A New Approach to the Synthesis of Unsymmetrical Disilenes and Germasilene: Unusual ²⁹Si NMR Chemical Shifts and Regiospecific Methanol Addition

Masaaki Ichinohe, Yoriko Arai, and Akira Sekiguchi*

Department of Chemistry, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan

Nozomi Takagi and Shigeru Nagase

Department of Theoretical Studies, Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan

Received May 21, 2001

Summary: The reaction of dilithiosilanes $({}^{P}\Gamma_{3}Si)_{2}SiLi_{2}$ (1a) and $({}^{B}u_{2}MeSi)_{2}SiLi_{2}$ (1b) with diaryldichlorosilanes $[Ar_{2}SiCl_{2}, Ar = Mes (2,4,6-trimethylphenyl)$ and Tip (2,4,6-triisopropylphenyl)] quantitatively produced the corresponding unsymmetrical 1,1-diaryl-2,2-bis(trialkylsilyl)disilenes, $Ar_{2}Si = Si(SiR_{3})_{2}$ (2, $R_{3}Si = {}^{i}Pr_{3}Si;$ 3, $R_{3}Si = {}^{t}Bu_{2}MeSi$). A stable germasilene, $Mes_{2}Ge =$ $Si(SiMe^{t}Bu_{2})_{2}$ (4), was also synthesized by the reaction of 1b with dimesityldichlorogermane. These compounds reveal unusual ${}^{29}Si$ NMR shifts and regioselective methanol additions.

Since tetramesityldisilene was first isolated as a stable Si=Si doubly bonded compound in 1981,¹ many other stable disilenes bearing various substituents such as alkyl-, aryl-, silyl-, and heteroatom-containing groups have been synthesized and characterized.^{2,3} Almost all stable disilenes have been synthesized by three methods: (A) photolysis of linear trisilanes such as (Me₃Si)₂-SiAr₂ and consequent dimerization of the intermediate

silylene, Ar₂Si:; (B) photochemical cleavage of cyclotrisilanes; and (C) reductive coupling of dihalosilanes. These general methods allow the preparation of disilenes of the type A₂Si=SiA₂ and ABSi=SiAB. Of course, disilenes having differently substituted silicon atoms, such as A₂Si=SiB₂, are also accessible by these methods; however, the resulting disilene A₂Si=SiB₂ is usually produced in a statistical mixture together with A₂Si=SiA₂ and B₂Si=SiB₂.^{3c,4} Methods for the selective synthesis of unsymmetrically substituted disilenes are currently very limited.⁵ For a germasilene, a regiospecific generation of ^tBu₂Si=GeMes₂ (Mes = 2,4,6trimethylphenyl) is reported by the photochemical reaction of Si,Si'-di-tert-butyltetramesitylsiladigermirane.⁶ Recently, we have reported the successful preparation and isolation of bis(triisopropylsilyl)dilithiosilane (1a) by the reaction of 3,3-bis(triisopropylsilyl)-1,2-bis(trimethylsilyl)-3-silacyclopropene with lithium metal in THF.7 We have also described some reactions of dilithiosilane with electrophiles such as chlorosilanes, and dilithiosilane was found to be a promising reagent for the synthesis of a variety of organosilicon compounds.^{7,8} We report here the reaction of dilithiosilane 1b with dihalosilanes as electrophiles, which provides a new, highly effective route for the selective synthesis of unsymmetrical disilenes^{4,5} and germasilene.^{6,9} The un-

 (6) Kolleger, G. M.; Stibbs, W. G.; Vittal, J. J.; Baines, K. M. Main Group Met. Chem. 1996, 19, 317.

(7) Sekiguchi, A.; Ichinohe, M.; Yamaguchi, S. *J. Am. Chem. Soc.* **1999**, *121*, 10231.

(8) (a) Tokitoh, N.; Hatano, K.; Sadahiro, T.; Okazaki, R. *Chem. Lett.* **1999**, 931. (b) Hatano, K.; Tokitoh, N.; Takagi, N.; Nagase, S. *J. Am. Chem. Soc.* **2000**, *122*, 4829.

(9) (a) Baines, K. M.; Cooke, J. A. Organometallics 1991, 10, 3419.
(b) Baines, K. M.; Cooke, J. A. Organometallics 1992, 11, 3487. (c) Baines, K. M.; Cooke, J. A. Dixon, C. E.; Liu, H. W.; Netherton, M. R. Organometallics 1994, 13, 631. Quite recently, we have reported the synthesis of 1,1,2,3-tetrakis[di-tert-butyl(methyl)sily]]-4-phenyl-1,2-disila-3-germacyclopenta-2,4-diene, which has a silole-type structure with Si=Ge and C=C double bonds; see: (d) Lee, V. Ya; Ichinohe, M.; Sekiguchi, A. J. Am. Chem. Soc. 2000, 122, 12604. For 2-disila-germirene with a Si=Ge double bond, see ref 3q.

⁽¹⁾ West, R.; Fink, M. J.; Michl, J. Science 1981, 214, 1343.

⁽²⁾ For the recent reviews on metallenes and dimetallenes of group 14 elements, see: (a) Weidenbruch, M. *Eur. J. Inorg. Chem.* 1999, 373.
(b) Power, P. P. *Chem. Rev.* 1999, *99*, 3463. (c) Escudié, J.; Ranaivonjatovo, H. *Adv. Organomet. Chem.* 1999, *44*, 113.

⁽³⁾ For tetraaryldisilenes: (a) Masamune, S.; Hanzawa, Y.; Murakami, S.; Bally, T.; Blount, J. F. J. Am. Chem. Soc. 1982, 104, 1150.
(b) Michalczyk, M. J.; West, R.; Michl, J. Organometallics 1985, 4, 826.
(c) Yokelson, H. B.; Maxka, J.; Siegel, D. A.; West, R. J. Am. Chem. Soc. 1986, 108, 4239. (d) Watanabe, H.; Takeuchi, K.; Fukawa, N.; Kato, M.; Goto, M.; Nagai, Y. Chem. Lett. 1987, 1341. (e) Tokitoh, N.; Suzuki, H.; Okazaki, R. J. Am. Chem. Soc. 1993, 115, 10428. For tetraalkyldisilenes: (f) Masamune, S.; Eriyama, Y.; Kawase, T. Angew. Chem., Int. Ed. Engl. 1987, 26, 584. For 1,2-dialkyl-1,2-diaryldisilenes: (g) Michalczyk, M. J.; West, R.; Michl, J. J. Am. Chem. Soc. 1984, 106, 821. (h) Fink, M. J.; Michalczyk, M. J.; Haller, K. J.; Michl, J.; West, R. Organometallics 1989, 8, 2664. For tetrasilyldisilenes: (j) Kira, M.; Maruyama, T.; Kabuto, C.; Ebata, K.; Sakurai, H. Angew. Chem., Int. Ed. Engl. 1994, 33, 1489. (k) Kira, M.; Ohya, S.; Iwamoto, T.; Ichinohe, M.; Kabuto, C. Organometallics 2000, 19, 1817. For heteroatom-substituted disilenes: (l) Michalczyk, M. J.; West, R.; Michl, J. Organometallics 1985, 4, 826. (m) Schmedake, T. A.; Haaf, M.; Apeloig, Y.; Müller, T.; Bukalov, S.; West, R. J. Am. Chem. Soc. 1999, 121, 9479. For tetrasila-1,3-butadienes: (n) Weidenbruch, M.; Willms, S.; Saak, W.; Henkel, G. Angew. Chem., Int. Ed. Engl. 1997, 36, 2503. For cyclotrisilenes: (o) Iwamoto, T.; Kabuto, C.; Kira, M. J. Am. Chem. Soc. 1999, 121, 886. (p) Ichinohe, M.; Katsuno, T.; Kabuto, C.; Kira, M. J. Am. Chem. Soc. 1999, 121, 886. (p) Ichinohe, M.; Matsuno, T.; Kabuto, C.; Kira, M. J. Am. Chem. Soc. 2000, 122, 9034. For cyclotetrasilenes: (r) Kira, M.; Iwamoto, T.; Kabuto, C. J. Am. Chem. Soc. 1996, 118, 10303. (s) Wiberg, N.; Auer, H.; Nöth, H.; Knizek, J.; Polborn, K. Angew. Chem., Int. Ed. 1998, 37, 2869.

⁽⁴⁾ Unsymmetrical tetraaryldisilenes of the A₂Si=SiB₂ type were generated by cophotolysis of two individual trisilane precursors: See ref 3c and Yokelson, H. B.; Siegel, D. A. Millevolte, A. J.; Maxka, J.; West, R. *Organometallics* **1990**, *9*, 1005.

⁽⁵⁾ Unsymmetrical disilenes have been prepared by the reductive dehaloganation of the corresponding dihalodisilane derivatives. For Mes₂Si=SiTip₂, see: (a) Weidenbruch, M.; Pellmann, A.; Pan, Y.; Pohl, S.; Saak, W. *J. Organomet. Chem.* **1993**, *450*, 67. (b) For ('BuMe₂Si)₂Si=Si(SiMe'Pr₂)₂, see ref 3k.

Scheme 1

usual ²⁹Si NMR chemical shift of the sp² silicon atoms and the regiospecific addition of methanol are also presented.

Dry oxygen-free THF was introduced by vacuum transfer to a mixture of bis[di-*tert*-butyl(methyl)silyl]dilithiosilane (**1b**)¹⁰ and dichlorodimesitylsilane, and the reaction mixture was stirred for 1.5 h at room temperature. The color of the reaction mixture immediately changed to red due to the formation of 1,1-dimesityl-2,2-bis[di-*tert*-butyl(methyl)silyl]disilene (**2b**), which was isolated quantitatively as a red-brown oil (Scheme 1).¹¹ In a similar manner, 1,1-diaryl-2,2-bis(trialkylsilyl)disilenes (**2a**, **3a**, and **3b**) were also prepared by the reaction of **1b** with the corresponding diaryldichlorosilanes in 92–96% yield. The germasilene **4** with a Si=Ge double bond was also synthesized by the reaction of the dilithiosilane **1b** with dimesityldichlorogermane in 94% yield.¹²

The structures of 2-4 were determined by mass, ¹H, ¹³C, and ²⁹Si NMR spectroscopies¹¹⁻¹³ as well as by product analysis of the reaction with methanol (vide infra).

60) 8.2, 24.1, 148.0, FIRMS *Int2* calculul C₃₆Fl₄SI₄ 008.4085, folder 608.4089; UV-vis (hexane) $\lambda_{max/nm}$ (ϵ) 289 (6700), 437 (3200). (12) Spectroscopic data for **4**: 94% yield; ¹H NMR (C₆D₆, δ) 0.12 (s, 6 H), 1.16 (s, 36 H), 2.08 (s, 6 H), 2.71 (s, 12 H), 6.74 (s, 4 H); ¹³C NMR (C₆D₆, δ) -3.7, 21.0, 21.9, 26.1, 30.3, 128.8, 137.5, 142.4, 145.2; ²⁹Si NMR (C₆D₆, δ) 22.4, 25.1; HRMS *m*/*z* calcd for C₃₆H₆₄GeSi₃ 654.3536, found 654.3535; UV-vis (hexane) $\lambda_{max/nm}$ (ϵ) 285 (7400), 424 (3200). These unsymmetrical disilenes are quite stable even in solution, and over a couple of months at room temperature no isomerization has been observed. This is in contrast to the behavior of both unsymmetrical tetraaryl- and tetrasilyl-substituted disilenes of the $A_2Si=$ SiB₂ type, which isomerize at room temperature to give an equilibrium mixture of the *E*- and *Z*-isomers of the ABSi=SiAB type.^{3c,k,4} The germasilene **4** is also quite stable in solution, in constrast to the facile germasileneto-silylgermylene rearrangement by a 1,2-mesityl shift of tetramesitylgermasilene.^{9b}

In the ²⁹Si NMR spectrum of **2b**, measured by an inverse-gate pulse sequence, three signals are observed at +8.2, +24.1, and +148.6 ppm with relative intensities of 1:2:1. On the basis of 2D Si-H NMR spectroscopy, the largest signal at +24.1 ppm is assigned to the ^tBu₂MeSi groups; the other two signals having equal intensity at +8.2 and +148.6 ppm are assigned to the silyl- and aryl-substituted sp² silicon atoms, respectively. The other disilenes also show similar ²⁹Si NMR chemical shifts of the sp² silicon atoms: +152.3 (**2a**), +137.2 (**3a**), +142.0 ppm (**3b**) for the aryl-substituted sp^2 silicon atoms; -0.8 (**2a**), +14.0 (**3a**), +14.9 ppm (**3b**) for the silyl-substituted sp² silicon atoms. The germasilene also exhibits a ²⁹Si NMR resonance of the ^tBu₂MeSi-substituted sp² silicon atom at +22.4 ppm, which supports the validity of the above assignments. The tetraaryldisilenes and tetrakis(trialkylsilyl)disilenes are reported to give signals of the sp² silicon atoms around 53-66^{1,3d,4} and 131-156 ppm^{3j,k}, respectively. The resonances of sp² silicon atoms substituted by the aryl groups in 2 and 3 are largely downfield shifted relative to that of tetraaryldisilene; in contrast, the chemical shifts of sp² silicon atoms substituted by ¹Pr₃Si or ^tBu₂MeSi groups are largely upfield shifted relative to that of tetrakis(trialkylsilyl)disilene. The reason for such unusual large upfield and downfield shifts of the sp² silicon atoms is not clear, but similar trends are reproduced by a GIAO-B3LYP calculation of the model compound (Me₃Si)₂Si=SiMes₂; the chemical shift of the Me₃Si-substituted silicon atom (47.8 ppm) is far more upfield shifted than that of the mesitylsubstituted one (156.1 ppm).¹⁴

The disilenes and germasilene undergo regioselective additions of methanol.¹⁵ Disilene **2b** readily reacted with methanol in THF to give the corresponding adduct **5** as

⁽¹⁰⁾ Dilithiosilane **1b** was prepared from 3,3-bis[di-*tert*-butyl(methyl)silyl]-1,2-bis(trimethylsilyl)-3-silacyclopropene in a manner similar to that for **1a**. See ref 7.

⁽¹¹⁾ Procedure for synthesis of 2b: Dry oxygen-free tetrahydrofuran (ca. 2 mL) was introduced by vacuum transfer to a mixture of 3,3-bis-[di-tert-butyl(methyl)silyl]-1,2-bis(trimethylsilyl)-3-silacyclopropene (98 mg, 0.19 mmol) and lithium metal (ca. 10 mg, 1.4 mmol), and then the reaction mixture was stirred at room temperature for 1.5 h to give a red solution of bis[di-*tert*-butyl(methyl)silyl]dilithiosilane (**1b**). After the removal of solvent and bis(trimethylsilyl)acetylene in vacuo, 1b was obtained as a pale yellow powder. In a glovebox, the lithium metal pieces were removed and then dichlorodimesitylsilane (62 mg, 0.19 mmol) was added. Dry oxygen-free tetrahydrofuran (ca. 2 mĽ) was introduced into the glass reaction vessel containing 1b and dichlorodimesitylsilane, and then the reaction mixture was stirred at room temperature for 1 h to give a red-brown solution of 2b. The solvent was removed in vacuo and then dry oxygen-free C₆D₆ (0.6 mL) was introduced into the reaction mixture. After filtration of the resulting lithium salt, the solvent was removed in vacuo to give pure 2b as a red-brown oil (118 mg, 99%): ¹H NMR (C₆D₆, δ) 0.09 (s, 6 H), 1.18 (s, 36 H), 2.06 (s, 6 H), 2.80 (s, 12 H), 6.72 (s, 4 H); ¹³C NMR (C₆D₆, δ) -3.5, 21.1, 22.1, 26.0, 30.4, 128.7, 137.8, 139.4, 144.1; ²⁹Si NMR (C₆D₆, δ) 8.2, 24.1, 148.6; HRMS *m*/*z* calcd for C₃₆H₆₄Si₄ 608.4085, found

⁽¹³⁾ For the spectral data of **2a**, **3a**, and **3b**, see the Supporting Information.

⁽¹⁴⁾ The GIAO-B3LYP calculation was carried out using the Gaussian 98 program with basis sets 6-311G(3d) for Si and 6-311(d) for C and H. Geometry optimization was performed at the B3LYP/6-31G(d) level.

Figure 1. Molecular structure of 6 with thermal ellipsoids drawn at the 30% level (hydrogen atoms are omitted for the clarity). Selected bond distances [Å]: Si1-Ge2 2.4614(8), Si1-Si3 2.423(1), Si1-Si4 2.431(1), Ge2-O1 1.804(2), Ge2-C19 2.003(3), Ge2-C28 1.986(3), Selected bond angles [deg]: Ge2-Si1-Si3 106.1(0), Ge2-Si1-Si4 120.7(0), Si3-Si1-Si4 120.9(0), Si1-Ge2-O1 97.6(1), Si1-Ge2-C19 124.6(1), Si1-Ge2-C28 112.0(1), O1-Ge2-C19 107.8(1), O1-Ge2-C28 110.9(1) C19-Ge2-C28 103.7(1).

a single product in quantitative yield, the structure of which was determined by spectroscopic and X-ray crystallographic methods.¹⁶ The methoxy group is regioselectively bonded to the silicon atom substituted by the two mesityl groups. In the unsymmetrical disilenes, the sp² silicon atom connected to the two mesityl groups is more positive than the other sp² silicon atom, due to

and the set of the state of th -107.1, 5.4, 19.1. Anal. Calcd for C₃₇H₆₈OSi₄: C, 69.30; H, 10.69. Found: C, 69.61; H, 10.37. Crystal data of 5: $C_{37}H_{68}OS_{14}$, fw = 641.27, triclinic, space group *P*1, *a* = 10.9930(8) Å, *b* = 11.2640(5) Å, *c* = 18.314(1) Å, α = 103.009(4)°, β = 97.239(3)°, γ = 113.272(4)°, *V* = 1970.4(2) Å³, *Z* = 2, *d*_{calc} = 1.081 g·cm⁻³, temperature 120 K, *R* = 0.0557 (*I* > 2 σ (*I*)), *R*_w = 0.1634 (all data), GOF = 1.026.

the difference in electronegativity of Si and C. Actually, the calculated natural atomic charges on sp² silicon atoms in the model (Me₃Si)₂Si=SiMes₂ are -0.355 for $(Me_3Si)_2Si$ and +0.958 for Mes_2Si at the B3LYP/6-31(d) level. Thus, the methoxy group is attached to the more positive silicon atom with mesityl substituents.

The germasilene 4 also reacted with methanol to give a single product, 6,¹⁷ in which the methoxy group is unexpectedly bonded to the germanium atom, as shown in Figure 1. This result shows regioselectivity opposite that of tetramesitylgermasilene, which gives [dimesityl-(methoxy)silyl]dimesitylgermane, in which the methoxy group is attached to the silicon atom.^{9a,b} The regioselectivity in 4 can be well understood in terms of the polarized $Si^{\delta-}=Ge^{\delta+}$ double bond, caused by the difference in electronegativity of the substituents, as found in the methanol addition to the disilenes 2 and 3. The calculated atomic charges (-0.332 for (Me₃Si)₂Si and +0.834 for Mes₂Ge) in the model (Me₃Si)₂Si=GeMes₂ at the B3LYP/6-31G(d) level also support the experimental result.

Acknowledgment. This work was supported by a Grant-in-Aid for Scientific Research (Nos. 12042213, 13029015, 13440185) from the Ministry of Education, Science and Culture of Japan, and TARA (Tsukuba Advanced Research Alliance) fund.

Supporting Information Available: Tables giving the details of the X-ray structure determination, thermal ellipsoid plots, fractional atomic coordinates, anisotropic thermal parameters, bond lengths, and bond angles for **5** and **6**, ¹H NMR, ¹³C NMR, and ²⁹Si NMR charts of **2b**, and spectral data of **2a**, 3a, and 3b. This material is available free of charge via the Internet at http://pubs.acs.org.

OM010419D

⁽¹⁵⁾ For the mechanistic investigation of the addition of alcohols to disilenes, see: Sakurai, H. *The Chemistry of Organic Silicon Com*-

⁽¹⁷⁾ Spectroscopic data for **6**: Mp 177–178 °C; ¹H NMR (C₆D₆, δ) 0.38 (s, 6 H), 1.11 (s, 18 H), 1.17 (s, 18 H), 2.08 (s, 6 H), 2.52 (s, 12 H), 3.53 (s, 3 H), 4.08 (s, 1 H), 6.70 (s, 4 H); ¹³C NMR (C₆D₆, δ) –1.9, 21.7, 23.0, 30.22, 30.24, 53.2, 129.7, 138.4, 139.3, 143.3; ²⁹Si NMR (C₆D₆, δ) -92.9, 19.7. Anal. Calcd for C₃₇H₆₈GeOSi₃: C, 64.80; H, 9.99. Found: C, 64.94; H, 9.94. Crystal data of 6° (toluene)_{0.5}: C₃₇H₆₈OSi₄ · (C₇H₈)_{0.5}, fw = 731.89, triclinic, space group *P*I, *a* = 11.0570(7) Å, *b* = 11.2600(9) Å, *c* = 18.539(1) Å, *a* = 81.261(4)°, *β* = 85.511(4)°, *γ* = 67.188(4)°, *V* = 67.188(2102.4(3) Å³, Z = 2, $d_{calc} = 1.083$ g·cm⁻³, temperature 120 K, R =0.0520 ($I > 2\sigma(I)$), $R_w = 0.1389$ (all data), GOF = 0.944.