Four-, Five-, and Six-Membered Silaplatinacycles Obtained from the Reaction of an Arylallene with $Pt(SiHPh₂)₂(PMe₃)₂$

Makoto Tanabe, Hideto Yamazawa, and Kohtaro Osakada*

Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan

Received April 2, 2001

Summary: The reaction of (4-fluorophenyl)allene with Pt(SiHPh2)2(PMe3)2 gives 2-sila-1-platinacyclobutane, 2,5-disila-1-platinacyclopentane, or 4-sila-1-platinacyclohexane, depending on the reaction conditions. All these complexes were characterized by X-ray crystallography and NMR spectroscopy.

2,5-Disila-1-metallacyclopentanes $1-10$ have attracted attention owing to their unique chemical properties and the important roles they play as an intermediate of transition metal complex catalyzed hydrosilylation and bis-silylation of unsaturated compounds.3,8 Most of these complexes were prepared by the oxidative addition of two Si-H bonds of 1,2-bis(silyl)alkanes, $HSiR_2CH_2CH_2$ -SiR2H, to low-valent transition metal complexes. On the other hand, the reactions of alkene and alkyne with $M(SiX_3)_2(PR_3)_2$ (M = Pd, Pt; X = Me, Ph, F) lead to the formation of their 1,2-disilylation products, $11,12$ which are closely related to the mechanism of bis-silylation of alkene, allene, and alkyne catalyzed by transition metal complexes.13-¹⁵ A similar reaction of alkene or allene

(1) Eaborn, C.; Metham, T. N.; Pidcock, A. *J. Organomet. Chem*. **1973**, *63*, 107.

Chem. **1982**, *228*, 301. Corriu, R. J. P.; Moreau, J. J. E.; Pataud-Sat, M. *Organometallics* **1985**, *4*, 623.

(4) Scubert, U.; Müller, C. *J. Organomet. Chem.* **1991**, 418, C6.

(5) Osakada, K.; Hataya, K.; Tanaka, M.; Nakamura, Y.; Yamamoto, T.; Yamamoto, A*. J. Chem. Soc., Chem. Commun*. **1993**, 576.

(6) Shimada, S.; Tanaka, M.; Honda, K. *J. Am. Chem. Soc*. **1995**, *117*, 8289. Shimada, S.; Tanaka, M.; Shiro, M. *Angew. Chem., Int. Ed.*

Engl. **1996**, *35*, 1856. (7) Loza, M.; Faller, J. W.; Crabtree, R. H. *Inorg. Chem*. **1995**, *34*, 2937.

(8) Nagashima, H.; Tatebe, K.; Ishibashi, T.; Sakakibara, J.; Itoh, K. *Organometallics* **1989**, *8*, 2495; Nagashima, H.; Tatebe, K.; Itoh, K. *J. Chem. Soc., Perkin Trans. 1* **1989**, 1707. Nagashima, H.; Tatebe, K.; Ishibashi, T.; Nakaoka, A.; Sakakibara, J.; Itoh, K. *Organometallics* **1995**, *14*, 2868.

(9) Kang, Y.; Kang, S. O.; Ko, J. *Organometallics* **2000**, *19*, 1216. (10) Related late transition metal complexes, see: Lemanski, M. F.; Schram, E. P. *Inorg. Chem*. **1976**, *15*, 1489. Curtis, M. D.; Greene, J. *J. Am. Chem. Soc.* **1978**, *100*, 6362. Curtis, M. D.; Greene, J.; Butler, W. M. *J. Organomet. Chem.* **1979**, *164*, 371. Curtis, M. D.; Epstein, S. P. *Adv. Organomet. Chem*. **1981**, *19*, 213. Gilges, H.; Schibert, U. *Organometallics* **1998**, *17*, 4760. Wada, H.; Tobita, H.; Ogino, H. *Organometallics* **1997**, *16*, 3870. Tobita, H.; Hasegawa, K.; Minglana, J. J. G.; Luh, L.-S.; Okazaki, M.; Ogino, H. *Organometallics* **1999**, *18,*
2058. Delpach, F.; Sabo-Etienne, S.; Daran, J.-C.; Chaudret, B.;
Hussein, K.; Marsden, C. J.; Berthelat, J.-C. *J. Am. Chem. Soc.* **1999**, *121*, 6668.

(11) Ozawa, F.; Sugawara, M.; Hayashi, T. *Organometallics* **1994**, *13*, 3237. Ozawa, F. *J. Organomet. Chem.* **2000**, *611*, 332. See also: Ozawa, F.; Kamite, J. *Organometallics* **1998**, *17*, 5630.

(12) Murakami, M.; Yoshida, T.; Ito, Y. *Organometallics* **1994**, *13*, 2900.

Figure 1. ORTEP drawing of **1** at the 50% ellipsoidal level. Selected bond distances (Å) and angles (deg): Pt-P1 2.277(3), Pt-P2 2.349(4), Pt-Si1 2.367(3), Pt-C1 2.14(1), Si1-C2 1.87(1), C2-C3 1.31(2), C3-C4 1.48(2); P1-Pt-P2 99.4(1), P1-Pt-Si1 100.7(1), P1-Pt-C1 168.8- (3), P2-Pt-Si1 159.6(1), P2-Pt-C1 91.7(3), Si1-Pt-C1 68.1(3), Pt-Si1-C2 85.3(4), Pt-C1-C2 103.2(7), Si1-C2- C1 95.8(8), Si1-C2-C3 141(1), C1-C2-C3 120(1), $C2-C3-C4$ 128(1).

with Pt complexes having diorganosilyl ligands would lead to the formation of 1,2-bis(silyl)alkane or 2,5-disila-1-metallacyclopentane as its double oxidative addition product. Actually, $Pt(SiHPh₂)₂(PMe₂Ph)₂$ was

reported to react with acetylene to afford $Pt(SiPh_2-$

 $CH=CH-SiPh₂(PMe₂Ph)₂$.¹⁶ In this paper we report that the reaction of an ary allene with a platinum that the reaction of an arylallene with a platinum complex with diphenylsilyl ligands gives not only a new disilaplatinacyclopentane but also four- or five-membered silaplatinacycles depending on the conditions.

(4-Fluorophenyl)allene reacts with an equimolar amount of $Pt(SiHPh_2)_2(PMe_3)_2^{17}$ at room temperature

to produce $Pt(SiPh_2C(=CHC_6H_4F-4)CH_2)(PMe_3)_2$ (1),

⁽²⁾ Vancea, L.; Graham, W. A. G. *Inorg. Chem*. **1974**, *13*, 511. (3) Corriu, R. J. P.; Moreau, J. J. E.; Pataud-Sat, M. *J. Organomet.*

⁽¹³⁾ Watanabe, H.; Saito, M.; Sutou, N.; Nagai, Y. *J. Chem. Soc., Chem. Commun*. **1981**, 617. Watanabe, H.; Saito, M.; Sutou, N.; Kishimoto, K.; Inose, J.; Nagai, Y. *J. Organomet. Chem*. **1982**, *225*, 343.

⁽¹⁴⁾ Murakami, M.; Andersson, P. G.; Suginome, M.; Ito, Y. *J. Am. Chem. Soc.* **1991**, *113*, 3987. Murakami, M.; Suginome, M.; Fujimoto, K.; Nakamura, H.; Andersson, P. G.; Ito, Y. *J. Am. Chem. Soc.* **1993**, *115*, 6487.

⁽¹⁵⁾ Hayashi, T.; Kobayashi, T.; Kawamoto, A. M.; Yamashita, H.; Tanaka, M. *Organometallics* **1990**, *9*, 280. Hayashi, T.; Kawamoto, A. M.; Kobayashi, T.; Tanaka, M. *J. Chem. Soc., Chem. Commun*. **1990**, 563.

⁽¹⁶⁾ Eaborn, C.; Metham, T. N.; Pidcock, A. *J. Organomet. Chem.* **1977**, *131*, 377.

Figure 2. ORTEP drawing of **2** at the 50% ellipsoidal level. Selected bond distances (Å) and angles (deg): Pt-P1 2.349(2), Pt-P2 2.344(2), Pt-Si1 2.365(2), Pt-Si2 2.374(2), Si1-C1 1.888(6), Si2-C2 1.892(7), C1-C2 1.498- (8), C2-C3 1.346(8), C3-C4 1.479(9); P1-Pt-P2 96.06- (7), P1-Pt-Si1 170.98(7), P1-Pt-Si2 93.95(7), P2-Pt-Si1 90.38(7), P2-Pt-Si2 169.96(7), Si1-Pt-Si2 79.74(7), Pt-Si1-C1 111.0(2), Pt-Si2-C2 110.2(2), Si1-C1-C2 105.6(4), Si2-C2-C1 106.1(5), Si2-C2-C3 134.1(6), $C1-C2-C3$ 118.5(7), $C2-C3-C4$ 130.6(7).

while the reaction at 50 $^{\circ}$ C affords Pt(SiPh₂C- $(=CHC_6H_4F-4)CH_2SiPh_2)(PMe_3)_2$ (2), as shown in eqs 1 and 2. Molecular structures of the four- and five-

membered silaplatinacycles **1** and **2** were determined by X-ray crystallography (Figures 1 and 2). The crystallographic data are summarized in Table 1. Complex **1** contains a planar metallacycle ring with highly distorted bond angles, Si1-Pt-C1 68.1(3)°, Pt-Si1-C2 85.3(4)°, Pt-C1-C2 103.2(7)°, Si1-C2-C1 95.8(8)°. Despite the strained ring structure, **1** is stable at room temperature in the solid state and in solution. The square-planar Pt center of **2** is included in the five-membered disilametallacyclic ring and is bonded to two PMe₃ ligands. The C2–C3 bond distance $(1.346(8)$ Å) is typical of the $C=C$ double bond, while the Si-C2-C3 bond angle $(134.1(6)°)$ is enlarged due to steric repulsion between the 4-fluorophenylmethylidene substituent and a phenyl substituent on the Si2 atom. The NMR spectra are also consistent with the proposed structures. The ${}^{13}C[{^1}H]$

Table 1. Crystallographic Data of Complexes 1-**³**

	1	2	3
chemical formula	$C_{27}H_{35}FP_2PtSi$	$C_{39}H_{45}FP_2PtSi$	$C_{36}H_{42}F_{2}P_{2}PtSi$
fw	663.70	845.97	797.85
cryst syst	monoclinic	monoclinic	monoclinic
space group	$P2_1/n$ (No. 14)	$P2_1/c$ (No. 14)	$P2_1/n$ (No. 14)
a, Å	16.803(3)	11.517(2)	9.792(2)
b, Å	8.349(2)	27.949(3)	18.710(3)
c, Å	20.434(8)	12.952(2)	19.296(2)
β , deg	103.17(2)	111.52(1)	94.95(2)
V, \mathring{A}^3	2791(1)	3878(1)	3499.1(8)
Z	4	4	4
μ , mm ⁻¹	5.184	3.778	4.153
F(000)	1312	1696	1592
$D_{\rm{calcd}}$, g cm ⁻³	1.579	1.449	1.514
cryst size, mm \times	0.64×0.32	0.58×0.32	0.52×0.34
$mm \times mm$	$\times 0.26$	$\times~0.29$	\times 0.32
2θ range, deg	$5.0 - 55.0$	$5.0 - 55.0$	$5.0 - 55.0$
no. of unique reflns	6801	9084	8281
no. of used reflns $(I>3.0\sigma(I))$	3444	4447	5024
no. of variables	289	406	379
R	0.052	0.037	0.035
$R_{\rm w}$	0.035	0.024	0.024

NMR signals of the CH2 carbon of **1** and **2** are observed at *δ* 20.8 and 38.0, respectively, flanked by 195Pt satellite peaks (**1**, $^{1}J_{\text{CPt}} = 400$ Hz; **2**, $^{2}J_{\text{CPt}} = 88$ Hz), while the signals of the sp² carbons of the metallacycles appear at *δ* 157.8 and 150.0. The NMR analyses of reaction 1 revealed generation of H_2SiPh_2 in the solution. The reaction of H_2SiPh_2 with 1 was conducted in order to clarify the route of formation of **2**. Heating a benzene solution of a mixture of 1 and H₂SiPh₂ in 1:3 molar ratio at 50 °C caused formation of **2** in 34% (eq 3).

The reaction of (4-fluorophenyl)allene with $Pt(SiHPh₂)₂$ - $(PMe_3)_2$ in a 3:1 molar ratio affords Pt{C(=CHC₆H₄F-4)- $CH_2SiPh_2C(=CH_2)CH(C_6H_4F-4)$ (PMe₃)₂ (3) in 73% yield (eq 4). The organic product, $FC_6H_4CH=C(Me)SiPh_2H$, was obtained from the reaction mixture (34% isolated yield based on Pt) and characterized by NMR spectroscopy. Figure 3 shows the molecular structure of **3**, which contains the puckered 4-sila-1-platinacyclohexane ring

Figure 3. ORTEP drawing of **3** at the 50% ellipsoidal level. Selected bond distances (Å) and angles (deg): Pt-P1 2.286(2), Pt-P2 2.308(2), Pt-C1 2.148(5), Pt-C11 2.061(5), C1-C2 1.512(7), C1-C4 1.500(7), C2-C3 1.335- (7) , Si-C2 1.879 (5) , Si-C10 1.863 (5) , C10-C11 1.540 (7) , $C11 - C12$ 1.343(7); P1-Pt-P2 98.49(6), P1-Pt-C1 170.0-(1), P1-Pt-C11 88.1(1), P2-Pt-C1 88.9(1), P2-Pt-C11 168.7(1), C1-Pt-C11 85.7(2), Pt-C1-C2 103.8(3), Pt-C1-C4 114.6(4), C1-C2-C3 121.3(5), C2-C1-C4 115.7(5), $Si-C2-C1$ 119.9(4), $C2-Si-C10$ 110.9(2), Si-C2-C3 118.3(4), Si-C10-C11 111.9(4), C10-C11-C12 119.4(5), Pt-C11-C10 122.1(4), Pt-C11-C12 118.1(4).

with 4-fluorophenyl and 4-fluorophenylmethylidene substituents at each of the two α -carbons. The two 4-fluorophenyl groups and the Pt(PMe₃)₂ moiety are at the opposite side of the plane formed by a Si and four carbon atoms in the metallacycle. The 1H NMR signals of two $=$ CH₂ hydrogens appear at δ 5.57 and 5.73, while the signals of Pt-CH- and $Si-CH_2$ - hydrogens are observed at *δ* 4.27 and *δ* 3.36 and 2.31, respectively. The reaction of **1** with (4-fluorophenyl)allene would give a platinacycle with different stereochemistry at the $C=C$ double bond than what is observed in compound **3**. ¹⁸ The reaction of (4-fluorophenyl)allene with **2** at room temperature caused formation of **3** but at a very slow reaction rate; the conversion is not completed after stirring a 10:1 mixture of the allene and **2** after 140 h. This suggests that complex **2** is not a major contributor for the formation of compound **3** in the reaction in eq 4. Scheme 1 summarizes the reactions for formation of several silaplatinacycles. The formation of **2** in reaction 2 probably involves initial formation of **1** and subsequent reaction of 1 and H_2SiPh_2 at 50 °C. Reaction 4, which produces compound **3**, does not involve compounds **1** or **2** as intermediates. The reaction of (4 fluorophenyl)allene with **2** is much slower than the reaction shown in eq 2. At present, the mechanism of formation of **3** is not clear.

In summary, this study proposed a unique reaction mechanism for formation of 2,5-disilaplatinacyclopentane via initial formation of silaplatinacyclobutane and its reaction with diorganosilane. The insertion of a $C=C$ double bond of the arylallene into the Pt-Si bond of $Pt(SiHPh₂)₂(PMe₃)₂$ takes place smoothly and selectively to cause the formation of unique platinacycles.

Acknowledgment. This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

Supporting Information Available: Experimental procedures and crystallographic data of **¹**-**3**. This material is available free of charge via the Internet at http://pubs.acs.org.

OM010266U

⁽¹⁷⁾ The complex exists as an equilibrium mixture of the cis and trans isomers in solution. See: Kim, Y.-J.; Park, J.-I.; Lee, S.-C.; Osakada, K.; Tanabe, M.; Choi, J.-C.; Koizumi, T.; Yamamoto, T. *Organometallics* **1999**, *18*, 1349.

⁽¹⁸⁾ The reaction of (4-fluorophenyl)allene with **1** at 50 °C does not give **3** but produces an uncharacterized Pt complex.