A Novel Full-Sandwich Lanthanacarborane Complex Bearing an η^7 -Carboranyl Ligand, $\{\{[\eta^7-Me_2Si(C_{13}H_9)(C_2B_{10}H_{11})]_2Yb^{III}\}_2Yb^{III}\}_{Na_8(THF)_{20}\}\}$

Shaowu Wang,[†] Hung-Wing Li, and Zuowei Xie*

Department of Chemistry, The Chinese University of Hong Kong, Shatin NT, Hong Kong, China

Received March 29, 2001

Summary: The first full-sandwich lanthanacarborane containing an η^7 -carboranyl ligand was prepared and structurally characterized, which indicates that the arachno-carboranyl ligand can effectively stabilize the high oxidation state of the metal.

We have recently reported a brand new coordination mode for carboranes.¹⁻⁴ The tetraanionic [arachno- $R_2C_2B_{10}H_{10}$]⁴⁻ ligands are capable of being η^7 -bound to actinides,² lanthanides,^{3,4} and the yttrium ion,⁴ leading to a novel class of 13-vertex closo-metallacarboranes. In all these metallacarboranes, the metal ion is bonded to only one arachno-carboranyl ligand. Since the [arachno- $R_2C_2B_{10}H_{10}$ ⁴⁻ tetraanion is a 10-electron donor,⁴ it is anticipated that only f-block transition metal ions could possibly form full-sandwich metallacarboranes incorporating two [arachno-R₂C₂B₁₀H₁₀]⁴⁻ ligands. Treatment of UCl₄ with 2 equiv of o-C₂B₁₀H₁₂ in the presence of excess K metal gave, however, the mixed sandwich metallacarborane $[{(\eta^7 - C_2 B_{10} H_{12})(\eta^6 - C_2 B_{10} H_{12})U}{K_2 - U}$ $(THF)_{5}$; no fully sandwiched uranacarborane with two η^7 -C₂B₁₀H₁₂⁴⁻ ligands was isolated.² On the other hand, we did not isolate the desired full-sandwich product from the reaction of $LnCl_3$ with 2 equiv of $o-R_2C_2B_{10}H_{10}$ $(R = H, CH_2C_6H_5)$ or $Me_2A(Cy)(C_2B_{10}H_{11})$ (A = C, Si; $Cy = C_5H_5$, C_9H_7)⁵ in the presence of excess alkali metals. We then turn our attention to the new ligand and describe herein the synthesis and structural characterization of the first full-sandwich metallacarborane bearing two tetraanionic arachno-carboranyl ligands.

Treatment of $Me_2Si(C_{13}H_9)Cl^6$ with 1 equiv of $(C_2B_{10}H_{10})Li_2$ in a toluene/ether solution gave a new ligand, $[Me_2Si(C_{13}H_8)(C_2B_{10}H_{11})]Li(OEt_2)_2$ (1), as yellow

(4) Chui, K.; Yang, Q.; Mak, T. C. W.; Lam, W.-H.; Lin, Z.; Xie, Z. J. Am. Chem. Soc. 2000, 122, 5758.

Ann. Chen., Soc. 2000, 122, 5750. (5) (a) Xie, Z.; Wang, S.; Zhou, Z.-Y.; Mak, T. C. W. Organometallics 1998, 17, 489. (b) Xie, Z.; Wang, S.; Yang, Q.; Mak, T. C. W. Organometallics 1999, 18, 2420. (c) Wang, S.; Yang, Q.; Mak, T. C. W.; Xie, Z. Organometallics 2000, 19, 334. (d) Hong, E.; Kim, Y.; Do Y. Organometallics 1998, 17, 2233.

(6) Chen, Y.-X.; Rausch, M. D.; Chien, J. C. W. J. Organomet. Chem. 1995, 497, 1. crystals in 88% yield.⁷ Interaction between YbCl₃, 1 equiv of 1, and excess finely cut Na metal in THF at room temperature followed by treatment with 1 equiv of dry Me₃NHCl gave, after workup, a novel fullsandwich, mixed valent metallacarborane complex {{ $[\eta^7 Me_2Si(C_{13}H_9)(C_2B_{10}H_{11})]_2Yb^{III}_2Yb^{III}_3\{Na_8(THF)_{20}\}$ (2) as red crystals in 48% yield (Scheme 1).8 Many attempts were made without success to grow X-ray-quality crystals of the product before treating with ammonium salt. Since the experiment is repeatable and there is no reaction between YbCl₃ and 1 in THF,⁹ it is reasonable to assume that the added Me₃NH⁺ just protonates the appended fluorenyl anion and the core structure remains intact. Complex 2 is soluble in polar organic solvents such as THF and pyridine, slightly soluble in toluene, and insoluble in hexane. Like other paramagnetic species, the spectroscopic data of 2 do not offer much structural information except the presence of carborane and approximately five THF molecules per carboranyl ligand.

An X-ray diffraction study¹⁰ reveals that $\mathbf{2}$ is a novel centrosymmetric mixed-valent complex with the Yb^{II} sitting at an inversion center. Two full-sandwich metallacarboranes that are connected by a Yb²⁺ ion through four sets of two B–H–Yb bonds form the core structure

(9) This reaction led to the isolation of $YbCl_3(THF)_3$ and $[Me_2Si-(C_{13}H_8)(C_2B_{10}H_{11})]Li(THF)_2$, respectively.

^{*} Corresponding author. Fax: (852)26035057. Tel: (852)26096269. E-mail: zxie@cuhk.edu.hk.

[†] On leave from the Institute of Organic Chemistry, Anhui Normal University, Anhui 241000, China.

⁽¹⁾ Reviews: (a) Grimes, R. N. In *Comprehensive Organometallic Chemistry II*; Abel, E. W., Stone, F. A. G., Wilkinson, G., Eds.; Pergamon: Oxford, 1995; Vol. 1, p 371. (b) Saxena, A. K.; Hosmane, N. S. *Chem. Rev.* **1993**, *93*, 1081.

⁽²⁾ Xie, Z.; Yan, C.; Yang, Q.; Mak, T. C. W. Angew. Chem., Int. Ed. 1999, 38, 1761.

^{(3) (}a) Xie, Z.; Chui, K.; Yang, Q.; Mak, T. C. W. Organometallics **1999**, *18*, 3947. (b) Chui, K.; Yang, Q.; Mak, T. C. W.; Xie, Z. Organometallics **2000**, *19*, 1391.

^{(7) &}lt;sup>1</sup>H NMR (300 MHz, pyridine-*d*₅): δ 8.08 (d, J = 7.8 Hz, 2H), 7.83 (d, J = 8.4 Hz, 2H), 7.26 (dd, J = 7.8 and 7.5 Hz, 2H), 7.05 (dd, J = 7.5 and 8.4 Hz, 2H) (C₁₃*H*₈), 2.67 (br s, 1H) (cage *CH*), 2.52 (q, J = 6.9 Hz, 8H), 0.42 (t, J = 6.9 Hz, 12H) [O(*C*H₂*C*H₃)₂], 0.83 (s, 6H) [Si(*C*H₃)₂], ¹³C NMR (75 MHz, pyridine-*d*₅): δ 141.36, 127.05, 125.72, 123.61, 120.50, 119.86, 115.89 (*C*₁₃H₈), 72.39, 62.47 (cage *C*), 65.05, 14.06 [O(*C*H₂*C*H₃)₂], 1.89 [Si(*C*H₃)₂], ¹¹B NMR (128 MHz, pyridine-*d*₅): $\delta - 2.9$ (2), -7.4 (3), -11.5 (2), -13.0 (3). IR (KBr, cm⁻¹): ν _{BH} 2585 (vs). Anal. Calcd for C₂₁H₃₅B₁₀LiOSi (1 - Et₂O): C, 56.47; H, 7.90. Found: C, 56.16; H, 8.10.

⁽⁸⁾ To a suspension of YbCl₃ (0.28 g, 1.0 mmol) in THF (20 mL) was added a THF solution of 1 (0.52 g, 1.0 mmol) and finely cut Na metal (0.17 g, 7.39 mmol), and the reaction mixture was stirred at room temperature for 5 days to afford a red solution. After removal of excess Na metal, a dry solid of Me₃NHCl (0.095 g, 1.0 mmol) was added in portions under stirring. The reaction mixture was then stirred at room temperature for 1 h. Removal of the precipitates and solvent gave a red solid that was extracted with a mixed solvent of toluene and THF (7:1, 3×10 mL). The solutions were combined and concentrated to about 15 mL, from which red crystals were obtained after this solution stood at room temperature for a week (0.43 g, 48% based on carborane). ¹H NMR (300 MHz, pyridine- d_5): δ 8.87 (d, J = 8.1 Hz, 8H), 8.58 (d, J = 7.5 Hz, 8H), 7.28 (dd, J = 8.1 and 7.8 Hz, 8H), 7.04 (dd, J = 7.8 and 7.5 Hz, 8H), 5.98 (m, 4H) (C₁₃H₉), 3.60 (m, 80H), 1.56 (m, 80H) (THF). 0.79 (s, 24H) [Si(CH₃)₂]. ¹³C NMR (75 MHz, pyridine- d_5): δ 136.41, 128.81, 127.52, 127.16, 126.93, 126.45, 116.81 (C_{13} H₉), 68.16, 26.13 (THF). ¹¹B NMR (128 MHz, pyridine- d_5): many very broad, unresolved resonances. IR (KBr, cm⁻¹): ν_{BH} 2409 (vs), 2356 (s), 2332 (s). Anal. Calcd for C₁₃₂H₂₃₂B₄₀Na₈O₁₆Si₄Yb₃ (2 – 4THF): C, 47.66; H, 7.04. Found: C, 47.81; H, 6.86.

Figure 1. Core structure of **2**. Selected distances (Å): Yb2-C1 2.435(4), Yb2-C4 2.456(4), Yb2-B2 2.786(4), Yb2-B3 2.798(4), Yb2-B5 2.780(4), Yb2-B6 2.761(4), Yb2-B7 2.723(4), Yb2-C11 2.431(4), Yb2-C14 2.483(4), Yb2-B12 2.765(4), Yb2-B13 2.794(4), Yb2-B15 2.760(4), Yb2-B16 2.797(4), Yb2-B17 2.749(4), Yb1...B6 2.905(4), Yb1...B7 2.882(4), Yb1...B16 2.888(5), Yb1...B17 2.872(4).

of the complex (Figure 1). The charge is then compensated by complexation with eight Na(THF)_n⁺ complex ions via many B–H–Na bonds, resulting in a nicely packed structure, shown in Figure 2. These surrounding complex ions protect the Yb^{II} from the attack of Me₃-NH⁺, stabilizing the very unusual Yb^{II}(H–B)₈ unit. As far as we are aware, this is not only the first metallacarborane in which a transition metal ion is fully sandwiched between two *arachno*-R₂C₂B₁₀H₁₀^{4–} ligands but also a very rare structurally characterized example of a Yb^{II} compound supported only by B–H bonds.

It is well-documented that organoytterbium(III) compounds can be readily reduced by Na metal to form the Yb^{II} species.¹¹ Complex **2** is an exceptional example in which the capping Yb^{III} remains intact in the presence of excess Na metal, suggesting that the *arachno*- $R_2C_2B_{10}H_{10}^{4-}$ tetraanion can effectively stabilize high oxidation states of the metals.

Each Yb³⁺ ion is η^7 -bound to two *arachno*-carboranyl ligands in a bent sandwich structure with a Cent-Yb-

Figure 2. Molecular structure of 2.

Cent angle of 160.2° (Cent is the centroid of the C₂B₅ bonding face), which results in a formal coordination number of 10 for each Yb(III) ion. The cage geometry of the [arachno-Me₂Si(C₁₃H₉)(C₂B₁₀H₁₁)]⁴⁻ tetraanion is very similar to those observed in [{ $(\eta^{7}-C_{2}B_{10}H_{12})(\eta^{6}-C_{2}B_{10}H_{12})U$ }{K₂(THF)₅]₂,²[{ $[\eta^{5}:\eta^{7}-Me_{2}C(C_{5}H_{4})(C_{2}B_{10}H_{11})$]-Er}₂{Na₄(THF)₉]_{*n*³} and {[$\eta^{7}-(C_{6}H_{5}CH_{2})_{2}C_{2}B_{10}H_{10}$]Ln-(THF)}₂{Na(THF)₃}₂.⁴ The average Yb-C and Yb-B distances of 2.451(4) and 2.771(4) Å are comparable to the corresponding values of 2.359(5) and 2.667(6) Å found in [{ $\eta^{7}-(C_{6}H_{5}CH_{2})_{2}C_{2}B_{10}H_{10}$]Er(THF)]^{2-,4} respectively, if the differences in Shannon's ionic radii are taken into account.¹²

The Yb²⁺ ion in **2** is coordinated to eight B–H bonds with a formal coordination number of eight. Such a coordination environment is very unusual for lanthanides. Although lanthanide(II) complexes with boron hydride or hydrido ligands have recently been reported, they are always stabilized by a bulky ligand or many donor solvents.¹³ The average Yb(1)–B distance of 2.887(4) Å in **2** is comparable to the 2.894(7) Å in (DME)₃Yb[(μ -H)₂C₂B₁₀H₈(CH₂C₆H₅)₂] (DME = 1,2-dimethoxyethane),¹⁴ 2.929(8) Å in [(THF)₃Yb{(μ -H)₅C₂B₉H₄-(CH₂C₆H₅)₂]₂,¹⁴ and 2.94(2) Å in (CH₃CN)₆Yb[(μ -H)₂B₁₀H₁₂],¹⁵ but is significantly longer than the 2.6666(6) Å observed in (CH₃CN)₄Yb[(μ -H)₃BH]₂.^{13b}

In summary, the first fully sandwiched metallacarborane bearing an η^7 -carboranyl ligand has been prepared and structurally characterized. It also represents a very rare structurally characterized example of a lanthanide complex supported only by B–H bonds. The results show that the *arachno*-R₂C₂B₁₀H₁₀^{4–} tetraanion can effectively stabilize high oxidation states of the metals.

Acknowledgment. We thank the Hong Kong Research Grants Council (Earmarked Grant CUHK 4210/99P) for financial support.

⁽¹⁰⁾ Crystal data for **2** ($C_{148}H_{264}B_{40}Na_8O_{20}Si_4Yb_3$; fw, 3611.4): triclinic, space group $P\bar{I}$, a = 14.348(2) Å, b = 16.091(2) Å, c = 21.811(2) Å, $\alpha = 106.15(1)^\circ$, $\beta = 105.36(1)^\circ$, $\gamma = 98.69(1)^\circ$, V = 4524(1) Å³, T = 293 K, Z = 2, $d_{calcd} = 2.651$ g cm⁻³, $2\theta_{max} = 50^\circ$, μ (Mo K α) = 0.71073 Å, $R_1 = 0.074$, $wR_2(F^2) = 0.180$.

^{(11) (}a) Edelmann, F. T. In *Comprehensive Organometallic Chemistry II*; Abel, E. W., Stone, F. A. G., Wilkinson, G., Eds.; Pergamon: Oxford, 1995; Vol. 4, p 11. (b) Schumann, H.; Messe-Markscheffel, J. A.; Esser, L. *Chem. Rev.* **1995**, *95*, 865.

⁽¹²⁾ Shannon, R. D. Acta Crystallogr. Sect. A 1976, A32, 751.

^{(13) (}a) Ferrence, G. M.; McDonald, R.; Takats, J. Angew. Chem., Int. Ed. **1999**, *38*, 2233. (b) White, J. P.; Deng, H.; Shore, S. G. Inorg. Chem. **1991**, *30*, 2337.

⁽¹⁴⁾ Xie, Z.; Liu, Z.; Yang, Q.; Mak, T. C. W. Organometallics 1999, 18, 3603.

^{(15) (}a) White, J. P., III; Shore, S. G. *Inorg. Chem.* **1992**, *31*, 2756.
(b) White, J. P., III; Deng, H.; Shore, S. G. *J. Am. Chem. Soc.* **1989**, *111*, 8946.

Supporting Information Available: Tables of crystallographic data and data collection details, atomic coordinates, bond distances and angles, anisotropic thermal parameters, and hydrogen atom coordinates and figures containing the atom-numbering schemes for **2**. This material is available free of charge via the Internet at http://pubs.acs.org.

OM0102605