1) \\ 2 \\ 13 289(3.8-55.0^\circ) \\ 1.241 \\ 1182.00 \\ 10.17 \\ 213(1) \\ 0.28 \times 0.22 \times 0.14 \\ 74 \\ 222.0 \end{array}$
formula fw cryst syst space group a, Å b, Å c, Å α, \deg β, \deg β, \deg γ, \deg $V, Å^3$ Z no. of refins for cell determ (2θ range) $D_{calcd,}$ g/cm ⁻³ F(000) μ [Mo K α], cm ⁻¹ T, K cryst size, mm no. of images total oscillation angles (deg) exposure time (min per deg)	$\begin{array}{r} \textbf{5a} \\ \hline C_{60} \textbf{H}_{54} \textbf{N}_9 \textbf{O}_6 \textbf{Y} \\ \textbf{1086.05} \\ \textbf{cubic} \\ \textbf{Ia3} (No. 206) \\ 27.6372 \\ 27.6372 \\ 27.6372 \\ 27.6372 \\ 27.6372 \\ 27.6372 \\ 1.367 \\ 9024.00 \\ 11.68 \\ 213(1) \\ 0.32 \times 0.30 \times 0.26 \\ 111 \\ 222.0 \\ 0.70 \\ \end{array}$	$\begin{array}{c} \textbf{5b} \cdot 1.5(\text{toluene}) \\ \hline \textbf{C}_{70.50} H_{66} N_9 Y \\ 1128.26 \\ \text{triclinic} \\ P1 (No. 2) \\ 15.4867(2) \\ 16.2113(5) \\ 13.7190(3) \\ 98.023(3) \\ 91.686(2) \\ 62.368(2) \\ 3019.1(1) \\ 2 \\ 13 289(3.8-55.0^\circ) \\ 1.241 \\ 1182.00 \\ 10.17 \\ 213(1) \\ 0.28 \times 0.22 \times 0.14 \\ 74 \\ 222.0 \\ 1.20 \end{array}$
formula fw cryst syst space group a, Å b, Å c, Å α, \deg β, \deg β, \deg γ, \deg $V, Å^3$ Z no. of refins for cell determ (2θ range) $D_{caled,}$ g/cm ⁻³ F(000) μ [Mo K α], cm ⁻¹ T, K cryst size, mm no. of images total oscillation angles (deg) exposure time (min per deg) $2\theta_{min}, 2\theta_{max}, \deg$ no. of refins measd (tota)	$\begin{array}{r} \textbf{5a} \\ \hline C_{60} \textbf{H}_{54} \textbf{N}_9 \textbf{O}_6 \textbf{Y} \\ \textbf{1086.05} \\ \textbf{cubic} \\ \textbf{Ia3} (No. 206) \\ 27.6372 \\ 27.6372 \\ 27.6372 \\ 27.6372 \\ 27.6372 \\ 27.6372 \\ 1.367 \\ 9024.00 \\ 11.68 \\ 213(1) \\ 0.32 \times 0.30 \times 0.26 \\ 111 \\ 222.0 \\ 0.70 \\ \textbf{5.0}, 55.0 \\ 90 311 \\ \end{array}$	$\begin{array}{c} \textbf{5b} \cdot 1.5(toluene) \\ \hline \textbf{C}_{70.50}H_{66}N_9Y \\ 1128.26 \\ triclinic \\ P1 (No. 2) \\ 15.4867(2) \\ 16.2113(5) \\ 13.7190(3) \\ 98.023(3) \\ 91.686(2) \\ 62.368(2) \\ 3019.1(1) \\ 2 \\ 13 289(3.8-55.0^\circ) \\ 1.241 \\ 1182.00 \\ 10.17 \\ 213(1) \\ 0.28 \times 0.22 \times 0.14 \\ 74 \\ 222.0 \\ 1.20 \\ 5.0, 55.0 \\ 25 537 \\ \end{array}$
formula fw cryst syst space group a, Å b, Å c, Å α, deg β, deg γ, deg	$\begin{array}{r} \textbf{5a} \\ \hline $C_{60}H_{54}N_9O_6Y$ \\ 1086.05 \\ cubic \\ Ia3 (No. 206) \\ 27.6372 \\ 27.6372 \\ 27.6372 \\ 27.6372 \\ 27.6372 \\ 27.6372 \\ 21109.7 \\ 16 \\ 77367 (3.6-55.0^\circ) \\ 1.367 \\ 9024.00 \\ 11.68 \\ 213(1) \\ 0.32 \times 0.30 \times 0.26 \\ 111 \\ 222.0 \\ 0.70 \\ 5.0, 55.0 \\ 90 311 \\ 10 672 (R_{int} = 0.101) \\ \end{array}$	$\begin{array}{c} \textbf{5b} \cdot 1.5(toluene) \\ \hline C_{70.50}H_{66}N_9Y \\ 1128.26 \\ triclinic \\ P1 (No. 2) \\ 15.4867(2) \\ 16.2113(5) \\ 13.7190(3) \\ 98.023(3) \\ 91.686(2) \\ 62.368(2) \\ 3019.1(1) \\ 2 \\ 13.289(3.8-55.0^\circ) \\ 1.241 \\ 1182.00 \\ 10.17 \\ 213(1) \\ 0.28 \times 0.22 \times 0.14 \\ 74 \\ 222.0 \\ 1.20 \\ 5.0, 55.0 \\ 25.537 \\ 13.247 (R_{int}=0.095) \end{array}$
formula fw cryst syst space group a, Å b, Å c, Å α, deg β, deg γ, deg V, Å ³ Z no. of reflns for cell determ (2θ range) $D_{calcd,}$ g/cm ⁻³ F(000) μ [Mo Kα], cm ⁻¹ T, K cryst size, mm no. of images total oscillation angles (deg) exposure time (min per deg) 2θ _{min} , 2θ _{max} , deg no. of reflns measd (total) no. of reflns measd (unique) no. of reflns measd (unique) no. of reflns measd	$\begin{array}{c} \textbf{5a} \\ \hline \\ \hline C_{60}H_{54}N_9O_6Y \\ 1086.05 \\ \hline \text{cubic} \\ \hline \textbf{Ia3} (\text{No. 206}) \\ 27.6372 \\ 27.6372 \\ 27.6372 \\ 27.6372 \\ \hline \textbf{27.6372} \\ \hline 27.6372$	
formula fw cryst syst space group a, A b, A c, A α, \deg β, \deg γ, \deg γ, \deg V, A^3 Z no. of refins for cell determ (2θ range) $D_{calcd,}$ g/cm ⁻³ F(000) μ [Mo K α], cm ⁻¹ T, K cryst size, mm no. of images total oscillation angles (deg) exposure time (min per deg) $2\theta_{min}, 2\theta_{max}, \deg$ no. of refins measd (total) no. of refins measd (unique) no. of variables R1, wR2 (all data)	$\begin{array}{c} \textbf{5a} \\ \hline \\ \hline C_{60}H_{54}N_9O_6Y \\ 1086.05 \\ \hline \text{cubic} \\ \hline \textbf{Ia3} (No. 206) \\ 27.6372 \\ 27.6372 \\ 27.6372 \\ 27.6372 \\ 27.6372 \\ \hline \textbf{16} \\ 77 \ 367 \ (3.6-55.0^\circ) \\ 1.367 \\ 9024.00 \\ 11.68 \\ 213(1) \\ 0.32 \times 0.30 \times 0.26 \\ 111 \\ 222.0 \\ \hline \textbf{0.70} \\ \textbf{5.0}, \textbf{55.0} \\ \textbf{90 311} \\ 10 \ 672 \ (R_{\text{int}}=0.101) \\ 251 \\ 0.136, 0.053 \\ \hline \end{array}$	
formula fw cryst syst space group a, Å b, Å c, Å a, deg β, deg γ, deg $V, Å^3$ Z no. of reflns for cell determ (2θ range) $D_{calcd,}$ g/cm ⁻³ F(000) μ [Mo K α], cm ⁻¹ T, K cryst size, mm no. of images total oscillation angles (deg) exposure time (min per deg) $2\theta_{min}, 2\theta_{max}, deg$ no. of reflns measd (total) no. of reflns measd (unique) no. of variables R1, wR2 (all data) R ($I > 2.0\sigma(I)$)	$\begin{array}{r} \textbf{5a} \\ \hline \textbf{C}_{60}\textbf{H}_{54}\textbf{N}_9\textbf{O}_6\textbf{Y} \\ \textbf{1086.05} \\ \textbf{cubic} \\ \textbf{Ia3} (No. 206) \\ 27.6372 \\ 27.6372 \\ 27.6372 \\ 27.6372 \\ 27.6372 \\ 27.6372 \\ 27.6372 \\ 27.6372 \\ 1.367 \\ 9024.00 \\ 11.68 \\ 213(1) \\ 0.32 \times 0.30 \times 0.26 \\ 111 \\ 222.0 \\ 0.70 \\ \textbf{5.0}, \textbf{55.0} \\ 90 311 \\ 10 \ 672 \ (R_{\text{int}} = \textbf{0.101}) \\ 251 \\ 0.136, 0.053 \\ 0.047 \\ \end{array}$	
formula fw cryst syst space group <i>a</i> , Å <i>b</i> , Å <i>c</i> , <i>c</i> , <i>c</i> , <i>d</i>	$\begin{array}{r} \textbf{5a} \\ \hline \textbf{C}_{60}\textbf{H}_{54}\textbf{N}_9\textbf{O}_6\textbf{Y} \\ 1086.05 \\ \textbf{cubic} \\ \textbf{Ia3} (No. 206) \\ 27.6372 \\ 27.6372 \\ 27.6372 \\ 27.6372 \\ 27.6372 \\ \hline \textbf{1109.7} \\ 16 \\ 77 367 (3.6-55.0^\circ) \\ \textbf{1.367} \\ \textbf{9024.00} \\ \textbf{11.68} \\ 213(1) \\ \textbf{0.32} \times \textbf{0.30} \times \textbf{0.26} \\ \textbf{111} \\ 222.0 \\ \textbf{0.70} \\ \textbf{5.0}, \textbf{55.0} \\ \textbf{90 311} \\ \textbf{10} \ \textbf{672} (R_{\text{int}} = \textbf{0.101}) \\ \textbf{251} \\ \textbf{0.136}, \textbf{0.053} \\ \textbf{0.047} \\ \textbf{0.52} \\ \end{array}$	

Acknowledgment. We thank Dr. T. Yamagata (Osaka University) for his help for the X-ray analysis of **3d**. The present research was supported in part by the grant-in-aid for Scientific Research on Priority Areas "Molecular Physical Chemistry" from the Ministry of Education, Science, Culture, and Sports. Y.M. is a research fellow of the Japan Society for the Promotion of Science, 1998–2000.

Supporting Information Available: Tables of atomic parameters, thermal displacement parameters, bond lengths, and bond angles for **3d**, **4e**, **5a**, and **5b**. This material is available free of charge via the Internet at http://pubs.acs.org.

OM0101846

⁽³²⁾ Higashi, T. *Program for Absorption Correction*; Rigaku Corporation: Tokyo, Japan, 1995.

⁽³³⁾ Sheldrick, G. M. *Program for the Solution of Crystal Structures*, University of Goettingen: Germany, 1997.

⁽³⁴⁾ Beurskens, P. T.; Admiraal, G.; Beurskens, G.; Bosman, W. P.; de Gelder, R.; Israel, R.; Smits, J. M. M. *The DIRDIF-94 program system, Technical Report of the Crystallography Laboratory*; University of Nijmegan: The Netherlands, 1994.