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Summary: This paper reports the synthesis and structure
of two new dinuclear chiral rhodium(I) complexes which
feature a “cis-A-frame” geometry and their use as cata-
lysts for the hydrosilylation of aromatic ketones.

Many dinuclear d8 RhI, IrI, PdII, and PtII species
exhibit “A-frame” type structures (Figure 1).2 Complexes
with two trans dppm ligands (dppm ) bis(diphe-
nylphosphino)methane), first reported by Eisenberg and
co-workers,3 are very common in rhodium(I) chemistry
and have been carefully investigated.4-6 In these com-
plexes, the two metal centers are close to each other and
each possesses a square-planar geometry. Surprisingly,
analogous chiral complexes have received less attention,
the first example being reported in 1995 by Ricard et
al.7 Due to the exceptional utility of rhodium(I) species
in catalytic asymmetric synthesis,8 and the unique
properties of the dinuclear systems,6,9,10 the preparation
of new chiral, dinuclear rhodium complexes remains an
important challenge.11 Here we report the synthesis of
a new chiral rhodium(I) dimer featuring a “cis-A-frame”
geometry that is unique for this rhodium oxidation state
(Figure 1) and its use as a catalyst for the hydrosilyla-
tion of ketones.

The ligands 1a and 1b were prepared by treating PCl3
with (S)-(-)-1,1′-bi-2-naphthol followed by the appropri-
ate resorcinol in the presence of Et3N (Scheme 1).12

Reaction of 1a and 1b with [Rh(COD)Cl]2 at room
temperature results in the formation of a new complex
in each case, as indicated by the appearance of a doublet
of doublets in the 31P NMR spectrum at δ 144.4 and
140.9 ppm (JRh-P ) 308 Hz, JP-P ) 65 Hz) for 2a and δ
143.8 and 140.9 ppm (JRh-P ) 308 Hz, JP-P ) 65 Hz)
for 2b.13 Both complexes are air-stable. The presence
of two inequivalent phosphorus atoms together with the
results of FAB-MS (m/z 1754 for 2a and m/z 1814 for
2b) suggested the presence of a dimer. The existence of
the dimer in solution was confirmed by the Signer
method for molecular weight determination,14 which
gave a molecular weight of 2140 for 2a. The IR spectra
of the complexes are not informative, since the low
energy range characteristic of the phosphorus-oxygen
bonds overlaps with other molecular frequencies.15
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Figure 1. Schematic representations of the A-frame and
cis-A-frame structures.
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The structure of 2a was established by X-ray diffrac-
tion.16 The ORTEP view of complex 2a is shown in
Figure 2. In the crystal structure, each rhodium atom
exhibits square-planar geometry (Table 1) and is bonded
to two bridging chlorides and one phosphorus atom of
each of the two bridging ligands. In contrast to the well-

known A-frame structure, the phosphorus atoms are
coordinated in a cis configuration. The complex has
pseudo-2-fold rotation symmetry, with the axis centered
between the chlorides (Figure 2). The distances between
the phosphorus atoms of each ligand (P1-P2 ) 5.480-
(6) Å and P3-P4 ) 5.471(6) Å) are considerably larger
than the distances between the phosphorus atoms
bonding to a single rhodium (P1-P3 ) 3.170(6) Å and
P2-P4 ) 3.159(6) Å). The long distance between the
two phosphorus atoms in the ligand seemingly prohibits
the formation of a monomeric chelating species. The Rh-
(µ-Cl)2Rh folding angle of 110.9° is more pronounced
than those reported for analogous olefin and carbonyl
complexes (116-124°).17-22 The Rh-Rh distance of
3.103(2) Å is quite similar to those reported by Eisen-
berg and Kubiak for the A-frame systems3 but shorter
than that in the bimetallic rhodium complex ([Rh2(nbd)2-
(et,ph-P4)](BF4)2) reported by Stanley and co-workers
(5.505 Å).10 Although the ORTEP view hints at a
possible interaction between the phenyl rings of the two
bridging ligands, they are neither parallel to each other
(24.6°)15 nor exceptionally close, save for a contact
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Å, c ) 26.034(2) Å, and V ) 8876(1) Å3, space group P212121 (No. 19),
and Z ) 4. X-ray diffraction measurements were made on a Bruker
SMART diffractometer with a CCD area detector; Mo KR radiation (λ
) 0.710 69 Å), and a graphite monochromator. The data were collected
at a temperature of -120 ( 1 °C. Frames corresponding to an arbitrary
hemisphere of data were collected using ω scans of 0.3°, counted for a
total of 15.0 s per frame. Data were integrated to a maximum 2θ value
of 46.5°. The data were corrected for Lorentz and polarization effects.
An empirical absorption correction (Tmax ) 0.96, Tmin ) 0.59) based on
a comparison of redundant and equivalent reflections was applied using
SADABS (36 422 reflections measured). The final cycle of full-matrix
least-squares refinement was based on 5851 observed reflections (I >
3.00σ(I)); R ) 0.059.
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Figure 2. ORTEP view of 2a. Hydrogen atoms have been omitted for clarity. Thermal ellipsoids are shown at 50%
probability.

Scheme 1. Synthesis Table 1. Selected Bond Lengths (Å) and Angles
(deg) for 2a

(a) Bond Lengths
Rh(1)-P(1) 2.155(4) Rh(2)-P(2) 2.148(4)
Rh(1)-P(3) 2.156(4) Rh(2)-P(4) 2.157(4)
P(1)-P(2) 5.480(6) P(2)-P(4) 3.159(6)
P(1)-P(3) 3.170(6) P(3)-P(4) 5.471(6)
Rh(1)-Cl(1) 2.407(4) Rh(2)-Cl(1) 2.418(4)
Rh(1)-Cl(2) 2.436(4) Rh(2)-Cl(2) 2.421(4)
Rh(1)-Rh(2) 3.103(2) C(5)-C(51) 3.423(2)

(b) Bond Angles
Cl(1)-Rh(1)-Cl(2) 79.4(1) Cl(1)-Rh(1)-P(1) 173.7(1)
Cl(1)-Rh(1)-P(3) 91.1(1) Cl(2)-Rh(1)-P(1) 94.7(1)
Cl(2)-Rh(1)-P(3) 170.4(2) P(1)-Rh(1)-P(3) 94.7(2)
Cl(1)-Rh(2)-Cl(2) 79.5(1) Cl(2)-Rh(2)-P(2) 92.3(1)
Cl(1)-Rh(2)-P(4) 93.8(1) P(2)-Rh(2)-P(4) 94.4(2)
Rh(1)-Cl(1)-Rh(2) 80.1(1) Rh(1)-Cl(2)-Rh(2) 79.4(1)

3840 Organometallics, Vol. 20, No. 18, 2001 Communications

D
ow

nl
oa

de
d 

by
 C

A
R

L
I 

C
O

N
SO

R
T

IU
M

 o
n 

Ju
ne

 2
9,

 2
00

9
Pu

bl
is

he
d 

on
 A

ug
us

t 9
, 2

00
1 

on
 h

ttp
://

pu
bs

.a
cs

.o
rg

 | 
do

i: 
10

.1
02

1/
om

01
04

28
m



between C5 and C51 (3.42(2) Å) at the periphery of the
molecule. In each ligand, the orientation of the planes
of the binaphthol group lies approximately parallel to
the C2 axis and the other is nearly perpendicular to it,
as seen in Figure 2. The molecular chirality of these
complexes is created by the four binol-based phosphite
moieties, which provide a unichiral23 character to the
complex.

To test the catalytic activity and the asymmetric
induction of the catalyst, we investigated its reactivity
in the hydrosilylation of aromatic ketones. We chose this
reaction due to increasing utilization of rhodium and
chiral phosphorus ligands in this process.24 Complex 2a
displayed high catalytic activity in the hydrosilylation
of acetophenone in toluene-d8 at room temperature.
Typically, 100% yield of the silyl ether was obtained

after 2 h, as determined by NMR; a lower yield of alcohol
was obtained after hydrolysis (52%). The catalyst re-
mains unchanged after the reaction (on the basis of 31P
NMR spectroscopy). To determine whether the dimer
dissociates into monomeric species under the catalytic
conditions, a crossover experiment was carried out. A
mixture of 2a and 2b was used in the hydrosilylation
reaction. Analysis of the 31P NMR spectrum of the
mixture after the reaction showed no new resonances
supplementing the two doublets of doublets correspond-
ing to homodimers 2a and 2b; i.e., there was no evidence
for the formation of a mixed dimer bearing one ligand
with R ) H and one with R ) OMe. In the reaction
carried out at low temperature, complexes 2a and 2b
show catalytic activity in the hydrosilylation of ac-
etophenone derivatives, although low enantiomeric
excesses were obtained (Table 2). The poor enantiose-
lectivity of catalyst 2b could indicate that the methoxy
substituents render the phenyl side of the complex
inaccessible, forcing the reaction to occur on the opposite
side, which is less crowded. We are currently examining
the hydrosilylation mechanism in more detail.

In summary, we report here the synthesis and struc-
ture of the first rhodium(I) dimer having a “cis-A-frame”
structure and its use as a catalyst for the reduction of
ketones by hydrosilylation. Efforts to improve the enan-
tioselectivity and to apply these catalysts to other
processes are currently in progress.
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Table 2. Asymmetric Hydrosilylation of Ketones
Catalyzed by 2a and 2bb

a Determined by GC. b Conditions: ketone, 0.17 M; Ph2SiH2,
0.27 M; catalyst, 1.7 mM (1%); 1,3,5-trimethoxybenzene as internal
standard in toluene at -20 °C, 5 days.
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