Preparation and Reactivity of Compounds Containing a Carbon-Xenon Bond

Hermann-Josef Frohn*

Fachgebiet Anorganische Chemie, Gerhard-Mercator-Universität Duisburg, Lotharstrasse 1, D-47048 Duisburg, Germany

Vadim V. Bardin

N. N. Vorozhtsov Institute of Organic Chemistry, 9 Academician Lavrentjev Avenue, 630090 Novosibirsk, Russia

Received June 8, 2001

The chemistry of carbon-xenon compounds is one of the newest in the field of organoelement chemistry. The specific character of carbon-xenon chemistry can be ascribed to the fact that in all Xe^{II} and Xe^{IV} compounds hypervalent bonds—symmetrical or asymmetrical with a high partial positive charge on Xe are present. Different from the class of high-oxidation-state organometallic derivatives of d metals, C-Xe compounds have low coordination numbers and, additionally, contain three or two lone electron pairs. It is the intent of this review to present the still limited number of synthetic approaches to C-Xecompounds and to organize their presently known reactivities into categories. It is hoped that C-Xe compounds can be introduced in the future as precursors in synthetic organic and organoelement chemistry.

I. Introduction

This review covers the preparative chemistry of the organic compounds of xenon(II) and -(IV). Consequently, C-Xe chemistry in the gas phase¹ and in the matrix² is excluded, as well as the formation of C-Xe species by radiochemical methods³ (β^- decay of C⁻¹³¹I compounds).

When in 1962 the paradigm of the inertness of noble gases had been overcome by the discovery of the first Xe(II) compound by Bartlett,⁴ an intensive research in noble-gas chemistry was initiated. A result of this activity was the early discovery of the binary xenon fluorides XeF₂, XeF₄, and XeF₆, which are directly accessible by reactions of the elements. On the basis of reactions of these fluorides, bonds of xenon to oxygen, nitrogen and xenon were unambiguously realized.⁵⁻⁷ The first compounds containing a C-Xe^{II} bond were reported in 1989.^{8,9} Since then a wide variety of organoxenon(II) derivatives containing a relatively wide range of organic substituents have been prepared. In 2000 the first C-Xe^{IV} compound was reported.¹⁰

An early review in 1993¹¹ dealt only with the beginnings of C-Xe chemistry, and the 1993 review of Zhdankin¹² focused comprehensively on the numerous attempts to realize carbon-xenon bonds. Thus, it is useful to review the new developments in this active area at the present time.

Properties of XeF₂ and XeF₄ and the Related Cations [XeF]⁺ and [XeF₃]⁺ with Relevance for the Formation of C-Xe Bonds. The bond between xenon and the fluorine atoms in XeF_2 and XeF_4 is best described in terms of MO theory:¹³ e.g., for XeF₂ as a 3c-4e bond. This triad usually is described as a hypervalent bond.¹⁴ Typical characteristics of such hypervalent bond triads are the strongly polar Xe-F bond with a weak covalent component (formal bond order 0.5) and a distinctly electrostatic component. Overall, XeF₂

(5) Sladky, F. Noble Gases. In *Main Group Elements Group VII and Noble Gases*; Gutmann, V., Ed.; Butterworth: London, 1973; pp 1–52. (6) Žemva, B. Noble Gases: Inorganic Chemistry. In Encyclopedia

- 100.
- (8) Naumann, D.; Tyrra, W. J. Chem. Soc., Chem. Commun. 1989, 47-50.
- (9) Frohn, H.-J.; Jakobs, S. J. Chem. Soc., Chem. Commun. 1989, 625-627.
- (10) Frohn, H.-J.; LeBlond, N.; Lutar, K.; Žemva, B. Angew. Chem., Int. Ed. 2000, 39, 391-393.
- (11) Frohn, H.-J. Nachr. Chem. Tech. Lab. 1993, 41, 956–964.
 (12) Zhdankin, V. V. Izv. Akad. Nauk Ser. Khim. 1993, 1849–1857;
 Russ. Chem. Bull. 1993, 42, 1763–1771.
 (12) Puredle B. E. J. Acad. Control of Co
 - (13) Rundle, R. E. J. Am. Chem. Soc. 1963, 85, 112-113.

^{*} To whom correspondence should be addressed. E-mail: frohn@ uni-duisburg.de.

^{(1) (}a) Holtz, D.; Beauchamp, J. L. Science 1971, 173, 1237-1238. (b) Hovey, J. K.; McMahon; T. B. J. Am. Chem. Soc. 1986, 108, 528-529.

⁽²⁾ Pettersson, M.; Lundell, J.; Räsänen, M. Eur. J. Inorg. Chem. 1999, 729-737.

^{(3) (}a) Carlson, T. A.; White, R. M. J. Chem. Phys. **1962**, *36*, 2883–2887. (b) Nefedov, V. F.; Toropova, M. A.; Levchenko, A. V. Ra-diokhimiya **1967**, *9*, 138–139; *Radiochemistry (Moscow)* **1967**, *9*, 166– аноклитуа **1907**, *9*, 138–139; *Kadiochemistry (Moscow)* **1967**, *9*, 166– 167. (c) Toropova, M. A.; Nefedov, V. F.; Levchenko, A. V.; Saikov, Y. P. *Radiokhimiya* **1968**, *10*, 611–613; *Radiochemistry (Moscow)* **1968**, *10*, 601–603. (d) Toropova, M. A.; Nefedov, V. F.; Levchenko, A. V.; Matveev, O. G. *Radiokhimiya* **1968**, *10*, 613; *Radiochemistry (Moscow)* **1968**, *10*, 604. (e) Toropova, M. A.; Nefedov, V. F.; Levchenko, A. V.; Saikov, Y. P. *Radiokhimiya* **1968**, *10*, 616–619; *Radiochemistry (Moscow)* **1968**, *10*, 608–611. (A) Bartlett N. *Proc. Chem. Soc.* **1962**, 219

⁽⁴⁾ Bartlett, N. Proc. Chem. Soc. 1962, 218.

of Inorganic Chemistry, King, R. B., Ed.; Wiley: New York, 1994; Vol. 5, pp 2660–2680. (7) Holloway, J. H.; Hope, E. G. *Adv. Inorg. Chem.* **1999**, *46*, 51–

and XeF₄ have no permanent dipole moment. Despite the high opposite partial charges on Xe and F, there is no intermolecular interaction in crystalline XeF₂¹⁵ (shortest intermolecular distance $Xe \cdots F = 3.42$ Å) and there are only very weak ones in crystalline XeF₄¹⁶ (>3.22 Å; the sum of van der Waals radii of Xe and F is 3.47 Å).17

Xenon difluoride shows no tendency to form stable adducts with nucleophiles, even with the fluoride anion. The absence of ${}^{18}[F] - {}^{19}[F]$ fluorine exchange under neutral or basic conditions in the system (Xe¹⁹F₂ + $^{18}[F]^{-})^{18}$ is in agreement with the property of XeF₂ of forming no adducts.

In contrast to XeF_2 , the molecules XeF_4 and XeF_6 , with a higher partial charge on Xe, form fluoride ion adducts.^{19,20} XeF₂ interacts readily with Lewis acids as a consequence of the relatively high negative partial charge of the fluorine atoms. Depending on the strength of the Lewis acid, the solid-state structures of such adducts show that the Xe-F distance involving the interacting F atom becomes longer (mainly an electrostatic Xe…F interaction) but without complete separation, whereas the second Xe-F bond becomes shorter and more covalent (2c-2e bond). The [FXe]⁺ cation as the extreme case is a strong oxidizing agent (EA = 10.6,²¹ 10.9 eV²²) and is not compatible with organic nucleophiles. The electronegativity of Xe^{II} in XeF₂ is 2.4 and increases to 2.5 in [FXe]⁺ (calculated by the correlation of Allred and Rochow). The increase in electronegativity is accompanied by the change of Mulliken charges on F from -0.666 to -0.284 and on Xe from 1.331 to 1.284 for the transition from XeF_2 to $[FXe]^+$ (ab initio calculations: RHF, LANL2DZ).23 A similar tendency was calculated for the change from XeF₄ (Xe, 2.494; F, -0.623) to $[XeF_3]^+$ (Xe, 2.283; 2 F_{ax}, -0.500; F_{eq} , -0.286).²⁴ The comparison of the fluoride donor ability shows that XeF₂ is a better fluoride donor than XeF₄. The higher effective charge on Xe^{IV} makes the fluoride abstraction more difficult.

II. Current Preparative Methods of C-Xe^{II} Bond Formation

Attempted Formation of Carbon-Xenon Compounds. In 1979 Lagow²⁵ claimed to have synthesized $Xe(CF_3)_2$ by reacting XeF_2 with CF_3 radicals. The waxy

242

(16) Templeton, D. H.; Zalkin, A.; Forrester, J. D.; Williamson, S. M. J. Am. Chem. Soc. 1963, 85, 242.

(17) Bondi, A. J. Phys. Chem. 1964, 68, 441-451.

(18) (a) Schrobilgen, G. J.; Firnau, G.; Chirakal, R.; Garnett, E. S. . Chem. Soc., Chem. Commun. 1981, 198-199. (b) Patrick, T. B.; Johry, K. K.; White, D. H.; Bertand, W. S.; Mokhtar, R.; Kilbourn, M. R.; Welck, M. J. Can. J. Chem. 1986, 64, 138-141.

(19) Christe, K. O.; Curtis, E. C.; Dixon, D. A.; Mercier, H. P.; Sanders, J. C. P.; Schrobilgen, G. J. *J. Am. Chem. Soc.* **1991**, *113*, 3351 - 3361

(20) Peterson, S. W.; Holloway, J. H.; Coyle, B. A.; Williams, J. M. Science 1971, 173, 1238-1239.

(21) Sladky, F.; Bulliner, P.; Bartlett, N. J. Chem. Soc. A 1969, 2179-2188.

(22) Schrobilgen, G. J. Lewis Acid Properties of Fluorinated Nobel

(22) Schrödigen, G. S. Lewis Acta Troperties of Fluorineter (vole)
Gas Cations. In *Synthetic Fluorine Chemistry*, Olah, G. A., Chambers,
R. D., Prakash, G. K. S., Eds.; Wiley: New York, 1992; pp 1–30.
(23) Frohn, H.-J.; Klose, A.; Schroer, T.; Henkel, G.; Buss, V.; Opitz,
D.; Vahrenhorst, R. *Inorg. Chem.* 1998, *37*, 4884–4890.

product with a half-life of \sim 30 min at room temperature and ~ 2 weeks at -192 °C and a "vapor pressure significantly larger (?) than that of XeF2" was not unambiguously characterized or reproduced successfully. Schmeisser et al. tried to add CF₃ radicals to Xe⁰ in analogy to the direct synthesis of XeF₂ by addition of fluorine atoms to Xe⁰, but without success.²⁶ The successful introduction of O and N groups into the Xe^{II} moiety by metathesis stimulated different groups to examine metathetical methods for carbon-xenon(II) bond formation. By direct analogy with the introduction of oxygen- and nitrogen-containing groups Seppelt and coworkers²⁷ reacted the CH acid [FSO₂]₃CH with XeF₂ but observed only the formation of $[FS(O)_2]_3CF$. A similar result was obtained in the reactions of K[CH₃- $(NO_2)_2C$ with XeF₂ in CH₂Cl₂.²⁸

Organoxenonium(II) Salts by Substitution of Boron in Organoboranes (Xenodeborylation). In the case of the nucleophilic introduction of organic groups into XeF₂ it is necessary to overcome the low electrophilicity of the Xe center in XeF₂. Additionally, the lack of a permanent dipole moment in XeF_2 explains its low reactivity. One solution to overcome these problems is the use of organic group transfer reagents with a Lewis acidic center, which polarizes the hypervalent F-Xe-F bond and increases the electrophilicity of the xenon atom. However, the degree of polarization should be not too high, because too strong a polarization favors the oxidation ability of [FXe]⁺. The first examination of this concept was carried out using an appropriate triarylborane as the source of the organic group. Tris(pentafluorophenyl)borane was found to react with xenon difluoride with formation of arylxenonium fluoroborates^{8,9,29} (eq 1).

$$(C_{6}F_{5})_{3}B + XeF_{2} \xrightarrow{CH_{2}Cl_{2} \text{ or } CH_{3}CN} [C_{6}F_{5}Xe][(C_{6}F_{5})_{n}BF_{4-n}] (1)$$

$$n = 3, CH_{3}CN;^{8} n = 1, CH_{2}Cl_{2};^{9} n = 2, CH_{2}Cl_{2}^{29}$$

The attempted use of pentafluorophenyl-containing Lewis acids having central atoms other than boron with a tetrahedral or trigonal-bipyramidal configuration was not successful.

F-Xe-F +
$$C_{nu}BX_2 \longrightarrow$$

F-Xe-F + $C_{nu}BX_2 \longrightarrow$
F-Xe-F - F-Xe- C_{nu} + F- BX_2
 \downarrow
 C_{nu} - BX₂ [C_{nu} - Xe] [X₂BF₂]

Scheme 1 illustrates the course of the xenodeborylation reaction: the interaction of boron with one basic fluorine atom of XeF₂ polarizes the xenon-fluorine

^{(14) (}a) Musher, J. I. Angew. Chem. 1969, 81, 68-83. (b) Lattman, M. Hypervalent Compounds. In Encyclopedia of Inorganic Chemistry, King, R. B., Ed.; Wiley: New York, 1994; Vol. 3, pp 1496–1511. (c) Brel, V. K.; Zefirov, N. S. *Hypervalent Compounds of Xenon*. In Chemistry of Hypervalent Compounds; Akiba, K., Ed.; Wiley-VCH: New York, 1999; pp 389–408. (15) Levy, H. A.; Agron, P. A. J. Am. Chem. Soc. **1963**, 85, 241–

⁽²⁴⁾ Frohn, H. J. Abstracts of Papers; 219th National Meeting of the American Chemical Society, San Franscisco, CA, March 26–30, 2000; American Chemical Society: Washington, DC, 2000; FLUO 0048. (25) Turbini, L.; Aikman, R.; Lagow, R. J. Am. Chem. Soc. **1979**, 101. 5833-5834.

⁽²⁶⁾ Schmeisser, M.; Walter, R.; Naumann, D. Z. Anorg. Allg. Chem. **1980**, 464, 233-239.

⁽²⁷⁾ Klöter, G.; Pritzkow, H.; Seppelt, K. Angew. Chem. 1980, 92, 954-955.

⁽²⁸⁾ Tselinskii, I. V.; Mel'nikov, A. A.; Varyagina, L. G.; Trubitsin,
A. E. *Zh. Org. Khim.* **1985**, *21*, 2490–2493.
(29) Frohn, H.-J.; Jakobs, S.; Henkel, G. *Angew. Chem., Int. Ed.*

Engl. 1989, 28, 1506-1507.

bond, and the hypervalent bond becomes asymmetric. Consequently, the electrophilicity of Xe increases as well as the oxidation potential. On the other side, the interaction of boron with a fluorine bonded to xenon leads to tetracoordination at boron. Simultaneously, the nucleophilicity of the C_6F_5 group at boron increases. Boranes seem to offer the best geometry for a successful transition state in the fluorine–organyl substitution on XeF₂.

The oxidation property of XeF₂ itself and of its polarized form in the interaction with boranes limits the choice of appropriate organic groups. The demands of high nucleophilicity and stability to oxidation are best realized by fluorinated aryl groups. The electronwithdrawing fluorine substituents make the C–C σ system electron-poor, whereas the π system becomes enriched by p–p π back-bonding. In organoxenonium cations in which C(1) is part of a π system, Xe increases the π -electron density on C(1) by polarization and this strengthens the C–Xe bond electrostatically.²³ However, in alkylxenonium cations with fluorine atoms bonded at C(1), the C–Xe bond is weakened by repulsion of the highly positive partial charges on C(1) and Xe.

An unusual variant of xenodeborylation is the nucleophilic transfer of the C_6F_5 group in anhydrous HF (aHF).³⁰ It should be mentioned that XeF₂ is very soluble in aHF (9.88 mol/kg, 30 °C),³¹ whereas (C_6F_5)₃B is practically insoluble even at room temperature and undergoes solvolysis only very slowly (72 h), yielding C_6F_5H and [BF₄]⁻. Xenon difluoride (3 equiv) is consumed within 4 h when reacted with (C_6F_5)₃B in aHF at ca. -30 °C. The main products are [C_6F_5Xe]⁺ and [BF₄]⁻. Minor byproducts are [(C_6F_5)₂BF₂]⁻, [cyclo- C_6F_7 -BF₃]⁻, and C_6F_6 (eq 2).

$$3XeF_{2} + (C_{6}F_{5})_{3}B \xrightarrow[-30 \circ C]{}^{\text{aHF}}$$
$$3[C_{6}F_{5}Xe]^{+} + [BF_{4}]^{-} + 2[F(HF)_{n}]^{-} (2)$$

In aHF all C_6F_5 groups of the borane are transferred to xenon, in contrast to the reaction in CH₂Cl₂. Indeed, the fluoroborate anions $[(C_6F_5)_nBF_{4-n}]^-$ cannot transfer C_6F_5 groups directly to xenon difluoride, but in aHF they undergo abstraction of fluoride by HF (eq 3).

$$[(C_{6}F_{5})_{n}BF_{4-n}]^{-} + mHF \rightleftharpoons (C_{6}F_{5})_{n}BF_{3-n} + [F(HF)_{m}]^{-} (3)$$

The abstraction of fluoride occurs faster than the oxidation of the aryl group in the fluoroborate anion by the polarized XeF_2 molecule (eq 4).

$$F-Xe-F-HF + [C_6F_5BF_3]^{-} \xrightarrow{aHF} [cyclo-C_6F_7BF_3]^{-} + Xe^0 (4)$$

In this interesting modification of xenodeborylation the resulting arylxenonium cations are accompanied by a mixture of $[BF_4]^-$ and $[F(HF)_n]^-$ anions.

The method of xenodeborylation could be extended to hydrogen-containing arylxenonium(II) (aryl)fluoroborates as long as the aryl group bears at least one electron-withdrawing substituent X (eq 5).

$$(XC_{6}H_{4})_{3}B + XeF_{2} \rightarrow [XC_{6}H_{4}Xe][(XC_{6}H_{4})_{n}BF_{4-n}] (5)$$
$$X = 3-F^{32}_{,3} - 4-F^{32}_{,3} - 3-CF^{32}_{,3} - 4-CF^{32}_{,3} - 2F^{32}_{,3} - 2F^{,$$

In dichloromethane suspensions the salts $[XC_6H_4-Xe][(XC_6H_4)_nBF_{4-n}]$ are thermally unstable and decompose already above ca. -40 °C. More stable tetrafluoroborate salts are obtained when the triarylboranes were reacted in the presence of BF₃·OMe₂ (eq 6).

Ar₃B + 3XeF₂ + 2BF₃·OMe₂
$$\xrightarrow{CH_2Cl_2}$$

3[ArXe][BF₄] + 2OMe₂ (6)
Ar = 2-C₆H₄F, 4-C₆H₄F, 2,6-C₆H₃F₂,³⁴

The majority of the salts obtained by this method were not isolated but were characterized unambiguously in solution by their ¹H, ¹⁹F, and ¹²⁹Xe NMR spectra.

All these routes to arylxenonium(II) salts are based on Ar_3B and are limited by the availability of the corresponding triarylboranes. The synthesis and purification of arylboranes with electron-poor aryl groups is a delicate procedure which in many cases results in low yields.³⁷ Recently a convenient access to the salts [ArXe][BF₄] was developed on the basis of the reaction of XeF₂ with in situ generated aryldifluoroboranes³⁸ (eq 7).

$$K[ArBF_{3}]_{(s)} \xrightarrow{BF_{3}/CH_{2}Cl_{2}}{-K[BF_{4}]_{(s)}} ArBF_{2} \xrightarrow{XeF_{2}/CH_{2}Cl_{2}}{-40^{\circ}C} [ArXe][BF_{4}]$$
(7)
$$Ar = C_{6}H_{n}F_{5-n} (n = 1-5)$$

Evidently, this approach is general and can be used also for the introduction of other organic groups. This was demonstrated by the preparation of trifluorovinylxenonium tetrafluoroborate³⁹ (eq 8) and the first organic compound of xenon(IV), *trans*-difluoro(pentafluorophenyl)xenonium(IV) tetrafluoroborate,¹⁰ which will be discussed later.

$$K[CF_{2}=CFBF_{3}]_{(s)} \xrightarrow{BF_{3}/CH_{2}Cl_{2}} CF_{2}=CFBF_{2} \xrightarrow{XeF_{2}/CH_{2}Cl_{2}} -40 \ ^{\circ}C} [CF_{2}=CFXe][BF_{4}] (8)$$

$$85\%$$

A related procedure was used for the preparation of some alkynylxenonium(II) tetrafluoroborates⁴⁰ (eq 9).

$$t\text{-BuC} \equiv \text{CLi} \xrightarrow{\text{BF}_3/\text{CH}_2\text{Cl}_2}_{-100 \,^\circ\text{C}} \text{Li} [t\text{-BuC} \equiv \text{CBF}_3] \xrightarrow{\text{XeF}_2/\text{CH}_2\text{Cl}_2}_{-40 \,^\circ\text{C}} [t\text{-BuC} \equiv \text{CXe}][\text{BF}_4]$$
(9)

- (30) Frohn, H.-J.; Schroer, T. J. Fluorine Chem., accepted for publication.
- (31) Nikolaev, A. V.; Opalovskii, A. A.; Nazarov, A. S.; Tret'yakov, G. V. *Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim.* **1972**, 21–27.
- (32) Frohn, H.-J.; Rossbach, C. Z. Anorg. Allg. Chem. 1993, 619, 1672–1678.
 (33) Frohn, H.-J.; Jakobs, S.; Rossbach, C. Eur. J. Solid State Inorg.
- (34) Naumann, D.; Butler, H.; Gnann, R.; Tyrra, W. *Inorg. Chem.*
- (35) Butler, H.; Naumann, D.; Tyrra, W. Eur. J. Solid State Inorg.
 (35) Butler, H.; Naumann, D.; Tyrra, W. Eur. J. Solid State Inorg.
- (36) Naumann, D.; Tyrra, W.; Pfolk, D. Z. Anorg. Allg. Chem. **1994**,
- (30) Naumann, D., Tyrra, W., Floik, D. Z. Anorg, Allg. Chem. **1934**, 620, 987–992.
- (37) Naumann, D.; Butler, H.; Gnann, R. Z. Anorg. Allg. Chem. **1992**, 618, 74–76.

Stang and Zhdankin assumed that this reaction proceeds via the alkynyltrifluoroborate.40 However, it should be remembered that all other preparations of organoxenonium salts with electrophilic cations proceed under acidic conditions. Therefore, it seems more probable that in the presence of the excess of BF₃ the real substrate might be the corresponding alkynyldifluoroborane. The nature of the key reactive alkynyl element intermediate in the reaction of $RC \equiv CSiMe_3$ (R = Et, Pr, t-Bu, Me₃Si) with XeF_2 in the presence of BF₃·OEt₂ (CH₂Cl₂/-70 to -50 °C)⁴⁰ is not clear (eq 10).

$$RC \equiv CSiMe_{3} + XeF_{2} + BF_{3} \cdot OEt_{2} \xrightarrow[-70 \text{ to } -50 \circ C]{} [RC \equiv CXe][BF_{4}] (10)$$
$$R = Et, Pr, t-Bu, Me_{3}Si$$

The formation of the alkynylxenonium tetrafluoroborates was proven by their ¹²⁹Xe and ¹³C NMR spectra. No ¹²⁹Xe resonance was observed when R was Ph- $C = C.^{40}$ None of the alkynylxenonium salts were isolated.

Arylxenonium(II) Salts by Substitution of Hydrogen in Benzene Derivatives (Xenodeprotonation). Numerous efforts to replace hydrogen in aromatic compounds by an electrophile generated from XeF₂ and a Lewis acid were unsuccessful. Usually they led to the addition of fluorine to the C-C double bond or resulted in fluorodeprotonation.^{41,42} Naumann et al. offered the unique electrophilic Xe^{II} system generated by the reaction of XeF₂ in sequence with CF₃CO₂H and CF₃SO₃H in CCl₃F at -40 °C. The nature of the resulting reagent was not elucidated. The asymmetric compound CF₃CO₂-XeO₃SCF₃ or its protonated form was assumed to be the reactive key intermediate in the substitution of hydrogen in benzene derivatives by the XeO₃SCF₃ group^{43,44} (eqs 11 and 12).

$$\operatorname{XeF}_{2} \xrightarrow{1. \operatorname{CF}_{3}\operatorname{CO}_{2}\operatorname{H}}_{\operatorname{CCl}_{3}\operatorname{F}/-40 \ ^{\circ}\operatorname{C}}} \operatorname{Xe}(\operatorname{O}_{2}\operatorname{CCF}_{3})_{2} \xrightarrow{2. \operatorname{CF}_{3}\operatorname{SO}_{3}\operatorname{H}}_{\operatorname{CCl}_{3}\operatorname{F}/-40 \ ^{\circ}\operatorname{C}}}_{\langle \operatorname{CF}_{3}\operatorname{CO}_{2}\operatorname{XeO}_{3}\operatorname{SCF}_{3} \rangle} (11)$$

 $\langle CF_3CO_2XeO_3SCF_3 \rangle + Ar - H \xrightarrow{CCl_2F}$ $[ArXe][O_3SCF_3] + CF_3CO_2H$ (12) $Ar = 2,4,6-C_6H_2Cl_3, 2,4,6-C_6H_2F_3, 2-F-5-NO_2C_6H_3,$

2-F-5-CF₃C₆H₃, 3,5-(CF₃)₂C₆H₃, 2,4-C₆H₃F₂, $3-NO_2C_6H_4$, $3,5-(NO_2)_2C_6H_3$, C_6H_4Cl and C_6H_4F (isomer mixtures)

The compounds with Ar = $2,4,6-C_6H_2F_3$, 2-F-5-NO₂C₆H₃, 2-F-5-CF₃C₆H₃, and 3,5-(CF₃)₂C₆H₃ were

- (38) Frohn, H.-J.; Franke, H.; Bardin, V. V. Z. Naturforsch. 1999, 54b, 1495-1498
- (39) Frohn, H.-J.; Bardin, V. V. Chem. Commun. 1999, 919-920. (40) Zhdankin, V. V.; Stang, P. J.; Zefirov, N. S. J. Chem. Soc., Chem. Commun. 1992, 578-579.
- (41) Bardin, V. V.; Yagupol'skii, Y. L. Xenon Difluoride. In New
- (4) Bardin, V. V., Tagapolski, T. L. Action Diffuorite. In *Ivew Fluorinating Agents for Organic Synthesis*, German, L. S., Zemskov, S. V., Eds.; Springer: Berlin, 1989; pp 1–34.
 (42) Bardin, V. V.; Shchegoleva, L. N.; Frohn, H.-J. *J. Fluorine Chem.* 1996, *77*, 153–159.
- (43) Naumann, D.; Tyrra, W.; Gnann, R.; Pfolk, D. J. Chem. Soc., Chem. Commun. **1994**, 2651–2653.
- (44) Naumann, D.; Tyrra, W.; Gnann, R.; Pfolk, D.; Gilles, T.; Tebbe, K.-F. Z. Anorg. Allg. Chem. 1997, 623, 1821-1834.

isolated in 10-15% yield, whereas the other compounds were only detected in the reaction mixture by means of their ¹³C, ¹⁹F, and ¹²⁹Xe NMR spectra. No arylxenonium compounds were obtained with benzene, toluene, aniline, phenol or biphenyl or with 1,3,5-(CF₃)₃C₆H₃. The orientation of the xenodeprotonation suggests the electrophilic route of this process. However, the low yields and the nonregiospecificity make the xenodeprotonation inferior as a alternative preparative method to the xenodeborylation approach, despite its scientific interest

Diarylxenon, XeAr₂, and Arylxenonium Fluoride, ArXeF, Derivatives by the Base-Catalyzed Nucleophilic Introduction of the Aryl Group C₆F₅ into the XeF₂ Molecule. In addition to the previously discussed methods of xenodeborylation and xenodeprotonation in acidic media Naumann et al. reported recently an new method of introducing the C_6F_5 group into XeF₂ using basic catalysis. XeF₂ reacts with 2 equiv of $C_6F_5SiMe_3$ after addition of a catalytic amount of $[NMe_4]$ F, forming Xe(C₆F₅)₂ (eq 13). With 1 equiv of the silane C₆F₅SiMe₃, C₆F₅XeF was formed with an admixture of $Xe(C_6F_5)_2^{45}$ (eq 14). In neither case was a yield reported.

$$XeF_{2} + 2C_{6}F_{5}SiMe_{3} \xrightarrow[-60 \text{ to } -40 \degree C]{} Xe(C_{6}F_{5})_{2} + 2Me_{3}SiF (13)$$

$$XeF_{2} + C_{6}F_{5}SiMe_{3} \xrightarrow{(114Me_{4})F_{1}} C_{6}F_{5}XeF + Xe(C_{6}F_{5})_{2} + Me_{3}SiF (14)$$

solvents = C₂H₅CN, CH₃CN, CH₂Cl₂

It should be mentioned that under similar conditions the silane CF₃SiMe₃ gave only C₂F₆ and no trifluoromethylxenon(II) compounds were detected.⁴⁵

The intermediate generation of arylxenon(II) compounds in the reactions of 4-RC₆H₄SiMe₃ with XeF₂ $^{\hat{4}1,46,47}$ as well as in the fluoride-catalyzed reactions of $RC_6F_4SiX_3$ (X = Me, F) ^{42,46,48} was proposed. Later Ramsden showed that 4-R-C₆H₄SiMe₃ forms 4-R-C₆H₄F on reaction with XeF₂ only in the presence of an acidic Pyrex surface but not in FEP (copolymer of tetrafluoroethylene and hexafluoropropylene) vessels.⁴⁹ The Lewis acid catalyzed interaction of XeF₂ with silyl- and germylpentafluorobenzenes $C_6F_5MX_3$ (M = Si, Ge; X = Me, Et, F) resulted in ring-fluorination products.⁵⁰

Covalent Compounds ArXeY from Arylxenon ium(II) Salts. Despite the weak nucleophilicity of the $[AsF_6]^-$ anion, there is a significant cation-anion contact with a distance Xe···F of 2.672(5) Å and a nearly linear C(1)–Xe···F triad (174.2(3)°) in solid $[C_6F_5Xe]$ -[AsF₆].²³ This contact is 23% shorter than the sum of

⁽⁴⁵⁾ Maggiarosa, N.; Naumann, D.; Tyrra, W. Angew. Chem., Int. Ed. 2000, 39, 4588-4591.

⁽⁴⁶⁾ Bardin, V. V.; Stennikova, I. V.; Furin, G. G.; Leshina, T. V.; Yakobson, G. G. *Zh. Obshch. Khim.* **1988**, *58*, 2580–2588; *J. Gen.* Chem. USSR 1988, 58, 2297-2303.

⁽⁴⁷⁾ Lothian, A. P.; Ramsden, C. A. Synlett 1993, 753-755.

⁽⁴⁸⁾ Frohn, H.-J.; Bardin, V. V. J. Organomet. Chem. 1995, 501, 155-159.

⁽⁴⁹⁾ Ramsden, C. A.; Smith, R. G. J. Am. Chem. Soc. 1998, 120, 6842-6843

⁽⁵⁰⁾ Bardin, V. V.; Frohn, H.-J. J. Fluorine Chem. 1993, 60, 141-151.

the van der Waals radii of Xe and F of 3.47 Å.¹⁷ The contact to the weakly nucleophilic $[AsF_6]^-$ anion emphasizes the electrophilic character of the arylxenonium cation. The linear triad C(1)–Xe···F is best described as an asymmetric hypervalent bond with a nearly 2c–2e C(1)–Xe bond and a mainly electrostatic Xe···F interaction. A similar structural pattern was found for [2,6-C₆H₃F₂Xe][BF₄].⁵¹

The description of this structural motif as an asymmetric, angled fluoride bridge between the arylxenonium cation and the Lewis acid AsF₅ may be an alternative one. By emphasizing in this way the Lewis acidic nature of the $[C_6F_5Xe]^+$ cation, it is understandable that the mononuclear C_6F_5XeF molecule can exist as well as the fluoride-bridged dinuclear cation $[(C_6F_5Xe)_2F]^+$. The heterogeneous reaction of $[C_6F_5Xe][AsF_6]$ with an equimolar amount of $[NMe_4]F$ in CH_2Cl_2 leads to $C_6F_5XeF.^{52-54}$ The latter is not available under acidic conditions from the reaction of a $[FXe]^+$ source and a $\langle [C_6F_5]^- \rangle$ substrate. C_6F_5XeF is a covalent compound, which is soluble in CH_2Cl_2 (eq 15).

$$[C_{6}F_{5}Xe][AsF_{6}]_{(s)} + [NMe_{4}]F \xrightarrow{CH_{2}Cl_{2}'-78 \circ C}{[NMe_{4}][AsF_{6}]_{(s)}} C_{6}F_{5}XeF$$
(15)

The nucleophilic xenon-bonded fluorine atom of C_6F_5 -XeF can react with a further $[C_6F_5Xe]^+$ cation to yield $[(C_6F_5Xe)_2F][AsF_6]$. This salt is insoluble in CH_2Cl_2 but soluble in polar CH_3CN^{52-54} (eq 16).

$$C_{6}F_{5}XeF + [C_{6}F_{5}Xe][AsF_{6}] \xrightarrow{-78 \circ C} C_{H_{2}Cl_{2}}$$

$$[(C_{6}F_{5}Xe)_{2}F][AsF_{6}]\downarrow (16)$$

In a similar way, two C_6F_5 -Xe-Cl compounds had been isolated earlier. The first was the covalent compound C_6F_5 XeCl, which is soluble in CH₂Cl₂. The second is a salt containing the dinuclear [(C_6F_5 Xe)₂Cl]⁺ cation.^{55,56} The latter features a nearly symmetrical, bent Xe-Cl-Xe bridge, with Xe(1)-Cl-Xe(2) = 176.0(3)°, Xe(1)-Cl = 2.847(2) Å, and Xe(2)-Cl = 116.96(8) Å (eqs 17 and 18).

$$[C_{6}F_{5}Xe][AsF_{6}]_{(s)} + 4\text{-}ClC_{5}H_{4}N\text{-}HCl \frac{CH_{2}Cl_{2}/-78 \text{ °C}}{-[4\text{-}ClC_{5}H_{4}NH][AsF_{6}]^{\downarrow}} C_{6}F_{5}XeCl (17) \frac{CH_{2}Cl_{2}/-78 \text{ °C}}{85\%}$$

$$2[C_{6}F_{5}Xe][AsF_{6}]_{(s)} + 6Me_{3}SiCl \xrightarrow{CH_{2}Cl_{2}/-78 \ ^{\circ}C} \\ [(C_{6}F_{5}Xe)_{2}Cl][AsF_{6}] \downarrow (18) \\ 91\%$$

(Pentafluorophenyl)xenonium acylates were obtained in aqueous solution by the reaction of $[C_6F_5Xe][AsF_6]$ with cesium acylates. The pentafluorobenzoate,⁵⁷ tetrafluoroterephthalate, and trifluoromethanesulfonate⁵⁸ derivatives were prepared in this manner (eq 19).

$$[C_{6}F_{5}Xe][AsF_{6}] + Cs[O_{2}CC_{6}F_{5}] \xrightarrow[-Cs[AsF_{6}]]{D_{2}O}} C_{6}F_{5}XeO_{2}CC_{6}F_{5}\downarrow (19)$$

$$80\%$$

Alternative routes to arylxenonium triflates involve the reaction of $[ArXe][BF_4]$ salts with Me₃SiOTf ⁵⁹ (eq 20) or the xenodeprotonation reaction of xenon trifluoroacetate triflate with substituted benzene derivatives (see above).^{43,44}

$$[2,6-C_{6}H_{3}F_{2}Xe][BF_{4}] + TfOSiMe_{3} \xrightarrow{CH_{3}CN, CH_{2}Cl_{2}}{20 \circ C, 4 \text{ days}}$$
$$[2,6-C_{6}H_{3}F_{2}Xe][OTf] + Me_{3}SiF + BF_{3} (20)$$

In $[2,6-C_6H_3F_2Xe][OTf]$ there is an asymmetric C-Xe···O triad with a strong Xe···O contact of 2.687(9) Å.⁴⁴

The C–Xe···O triad in (pentafluorophenyl)xenon(II) pentafluorobenzoate becomes significantly more symmetrical and the bond covalent. Consequently, the compound is soluble in CH₂Cl₂. The crystal structure shows the xenon atom linearly (178.1(1)°) bonded to carbon and oxygen with a Xe–O distance of 2.367(3) Å, which is 32% shorter than the sum of the van der Waals radii of Xe and O (3.52 Å¹⁷).

 C_6F_5XeF is a useful starting material for introducing a second organic group into the C_6F_5Xe moiety. The first approach consists of the homogeneous reaction with an organic transfer reagent of weak Lewis acidity such as organocadmium compounds or organotrimethylsilanes. Alternatively, a second aryl group can be introduced under basic conditions (fluoride catalysis;⁴⁵ see above).

 C_6F_5XeF reacts rapidly with $Cd(C_6F_5)_2$ at low temperature with formation of $Xe(C_6F_5)_2^{54,60}$ (eq 21).

$$C_{6}F_{5}XeF + 0.5Cd(C_{6}F_{5})_{2} \frac{CH_{2}Cl_{2}}{-78 \ ^{\circ}C} Xe(C_{6}F_{5})_{2} + 0.5CdF_{2}$$
(21)

 C_6F_5XeCN is formed in the reaction of C_6F_5XeF with $Me_3SiCN^{54,60}$ (eq 22).

$$C_6F_5XeF + Me_3SiCN \xrightarrow{CH_2Cl_2} C_6F_5XeCN + Me_3SiF$$
(22)

Similar to the synthesis of bis(pentafluorophenyl)xenon, $Xe(2,4,6-C_6H_2F_3)_2$ and the asymmetric diarylxenon(II) compound $C_6F_5Xe(2,4,6-C_6H_2F_3)$ were obtained by reaction of 2,4,6- $C_6H_2F_3XeF$ with Cd(2,4,6-

⁽⁵¹⁾ Gilles, T.; Gnann, R.; Naumann, D.; Tebbe, K.-F. Acta Crystallogr. 1994, C50, 411–413.

⁽⁵²⁾ Frohn, H.-J.; Schroer, T.; Theissen, M. New Molecules with Xenon–Carbon Bond. Presented at the 12th European Symposium on Fluorine Chemistry, Berlin, Germany, August-September 1998; Paper B37.

⁽⁵³⁾ Theissen, M.; Frohn, H.-J. Pentafluorophenylxenon Fluoride. Presented at the 8th Deutscher Fluortag, Schmitten, Germany, September 1998; Paper 24.

⁽⁵⁴⁾ Frohn, H.-J.; Theissen, M. Angew. Chem., Int. Ed. 2000, 39, 4591–4593.

⁽⁵⁵⁾ Frohn, H.-J.; Schroer, T. Synthesis, Molecular Structure and Reactivity of the First Compounds Containing Xenon(II)–Chlorine Bonds. Presented at the 15th International Symposium on Fluorine Chemistry, Vancouver, BC, Canada, August 1997; Paper Ba(2) C-4.

⁽⁵⁶⁾ Frohn, H.-J.; Schroer, T.; Henkel, G. Angew. Chem., Int. Ed. 1999, 38, 2554–2556.

⁽⁵⁷⁾ Frohn, H.-J.; Klose, A.; Henkel, G.; Angew. Chem., Int. Ed. Engl. **1993**, *32*, 99–100.

⁽⁵⁸⁾ Frohn, H.-J.; Klose, A. Unpublished results.

⁽⁵⁹⁾ Naumann, D.; Gnann, R.; Padelidakis, V.; Tyrra, W. *J. Fluorine Chem.* **1995**, *72*, 79–82.

⁽⁶⁰⁾ Frohn, H.-J.; Theissen, M. C_6F_5XeF : An Important Key Substrate for the Synthesis of New Xenon(II) Compounds. Presented at the 16th International Symposium on Fluorine Chemistry, Durham, U.K., July 2000; Poster 2P-20.

 $C_6H_2F_3)_2$ and of C_6F_5XeF with $Cd(2,4,6\text{-}C_6H_2F_3)_2,$ respectively. 61

 C_6F_5XeF does not react with $Me_3SiC_6F_5$ alone in CH_2 - Cl_2 (weakly acidic conditions). The composition of the reaction mixture obtained under F^- catalysis in CH_2 - Cl_2 strongly depends on the concentration. In dilute solution the aryl nucleophile generated from $Me_3SiC_6F_5$ attacks the solvent (protodesilylation) but in highly concentrated solutions the desired product, $Xe(C_6F_5)_2$, was obtained.⁶²

III. The First Synthesis of an Arylxenonium(IV) Salt by Substitution of Boron in Organoboranes (Xenodeborylation)

Recently, C–Xe bond formation could be extended to Xe^{IV}. Xenon tetrafluoride is a weaker fluoride donor than XeF₂ and possesses a higher oxidation potential than XeF₂. An additional disadvantage of XeF₄ is its low solubility in aHF,³¹ a solvent which is stable toward oxidation. In the reaction of XeF₄ with B(C₆F₅)₃ in aHF only [C₆F₅Xe]⁺ salts were obtained instead of Xe(IV) salts because of the spontaneous reaction of the electrophilic [C₆F₅XeF₂]⁺ cation with the initially formed nucleophilic [(C₆F₅)_nBF_{4-n}]⁻ anions. With C₆F₅BF₂ in CH₂Cl₂ the reaction was successful¹⁰ (eq 23), whereas

$$XeF_{4} + C_{6}F_{5}BF_{2} \xrightarrow{CH_{2}Cl_{2}} [C_{6}F_{5}XeF_{2}][BF_{4}]$$
(23)

in CH_3CN no substitution of a fluorine atom by an aryl group occurred. Probably, in the basic solvent the acidity of the aryldifluoroborane is not high enough to polarize XeF_4 effectively.

The bright yellow compound $[C_6F_5XeF_2][BF_4]$ is thermally less stable than the analogous Xe^{II} compound $[C_6F_5Xe][BF_4]$ and decomposes above -20 °C.

In addition, recently the formation of the cations $[C_6F_5XeF_2]^+$ and $[C_6F_5Xe]^+$ was detected spectroscopically by Schrobilgen in the reaction of XeF₆ with $B(C_6F_5)_3$ in SO₂ClF. Also formed were oxidized fluoroaromatic compounds.⁶³

IV. Reactivity of Carbon-Xenon Compounds

At the beginning of this section some general information about the reactivity of organoxenon compounds shall be given. The reactivity of organoxenonium(II) and -(IV) salts is determined by the electrophilic character of the cations. In covalent C–Xe compounds with symmetric or asymmetric 3c–4e bonds the high partial positive charge on Xe has a strong influence on the reactivity. Most information about reactivity deals with reactions of organoxenonium(II) salts with nucleophiles.

The reactivity, as well as the stability, of organoxenonium salts [RXe][Y] depends on the nature of the organic group R, the counteranion $[Y]^-$, and, if in solution, on the nature of the solvent.

All known organoxenonium salts have in common that Xe(II) or Xe(IV) is bonded to a carbon atom which is part of a π system. More extended π systems such as

those in aryl groups increase the relative stability of the C–Xe bond. Aryl groups with σ -electron-withdrawing character prevent the transfer of positive charge from Xe to the aryl group. Reduction of the electron acceptor ability of the aryl group increases the electrophilicity of C(1), which will be accompanied by a weakening of the C-Xe bond. Anions of low nucleophilicity are favored for organoxenonium salts. In the case of kinetically labile anions such as fluoroelementate anions $[(C_6F_5)_m EF_{n+1}]^-$, we have to consider additionally the contribution of their solvolysis in basic solvents, which can thereby produce the strongly nucleophilic fluoride anion. The presence of either nucleophilic anions or basic solvents destabilizes the corresponding organoxenonium salt, because the interaction of a nucleophile at Xe(II) weakens the 2c-2e C-Xe bond.

Suitable solvents for ionic [RXe][Y] compounds are polar basic ones such as CH_3CN , CH_3NO_2 , H_2O , and CF_3CH_2OH , which predominantly solvate the cation, or strongly acidic ones such as aHF, CF_3SO_3H or SO_2 , which preferably solvate the anion and result thereby in a comparatively naked cation.

V. Thermal Stability of Organoxenonium Salts and Covalent Compounds ArXeY (Ar = Aryl)

In many cases the data for the thermal stability of organoxenon compounds are only qualitative, especially for thermally very labile species, because the decomposition points depend strongly on the purity of the compounds, on the rate of heating, and on other experimental details. The most reliable information exists for the salt $[C_6F_5Xe][AsF_6]$. The pure salt melts at 102 °C and decomposes slowly above 125 °C (eq 24).

$$[C_6F_5Xe][AsF_6]_{(s)} \xrightarrow{\geq 125 \, ^\circ C} C_6F_6 + AsF_5 + Xe^0 \quad (24)$$

In acetonitrile solution the decomposition already proceeds very slowly even at room temperature and is accelerated on heating to 80 °C, forming C_6F_5H and $C_{12}F_{10}$ (6.7:1 at 20 °C and 12:1 at 80 °C) (eq 25). In

$$[C_{6}F_{5}Xe][AsF_{6}] \xrightarrow[80°C, 4h]{CH_{3}CN} C_{6}F_{5}H + C_{12}F_{10} + Xe^{0}$$
(25)

aqueous solution the stability of the salt $[C_6F_5Xe][AsF_6]$ is significantly lower than in CH_3CN .²³

Presumably, if we neglect the interaction of the electrophilic cation with the fluoride ion, possibly present as a solvolysis product of $[AsF_6]$, the decomposition of the donor-acceptor complex $[C_6F_5Xe\cdots NCMe][AsF_6]$ takes place. Related complexes with substituted pyridines in acetonitrile solution show a remarkable dependence of their thermal stability on the basicity of the nitrogen atom and are less thermally stable than the parent salt $[C_6F_5Xe][AsF_6]^{64}$ (eqs 26 and 27).

$$\begin{split} & [C_{6}F_{5}Xe \cdot NC_{5}H_{3}(CH_{3})_{2}\text{-}2,6][AsF_{6}] \frac{\text{total dec}}{-40 \text{ °C}} \\ & 100\% \ (C_{6}F_{5}H + C_{12}F_{10}) + Xe^{0} \ \ (26) \\ & [C_{6}F_{5}Xe \cdot NC_{5}H_{3}F_{2}\text{-}2,6][AsF_{6}] \frac{\text{total dec}}{20 \text{ °C}} \end{split}$$

$$35\% (C_{6}F_{5}H + C_{12}F_{10}) + Xe^{0} + 65\% C$$
-arylated pyridines (27)

⁽⁶¹⁾ Frohn, H. J. Synthetic Approaches to Organo Xenon Compounds. Presented at the International Chemical Congress of Pacific Basin Societies, Honolulu, HI, December 2000; Paper 1176.

⁽⁶²⁾ Frohn, H. J.; Theissen, M. Unpublished results.

⁽⁶³⁾ Schrobilgen, G. J.; Becher, M. Personal communication.

4756 Organometallics, Vol. 20, No. 23, 2001

In the thermolysis of the solid adducts $[C_6F_5Xe \cdot N-base][AsF_6]$ (N-bases are substituted pyridines) Nand C-pentafluorophenylation of the corresponding pyridines is preferred over formation of C_6F_5H and $C_{12}F_{10}^{64}$ (eq 28).

$$[C_{6}F_{5}Xe \cdot NC_{5}H_{5}][AsF_{6}]_{(s)} \xrightarrow{30 \cdot C} \\ [C_{6}F_{5}-NC_{5}H_{5}][AsF_{6}] (58\%) + C_{6}F_{5}C_{5}H_{4}N (24\%) + \\ (C_{6}F_{5}H + C_{12}F_{10}) (12\%) + Xe^{0} (28)$$

00.00

The covalent Xe^{II} compounds $C_6F_5XeO_2CC_6F_5$,⁵⁷ C_6F_5 -XeCl,⁵⁶ and $C_6F_5XeF^{54}$ in the solid state are thermally less stable than $[C_6F_5Xe][AsF_6]$ and evolve xenon already at ca. 35 °C (fast heating), whereas in solution the decomposition takes place at significantly lower temperatures (eqs 29–31).

$$C_6F_5XeOC(O)C_6F_5 \xrightarrow{\sim 35 \ ^\circ C} C_6F_5OC(O)C_6F_5 + Xe^0$$
(29)

$$C_6F_5XeCl \xrightarrow{\sim 36 \ ^{\circ}C} C_6F_5Cl + Xe^0$$
(30)

$$C_6 F_5 XeF \xrightarrow{\sim 20 \, ^\circ C}_{4 \, h} C_6 F_6 + Xe^0 \tag{31}$$

It is interesting that solid $(C_6F_5Xe)_2Cl][AsF_6]$ shows a thermal stability similar to that of $[C_6F_5Xe][AsF_6]$ and decomposes at 100 °C, yielding Xe and C_6F_5Cl , in addition to C_6F_6 , AsF₅, and $[C_6F_5Xe][AsF_6]$.⁵⁶

VI. Anion Metathesis Reactions of Arylxenonium Fluoroborates

The thermal stability of organoxenonium salts [RXe]-[Y] is strongly influenced by the nucleophilicity of the anion (comparing salts with the same [RXe] cation). This influence can be demonstrated with [ArXe][Ar_nBF_{4-n}] salts. As one goes from n = 3 to n = 0, the thermal stability under the same conditions increases significantly. It should be mentioned that the anions [Ar_n-BF_{4-n}]⁻ have two sites available for electrophilic attack: the carbon atom C(1) of the aryl group and the fluorine atom bonded to boron.

One route to more thermally stable [ArXe][Y] salts uses the conversion of [ArXe][Ar_nBF_{4-n}] salts, which were formed initially in the reaction of Ar₃B with XeF₂ into salts with more weakly nucleophilic anions. This can be achieved, for example, by treatment with fluoride anion acceptors such as AsF₅·CH₃CN^{23,29,65} or AsF_{5(g)}.²³ By this procedure pure arylxenononium(II) hexafluoroarsenates of high thermal stability were obtained (eqs 32-34).

$$(C_{6}F_{5})_{3}B + XeF_{2} \xrightarrow{CH_{2}Cl_{2}} [C_{6}F_{5}Xe][(C_{6}F_{5})_{2}BF_{2}]$$
(32)

$$[C_{6}F_{5}Xe][(C_{6}F_{5})_{2}BF_{2}] \xrightarrow[-40 \text{ to } 20 \text{ °C}]{} \xrightarrow{-40 \text{ to } 20 \text{ °C}} [C_{6}F_{5}Xe][AsF_{6}] + (C_{6}F_{5})_{2}BF (33)$$

$$76\%$$

$$[C_{6}F_{5}Xe][(C_{6}F_{5})_{2}BF_{2}] \xrightarrow[-40 \text{ to } 20 \, ^{\circ}\text{C}]{} \\ [C_{6}F_{5}Xe][AsF_{6}] + (C_{6}F_{5})_{2}BF \cdot CH_{3}CN \quad (34) \\ 78\%$$

VII. Reactions of Organoxenonium(II) Salts with Nucleophiles

Reactions with Halide Anions. According to NMR spectral data, organoxenonium salts exist in highly acidic media such as superacids as separated ions with solvated anions and nearly naked organoxenonium cations. The latter possess a high electrophilicity and high reactivity toward nucleophiles. On the other hand, the reactivity of nucleophiles is diminished in superacidic media. Thus, (pentafluorophenyl)xenonium hexa-fluoroarsenate does not react with KF or [Me₄N]Cl in aHF solution at room temperature over days. The same inertness toward fluoride and chloride anions in aHF is found also for (nonafluorocyclohexen-1-yl)xenonium hexafluoroarsenate.⁶⁶

Alternatively, reactions with bromide and iodide anions occur readily in aHF and lead to the corresponding bromo and iodo derivatives with reductive elimination of Xe^{66-68} (eqs 35–37).

$$[C_6F_5Xe] [AsF_6] + NaBr \xrightarrow[-25 °C]{aHF}$$

$$C_6F_5Br + Xe^0 + Na [AsF_6]$$
 (35)

X = Br, I

In basic solvents such as CH_3CN and C_2H_5CN , fluorine-containing aryl-, cycloalkenyl-, and vinyl-xenonium salts show similar reactivity patterns toward "soft" anionic nucleophiles such as bromide and iodide (eqs 38 and 39).

$$[ArXe][Y] + MX \xrightarrow{CH_3CN} ArX + Xe^0 + MY \quad (38)$$

$$X = I, Y = ArBF_3, Ar = C_6F_5, {}^9 3\text{-}CF_3C_6H_4,$$

$$4\text{-}CF_3C_6H_4, 4\text{-}C_6H_4F; {}^{33,32} X = I, Y = AsF_6,$$

$$Ar = C_6F_5; {}^{69} X = Br, Ar = C_6F_5, Y = ArBF_3, {}^9 AsF_6 {}^{69}$$

⁽⁶⁴⁾ Frohn, H.-J.; Schroer, T.; Henkel, G. Z. Naturforsch. 1995, 50b, 1799–1810.

 $[RXe][Y] + MX \xrightarrow{CH_3CN \text{ or } C_2H_5CN} RX + Xe^0 + MY \quad (39)$ $X = Br, I, R = cyclo-1, 4-C_6F_7, cyclo-C_6F_9,$ $cyclo-2-HC_6F_8, Y = AsF_6;^{70,68} X = I,$ $R = CF_2 = CF, Y = BF_4^{39}$

The reaction of the cycloalkenylxenonium salt [cyclo- C_6F_9Xe][AsF₆] with Cl⁻ leads to 1-H-nonafluorocyclohexene as the major product in addition to 1-chlorononafluorocyclohexene (ca. 4:3).⁶⁶ Under the same conditions, chloropentafluorobenzene and pentafluorobenzene (traces) are obtained from the salt [C₆F₅Xe][AsF₆],⁹ whereas the slow reaction of [2,4,6-C₆H₂F₃Xe][BF₄] with Cl⁻ results in 1,3,5-trifluorobenzene and 2,4,6-trifluorochlorobenzene (4:1).³⁵ The competitive reaction of [C₆F₅Xe][AsF₆] and [cyclo-C₆F₉Xe][AsF₆] with chloride anions in CH₃CN results in the faster conversion of the unsaturated derivative in comparison to the aromatic salt.⁶⁶ (eq 40).

F + (F) × (AsF₆) × (AsF₆) × (AsF₆) (40) F = X + (F) + (F)

The interaction of the salt $[C_6F_5Xe][AsF_6]$ with the "hardest" nucleophile fluoride in acetonitrile proceeds in a more complex way. The treatment of $[C_6F_5Xe][AsF_6]$ with an excess of CsF at room temperature leads to the evolution of xenon and the formation of C_6F_5H and $C_6F_5C_6F_5$ in a 5.6:1 molar ratio (in CH₃CN) or of C_6F_5D and $C_6F_5C_6F_5$ (1.7:1) (in CD₃CN).⁶⁹ No C_6F_6 was detected in either case, which is in contrast to the reported reaction of $[C_6F_5Xe][(C_6F_5)_3BF]$ with KF in CH₃CN.⁸

However, in reactions with $[Me_4N][HF_2]$ or anhydrous $[Me_4N]F$ in CH_3CN (the latter is not really stable at room temperature) hexafluorobenzene, pentafluorobenzene, and decafluorobiphenyl are obtained in addition to HF^{69} (Scheme 2).

It is likely that the reaction of $[C_6F_5Xe][AsF_6]$ with CsF in acetonitrile proceeds via the $[(C_6F_5Xe)_2F]^+$ cation (see section II). Its decomposition at -20 °C is accompanied by the chemically induced dynamic nuclear polarization (CIDNP) of the ¹⁹F NMR signals of C_6F_5H (C_6F_5D) and $C_{12}F_{10}$, indicating the intermediate generation of pentafluorophenyl radicals. The generation of the latter species is supported by the formation of a mixture of $C_6F_5C_6H_4F$ isomers when the reaction was performed in the presence of fluorobenzene (see later).⁶⁹

A peculiar reaction route was found in the case of (perfluorocycloalken-1-yl)xenonium hexafluoroarsenates with the fluoride anion in CH₃CN.^{71,66} Treatment of the salt [cyclo-1,4-C₆F₇Xe][AsF₆] with sodium fluoride results in a contraction of the ring, and perfluoro-3-methylenecyclopentene is formed. This conversion can be rationalized in terms of a preferential attack of the "hard" anionic nucleophile fluoride at the "hard" electrophilic C(2) site, rather than at the "softer" electrophilic xenon(II) site⁷¹ (eq 41).

The different behavior of the "hard" chloride anion and the "hardest" fluoride anion in aHF compared with CH_3CN toward electrophilic organoxenonium compounds arises from the higher degree of protonation of F^- in aHF, which diminishes sufficiently the nucleophilicity of F^- , and, on the other hand, from the lower reducing potential of HCl compared to Cl^- (Scheme 3).

The reaction of (nonafluorocyclohexen-1-yl)xenonium hexafluoroarsenate as well as of the arylxenonium salt

⁽⁶⁵⁾ Frohn, H.-J.; Klose, A.; Henkel, G. *GIT Fachz. Lab.* **1993**, *37*, 752–755.

⁽⁶⁶⁾ Frohn, H.-J.; Bardin, V. V. Z. Anorg. Allg. Chem. **1996**, 622, 2031–2034.

⁽⁶⁷⁾ Frohn, H.-J.; Bardin, V. V. Z. Naturforsch. 1996, 51b, 1011–1014.
(68) Frohn, H.-J.; Bardin, V. V. Z. Naturforsch. 1998, 53b, 562–

⁽⁰⁸⁾ Fronn, H.-J.; Bardin, V. V. Z. *Naturiorscn.* **1998**, *530*, 562– 564.

⁽⁶⁹⁾ Frohn, H.-J.; Klose, A.; Bardin, V. V.; Kruppa, A. J.; Leshina, T. V. *J. Fluorine Chem.* **1995**, *70*, 147–154.

⁽⁷⁰⁾ Frohn, H.-J.; Bardin, V. V. J. Chem. Soc., Chem. Commun. 1993, 1072-1074.

Scheme 4
$[RXe] [AsF_6] + CH_3CN \longrightarrow [RXe_{N}NCCH_3] [AsF_6]$
$[RXe_{W}NCCH_3] [AsF_6] + X^- \longrightarrow$
<rxe-x> + CH₃CN + [AsF₆]⁻</rxe-x>
reaction path 1 (X = Br ⁻ , I ⁻):
<rxe-x>> <rxe x="">></rxe></rxe-x>
$R, Xe^0, X] \longrightarrow R-X + Xe^0$
path 2 (X = F⁻, CI⁻):
<rxe-x>> <r xex=""></r></rxe-x>
X-Xe \longrightarrow X + Xe ⁰
$R + CH_3CN \longrightarrow R-H + CH_2CN$

 $[C_6F_5Xe][AsF_6]$ with chloride, bromide, and iodide anions in the basic CH₃CN proceeds via the displacement of coordinated CH₃CN in $[R-Xe\cdots NCCH_3]^+$ by the anionic nucleophile.

As a result of such displacement, the intermediate [RXe-Hal] (R = C₆F₅, cyclo-C₆F₉) is formed. The further fate of [RXe-Hal] depends on the nature of Hal. For Hal = Br, I a single electron transfer (Scheme 4, path 1) with elimination of Xe⁰ from RXe[•] was proposed, followed by the in-cage recombination of R[•] and Hal[•] to RHal. When the halide anion is more nucleophilic and more stable toward oxidation (Hal = Cl, F), the carbonxenon bond in the intermediate RXe-Hal (asymmetric hypervalent bond) will be elongated and cleaved preferably (Scheme 4, path 2). The escaping radical R. abstracts hydrogen from solvent molecules. In the case of the chloride anion both paths seem to compete. This consideration is in agreement with data obtained from the interaction of (pentafluorophenyl)xenonium hexafluoroarsenate with pyridine derivatives of different nucleophilicity⁶⁴ and with the generation of the FXe radical in CH₃CN.⁷²

Reactions with Chalcogen Nucleophiles. The salt $[C_6F_5Xe][AsF_6]$ is soluble in water and decomposes slowly in aqueous solution at room temperature over 12 h.²³ (Polyfluorophenyl)xenonium salts react with aqueous acetonitrile formally by replacement of xenon by hydrogen (eq 42).

$$[ArXe]Y + H_2O \xrightarrow{CH_3CN} ArH + Xe^0 + Y^- + \dots (42)$$

$$Y = BF_4, Ar = 2-C_6H_4F, 4-C_6H_4F, 2,6-C_6H_3F_2,^{34}$$

$$2,4,6-C_6H_2F_3,^{35}Y = OTf, Ar = 2,6-C_6H_3F_2,^{59}$$

$$Y = (C_6F_5)_3BF^8 \text{ or } C_6F_5BF_3,^9 Ar = C_6F_5$$

These reactions may not all proceed by the same route, because the list of examples contains both thermally unstable as well as thermally stable salts. Additionally, the formation of F^- or $[HF_2]^-$ in the hydrol-

ysis of the $[(C_6F_5)_nBF_{4-n}]$ anions cannot be excluded. It is known that different products result in the reaction of $[C_6F_5Xe][AsF_6]$ with F^- or $[HF_2]^-$ anions in CH₃CN. The consumption of $[C_6F_5Xe][AsF_6]$ in CD₃CN at 80 °C is accelerated and is complete in 1 h in the presence of H₂O (1 equiv), forming C₆F₅D (main product) and (C₆F₅)₂. A similar acceleration was found in the presence of CH₃OH (1 equiv) at room temperature, but instead of C₆F₅D, pentafluorobenzene (C₆F₅H) was the main product.⁵⁸ In the presence of C₆F₅OH in CD₃CN the salt [C₆F₅Xe][AsF₆] decomposes rapidly at ≥ -20 °C and more than 10 pentafluorophenyl derivatives are formed, including C₆F₅D, (C₆F₅)₂, and C₆F₅OC₆F₅. The last ether becomes the main product in neat H₂O at 0 °C.⁵⁸

 $[C_6F_5Xe][AsF_6]$ reacts spontaneously with C_6F_5SH as well as with $[NMe_4][C_6F_5S]$ in CD₃CN even at -40 °C and forms $(C_6F_5)_2S$, $(C_6F_5S)_2$, and C_6F_5H . A CIDNP effect is observed in the produced C₆F₅H when the reaction is monitored by ¹⁹F NMR spectroscopy. The nucleophilicity of the sulfur atom in the disulfide $(C_6F_5S)_2$ is lower than that in C_6F_5SH or in $[C_6F_5S]^-$. Thus, the reaction of $[C_6F_5Xe][AsF_6]$ with $(C_6F_5S)_2$ proceeds in CH₃CN only at 80 °C and is complete within 1 h, yielding (C₆F₅)₂S (main product) and C₆F₅H (minor product). The more nucleophilic disulfide (NCS)₂ reacts already at -40 °C, spontaneously forming C₆F₅SCN, C_6F_5H , and $(C_6F_5)_2S$. The last species is not a product due to C₆F₅SCN attack on [C₆F₅Xe][AsF₆] because neither C_6F_5SCN nor $(C_6F_5)_2S$ react with the $[C_6F_5Xe]^+$ cation in CH₃CN at 80 °C. The arylxenonium salt is converted only to C₆F₅H and (C₆F₅)₂.⁵⁸

Reactions with Pnictide Nucleophiles. Adduct formation between the $[C_6F_5Xe]^+$ cation and neutral N-bases was investigated in detail. The molecular structure of the salt $[C_6F_5Xe\cdots NCCH_3][(C_6F_5)_2BF_2]$ shows a nearly linear asymmetric hypervalent triad $C-Xe\cdots N$ with a $C-Xe\cdots N$ angle of $174.5(3)^\circ$ and distances C-Xe = 2.092(8) Å and $Xe\cdots N = 2.681(8)$ Å. These can be regarded in a borderline description as a weak 2c-2e C-Xe bond and a strong ion-dipole $Xe\cdots N$ interaction.²⁹

Pyridines react with solutions of $[C_6F_5Xe][AsF_6]$ in CH₃CN and H₂O or with its dichloromethane suspension to form the corresponding adducts⁶⁴ (eq 43).

$$[C_{6}F_{5}Xe][AsF_{6}] + NC_{5}H_{5-n}R_{n} \rightarrow [C_{6}F_{5}Xe \cdot NC_{5}H_{5-n}R_{n}][AsF_{6}] (43)$$

$$R_{n} = H, 2-F, 3-F, 2, 6-F_{2}, 4-CN, 4-CH_{3},$$

$$2, 6-(CH_{3})_{2}, 2, 6-(t-Bu)_{2}$$

The X-ray structural analysis of the $[C_6F_5Xe\cdots 2, 6-C_5H_3F_2N][AsF_6]$ salt shows a linear C–Xe···N arrangement and distances C–Xe = 2.087(5) Å and Xe···N = 2.694(5) Å. The ¹H, ¹⁹F, and ¹²⁹Xe NMR spectra of the adduct give evidence for a significant charge transfer from nitrogen to xenon, and there is a good correlation between the chemical shifts δ (F-4, C₆F₅) and the p*K*_a values of the pyridine bases.⁶⁴

A triphenyl(alkynyl)phosphonium tetrafluoroborate was obtained by the electrophilic alkynylation of triphenylphosphine⁴⁰ (eq 44).

⁽⁷¹⁾ Frohn, H.-J.; Bardin, V. V. Mendeleev Commun. 1995, 114-115.

⁽⁷²⁾ Bucher, G.; Scaiono, J. C. J. Am. Chem. Soc. **1994**, 116, 10076–10079.

$$[t-BuC \equiv CXe][BF_4] + PPh_3 \xrightarrow[-78°C]{} \frac{CH_2Cl_2}{-78°C}$$
$$[t-BuC \equiv CPPh_3][BF_4] (44)$$
$$70-80\%$$

The less electron-rich phosphine $P(C_6F_5)_3$ is arylated by an electrophilic route using $[C_6F_5Xe][AsF_6]$ in CH₃-CN solution or CH₂Cl₂ suspension (eqs 45 and 46).

$$[C_{6}F_{5}Xe][AsF_{6}] + P(C_{6}F_{5})_{3} \xrightarrow[80 \ °C/40 \text{ min}]{} P(C_{6}F_{5})_{4}][AsF_{6}] + Xe^{0} + \dots (45)$$

$$[C_{6}F_{5}Xe][AsF_{6}]_{(s)} + P(C_{6}F_{5})_{3} \xrightarrow{CH_{2}CI_{2}}_{\text{reflux/2.5 h}} [P(C_{6}F_{5})_{4}][AsF_{6}]_{(s)} + Xe^{0} + \dots (46)$$

Such quaternization of $As(C_6F_5)_3$ by $[C_6F_5Xe][AsF_6]$ to give $[As(C_6F_5)_4][AsF_6]$ was not detected in refluxing CH₃CN or in CH₂Cl₂.⁵⁸

Reactions with CH Acids and Organoelement and Aromatic Compounds. The reactions of organoxenonium salts with negatively charged nucleophiles and heteroatomic neutral n-electron donors as discussed before result primarily in formation of donor adducts at the xenon atom and/or the formal transfer of the organic cation to the nucleophile. Formal similarity is found in reactions of $[C_6F_5Xe][(C_6F_5)_2BF_2]$ with some CH acids in which the pentafluorophenyl group is added to the deprotonated anionic species with elimination of Xe^{0} ³³ (eqs 47 and 48).

$$[C_{6}F_{5}Xe][(C_{6}F_{5})_{2}BF_{2}] + PhCH_{2}CN \xrightarrow{CH_{3}CN} PhCH(C_{6}F_{5})CN + PhC(C_{6}F_{5})_{2}CN + ... (47)$$

$$[C_6F_5Xe][(C_6F_5)_2BF_2] + Ph_3CH \rightarrow Ph_3C(C_6F_5) + \dots$$
(48)

The organoelement compounds $Cd(C_6F_5)_2$ and $B(C_6F_5)_3$ have in common a nucleophilic ipso-C atom, but they react with $[C_6F_5Xe][AsF_6]$ by different routes, due to their different Lewis acidities. In refluxing CD_2Cl_2 solution $Cd(C_6F_5)_2$ reacts by two different paths. First, nucleophilic attack of the C_6F_5 group on the electrophilic $[C_6F_5Xe]^+$ cation results in formation of C_6F_5D , $(C_6F_5)_2$, and Xe^0 . Second, the C_6F_5 group adds to the polarized

$$2C_{6}F_{5}Xe - FAsF_{5} + Cd(C_{6}F_{5})_{2} \rightarrow 2C_{6}F_{5}AsF_{4} + 2\langle C_{6}F_{5}XeF \rangle + CdF_{2} \downarrow (49)$$

 $[AsF_6]^-$ anion in $[C_6F_5Xe][AsF_6]$ (eq 49), forming pentavalent arsoranes, $(C_6F_5)_nAsF_{5-n}$ (n = 2, 3) (eq 50).

$$C_6F_5AsF_4 + Cd(C_6F_5)_2 \rightarrow (C_6F_5)_3AsF_2 + CdF_2 \downarrow (50)$$

 $[C_6F_5Xe][AsF_6]$ reacts with the Lewis acid $B(C_6F_5)_3$ in CD_2Cl_2 at reflux to give C_6F_5D , $C_6F_5BF_2$, $(C_6F_5)_2$, $(C_6F_5)_2BF$, and AsF_3 (reduction product of AsF_5). The result can be explained by the competition of the Lewis acids AsF_5 and $B(C_6F_5)_3$ for the fluoride anion attached to the $[C_6F_5Xe]^+$ cation (eq 51). In a subsequent step,

$$C_{6}F_{5}Xe - FAsF_{5} + B(C_{6}F_{5})_{3} - C_{6}F_{5}Xe - FB(C_{6}F_{5})_{3} + AsF_{5}^{\dagger} (51)$$

the electrophilic arylxenonium cation can abstract C_6F_5 groups from the fluoroborate anion (eqs 52 and 53). The

$$[C_{6}F_{5}Xe][(C_{6}F_{5})_{3}BF] \xrightarrow{\Delta} \langle C_{6}F_{5}XeC_{6}F_{5} \rangle + (C_{6}F_{5})_{2}BF$$
(52)
$$\langle C_{6}F_{5}XeC_{6}F_{5} \rangle \rightarrow 2[C_{6}F_{5}]^{\bullet} \xrightarrow{deuterated solvent} C_{6}F_{5}D + (C_{6}F_{5})_{2}$$
(53)

fluoroborane (C₆F₅)₂BF reacts like B(C₆F₅)₃.

Aromatic compounds C_6H_5X also undergo pentafluorophenylation in reactions with $[C_6F_5Xe][Y]$ to give 2,3,4,5,6-pentafluorobiphenyls $C_6F_5C_6H_4X$.^{33,73} The reaction rates diminish in the series $X = CH_3 > F > CF_3 \approx$ $CN > NO_2$, which does not contradict the electrophilic nature of the process. However, detailed investigation of the isomer distribution in the $C_6F_5C_6H_4X$ products shows unambiguously the radical character of the pentafluorophenylation reaction⁷³ (eq 54).

$$[C_6F_5Xe][AsF_6] + C_6H_5X \xrightarrow{CH_3CN} C_6F_5C_6H_4X + Xe^0 + [CH_3CNH][AsF_6] (54)$$
$$X = CH_3, F, CF_3, CN, NO_2$$

It is noteworthy that these reactions are accelerated by the fluoride anion. For instance, the total conversion of the salt $[C_6F_5Xe][AsF_6]$ to $C_6F_5C_6H_4F$ is achieved within 14 h at room temperature, while the CsFcatalyzed process is complete within a few minutes.⁶⁹

Pentafluorobenzenes C_6F_5X (X = F, H, CN, SiMe₃) as well as C₆F₅I are not reactive under these conditions.^{9,73} The reported formation of the iodonium salt $[(C_6F_5)_2I][Y]^$ in the reaction of $[C_6F_5Xe][Y]$ (Y = $(C_6F_5)_3BF$) with $C_6F_5I^8$ may be explained by the presence of the anion Y⁻ which can act as a F⁻ donor or via the formation of $C_6F_5IF_2$ from C_6F_5I and residual XeF₂ followed by interaction with (C₆F₅)₃B.⁷³ Moreover, the reaction of the salt $[C_6F_5Xe][AsF_6]$ with C_6H_5I gives C_6F_5I (major product) in addition to C₆F₅C₆H₄I, C₆F₅H, and C₆F₅C₆H₅.⁷³ A similar reaction mixture is obtained by the radical pentafluorophenylation of iodobenzene using $C_6F_5NH_2$ and $C_5H_{11}ONO$. The predominant formation of iodopentafluorobenzene here may be rationalized in terms of attack of the electrophilic C₆F₅ radical on C₆H₅I with subsequent decomposition of the unstable diaryliodonium radical $[C_6F_5(C_6H_5)I]$ with $[C_6H_5]$ elimination (cf. ref 74). C_6F_5I is favored over C_6H_5I by the stronger bond of iodine to the C_6F_5 group because of the additional high electrostatic bonding component.⁷⁵

Perfluorocycloalkenylxenonium salts react with aromatic compounds such as arylxenonium salts⁷⁰ (eq 55).

Reactions of the Molten Salt $[C_6F_5Xe][AsF_6]$ with **Nucleophiles.** The salt $[C_6F_5Xe][AsF_6]$ is one of the

most thermally stable organoxenon compounds. It melts at 102 °C, forming a viscous liquid which decomposes slowly above 125 °C with an electrophilic transfer of the C_6F_5 group from xenon to one of the fluorine atoms of the counteranion²³ (eq 56).

$$[C_{6}F_{5}Xe][AsF_{6}] \xrightarrow[125-180°C]{} C_{6}F_{6} + AsF_{5} + Xe^{0}$$
(56)

The thermal stability to 125 °C and the slow decomposition of the melt until 180 °C can be used for electrophilic pentafluorophenylation reactions of less nucleophilic organoelement compounds. For instance, the reactions of $[C_6F_5Xe][AsF_6]$ with $(C_6F_5)_3P$, $(C_6F_5)_3$ -As, and $(C_6F_5)_2S$ in the melt result in the formation of the corresponding phosphonium, arsonium, and sulfonium salts in good yield^{58,65,76} (eqs 57–59).

$$[C_{6}F_{5}Xe][AsF_{6}] + (C_{6}F_{5})_{3}P \xrightarrow[1.5\ h]{1.5\ h} [(C_{6}F_{5})_{4}P][AsF_{6}] + Xe^{0} (57)$$

$$41\%$$

$$\begin{split} & [C_{6}F_{5}Xe][AsF_{6}] + (C_{6}F_{5})_{3}As \xrightarrow{150 \text{ C}} \\ & [(C_{6}F_{5})_{4}As][AsF_{6}] + [(C_{6}F_{5})_{3}AsF][AsF_{6}] + \\ & (C_{6}F_{5})_{3}AsF_{2} + AsF_{3} + Xe^{0} (58) \end{split}$$

150.00

$$[C_{6}F_{5}Xe][AsF_{6}] + (C_{6}F_{5})_{2}S \xrightarrow{140 \circ C} \\ [(C_{6}F_{5})_{3}S][AsF_{6}] + Xe^{0} (59) \\ 47\%$$

In all cases C_6F_6 was found among the products. However, heating $[C_6F_5Xe][AsF_6]$ with $(C_6F_5)_3Sb$ or $(C_6F_5)_3Bi$ did not effect the electrophilic arylation of Sb^{III} or Bi^{III}. The main products were $(C_6F_5)_nAsF_{5-n}$ (n = 2, 3), which probably arise from aryl-fluorine redistribution between $[AsF_6]^-$ and tris(pentafluorophenyl)antimony or -bismuth at elevated temperature (see for comparison the reaction of $[C_6F_5Xe][AsF_6]$ with B(C_6F_5)₃).

Bromo- and iodopentafluorobenzenes underwent electrophilic pentafluorophenylation in the molten salt $[C_6F_5Xe][AsF_6]^{76}$ (eq 60).

$$[C_{6}F_{5}Xe][AsF_{6}] + C_{6}F_{5}X \xrightarrow{140 \text{ °C}} [(C_{6}F_{5})_{2}X][AsF_{6}] + Xe^{0} (60)$$
$$X = Br, I$$

Electrochemical Reduction of Arylxenonium(II) Salts. Although the mechanisms of reactions of arylxenonium salts with π - or n-electron donors have not been investigated in detail, many processes can be described in terms of the reduction–oxidation terminology. To determine the oxidation ability of arylxenonium salts, their electrochemical reduction in acetonitrile solution was studied using cyclic voltammetry.

The cyclic voltammograms of $[C_6F_5Xe][Y]$ (Y = BF₄, AsF₆) were measured in CH₃CN on a glassy-carbon electrode and on a platinum-disk electrode. They showed

only one reduction peak, which reflects the irreversible electrochemical reduction of the arylxenonium cation to the arylxenonium radical. The latter then undergoes rapid elimination of xenon, generating the pentafluorophenyl radical. As a result, pentafluorobenzene and decafluorobiphenyl are the observed products⁷⁷ (eq 61).

$$[C_{6}F_{5}Xe]^{+} \xrightarrow{+e^{-}} \langle [C_{6}F_{5}Xe]^{\bullet} \rangle \xrightarrow{-Xe^{0}} \langle C_{6}F_{5}. \rangle \xrightarrow{CH_{3}CN} C_{6}F_{5}H + C_{12}F_{10}$$
(61)

The reduction potentials of both (pentafluorophenyl)xenonium tetrafluoroborate and hexafluoroarsenate are equal to +0.45 V on a glassy-carbon electrode or +0.20V on a platinum-disk electrode.

For the partially fluorinated salts $[2,4,6-C_6H_2F_3Xe]$ -[BF₄] and $[2,6-C_6H_3F_2Xe]$ [BF₄] substantially lower potentials (Pt-disk electrode, -1.13 and -0.87 V, respectively) were measured.⁷⁸ However, the values of $[C_6H_{4-n^{-1}}R_nXe]$ [Y] salts do not reflect the real redox properties of these salts, as also is the case for the salts $[2-C_6H_4-FXe]$ [BF₄], [4-C₆H₄FXe][BF₄], and [4-C₆H₄ClXe][BF₄].⁷⁸ The early deposition of a polyphenylene film on the surface of the cathode as a result of a radical oligomerization was assumed to be responsible for the measured low potential values⁷⁷ (eq 62).

$$[C_{6}H_{5-n}Hal_{n}Xe]^{+} \xrightarrow{+e^{-}} [C_{6}H_{5-n}Hal_{n}]^{\bullet} \xrightarrow{[C_{6}H_{5-n}Hal_{n}Xe]^{+}} [C_{6}H_{5-n}Hal_{n}-C_{6}H_{5-n}Hal_{n}Xe]^{\bullet+} \xrightarrow{} [C_{6}H_{5-n}Hal_{n}-C_{6}H_{4-n}Hal_{n}]^{\bullet} \rightarrow \rightarrow \rightarrow polyphenylenes -[C_{6}H_{4-n}Hal_{n}]_{m}- (62)$$

VIII. Reactions of Organoxenonium(II) Salts with Electrophiles

Polyfluoroaryl groups in arylxenonium cations are resistant toward most electrophiles. The electronwithdrawing effect of the fluorine substituents and especially the influence of the positively charged xenon atom are responsible for this behavior. No reactions were detected between $[C_6F_5Xe][AsF_6]$ and the superacids aHF, FSO₃H, CF₃SO₃H (at room temperature, during the course of some years), (Cl₂ + SbF₅/HSO₃F) (-35 °C, 1 h), and $[NO_2][BF_4]$ in FSO₃H (90 °C, 36 h) and between $[2,3,4,5-C_6HF_4Xe][BF_4]$ and Br₂ (excess) in CH₃CN (room temperature, 22 h) or 100% HNO₃-aHF (room temperature, 12 h).⁷⁹

However, treatment of the salt $[C_6F_5Xe][AsF_6]$ with XeF₂ in aHF results in xenon evolution and formation of (perfluoro-1,4-cyclohexadien-1-yl)xenonium hexa-fluoroarsenate. Further fluorination leads to (perfluorocyclohexen-1-yl)xenonium hexafluoroarsenate in high yield⁷⁰ (eq 63).

Similar ring fluorination reactions take place in the case of the $[2,3,4,5-C_6HF_4Xe][Y]$ salts (Y = AsF₆, BF₄),

(79) Frohn, H.-J.; Bardin, V. V. Unpublished results.

⁽⁷³⁾ Frohn, H.-J.; Klose, A.; Bardin, V. V. J. Fluorine Chem. 1993, 64, 201–215.

 ⁽⁷⁴⁾ Beringer, F. M.; Falk, R. A. J. Chem. Soc. 1964, 4442–4451.
 (75) Bailly, F.; Barthen, P.; Frohn, H.-J.; Köckerling, M. Z. Anorg.
 Allg. Chem. 2000, 626, 2419–2427.

⁽⁷⁶⁾ Frohn, H.-J.; Klose, A.; Henkel, G. Thermally Stable Arylxenon(II) Compounds: The Salt $[C_6F_5Xe][AsF_6]$ and the Molecule $C_6F_5XeO_2C_6F_5$. Presented at the 11th Winter Fluorine Conference, St. Petersburg, FL, January 1993; Paper 58.

⁽⁷⁷⁾ Datsenko, S.; Ignat'ev, N.; Barthen, P.; Frohn, H.-J.; Scholten, T.; Schroer, T.; Welting, D. Z. Anorg. Allg. Chem. **1998**, 624, 1669– 1673.

⁽⁷⁸⁾ Naumann, D.; Gnann, R.; Ignat'ev, N.; Datsenko, S. Z. Anorg. Allg. Chem. **1995**, 621, 851–853.

but this reaction is additionally accompanied by the partial replacement of a hydrogen atom by fluorine⁶⁸ (Scheme 5). It is noteworthy that under similar conditions the tetrafluorobenzenes C_6HF_4X (X = H, F, Br, CF₃, NO₂) also undergo both reactions, ring fluorination as well as fluorodeprotonation.⁴²

When the salt $[C_6F_5Xe][AsF_6]$ reacts with XeF₂ in HF which contains 1–2 equiv of H₂O, new types of oxygenation reactions are encountered. (Pentafluoro-1,4-cyclohexadien-3-on-1-yl)xenonium hexafluoroarsenate is the initially isolated product. In an excess of XeF₂ and H₂O the latter salt undergoes epoxidation⁶⁷ (eq 64).

As the reactive key intermediate, [HOXeF \cdot *n*HF] or a related electrophilic species was assumed. Similar electrophilic oxygenation reactions proceed with the dienylxenonium salt [cyclo-C₆F₇][AsF₆]⁶⁷ (eq 65) as well

as with the polyfluoroarenes C_6F_5R (R = F, H, CF₃, NMe₃⁺, OCH₂CF₃, etc.)⁸⁰ and demonstrate the generality of this process. It is noteworthy that the CF=CXe⁺ moiety in cyclohexenyl derivatives in all cases is not attacked.

IX. [C₆F₅XeF₂] [BF₄], a Potential Electrophilic Fluorinating Agent

High fluorinating ability is characteristic of the salt $[C_6F_5XeF_2][BF_4]$. The reactions with iodopentafluorobenzene or with $P(C_6F_5)_3$ result in the oxidative fluorination of the heteroatom with formation of the salt $[C_6F_5Xe][BF_4]$ as the other product (eqs 66 and 67). This

$$[C_{6}F_{5}XeF_{2}][BF_{4}] + C_{6}F_{5}I \xrightarrow{CH_{3}CN} C_{6}F_{5}IF_{2} + [C_{6}F_{5}Xe][BF_{4}] (66)$$

$$[C_{6}F_{5}XeF_{2}][BF_{4}] + (C_{6}F_{5})_{3}P \frac{CH_{3}CN}{-40 \ ^{\circ}C} \\ (C_{6}F_{5})_{3}PF_{2} + [C_{6}F_{5}Xe][BF_{4}] \ (67)$$

means that in the competition between the fluorine

 $Y = AsF_6$, BF_4

atom and the pentafluorophenyl group for the formal addition to the electron pair of I or P only the addition of fluorine is observed.¹⁰

X. Reactions of the Covalent Xenon(II) Compounds R₂Xe, RXeR', and RXeHal

These organoxenon derivatives were synthesized only a short while ago. Consequently, only few examples of their reactivity have been studied to date. Similar to the fluorine atoms in XeF₂, both organic groups in $(C_6F_5)_2$ Xe carry a high negative charge which is concentrated on C(1). However, only one C–Xe bond is cleaved by the action of aHF (eq 68) because in the initially formed cation $[C_6F_5Xe]^+$ the negative charge on C(1) is strongly diminished.⁵⁴

$$(C_6F_5)_2Xe + nHF \xrightarrow{-40 \,^\circ C} C_6F_5H + [C_6F_5Xe][F(HF)_{n-1}]$$
(68)

The carbon-xenon bond in $(C_6F_5)_2Xe$ with bond order 0.5 is weaker than that in the cation $[C_6F_5Xe]^+$ (bond order 1). In CH₃CN or CH₂Cl₂ solution total decomposition takes place within 24 or 9 h, respectively. In CH₃-CN $(C_6F_5)_2$ is reported as the main product in addition to C_6F_5H ,⁴⁵ whereas in CH₂Cl₂ a 10:1 ratio of C_6F_5H to $(C_6F_5)_2$ was found.⁵⁴ Reactions of $(C_6F_5)_2Xe$ with mercury⁴⁵ and with iodine⁵⁴ proceed formally with addition of C_6F_5 radicals to Hg or I (eqs 69 and 70).

$$(C_{6}F_{5})_{2}Xe + Hg \xrightarrow{CH_{3}CN} (C_{6}F_{5})_{2}Hg + Xe$$
 (69)

$$(C_6F_5)_2Xe + I_2 \xrightarrow{CH_2Cl_2}{-78\,^{\circ}C} 2C_6F_5I + Xe$$
 (70)

The solution of C_6F_5XeCN in dichloromethane is less stable than that of $(C_6F_5)_2Xe$. At -40 °C total decomposition proceeds within 2 h, forming C_6F_5CN and C_6F_5H (4:1) as fluoroaromatic products. Reactions of C_6F_5XeCN with aHF and I_2 give the fluoroaromatic products in the indicated ratio⁵⁴ (eqs 71 and 72).

$$C_{6}F_{5}XeCN + nHF \rightarrow [C_{6}F_{5}Xe][F(HF)_{n-1}] + C_{6}F_{5}H + C_{6}F_{5}CN \quad (71)$$

$$4 \qquad 1 \qquad 3$$

$$C_{6}F_{5}XeCN + I_{2} \xrightarrow{CH_{2}Cl_{2}} \\ C_{6}F_{5}I + C_{6}F_{5}H + C_{6}F_{5}CN + Xe \quad (72)$$

$$5 \qquad 3 \qquad 1$$

A remarkable decomposition of C_6F_5XeF in CH_2Cl_2 proceeds above -30 °C. C_6F_5H and traces of C_6F_5Cl are formed.⁵⁴ The higher thermodynamic stability of $[C_6F_5-$

⁽⁸⁰⁾ Frohn, H.-J.; Bardin, V. V. Z. Naturforsch. 1996, 51b, 1015-1021.

Xe][Y] salts compared to C_6F_5XeF becomes obvious in the reaction of the covalent C_6F_5XeF with Lewis acids such as $Me_3SiOS(O)_2CF_3$,⁴⁵ $C_6F_5BF_2$, and SiF_4^{54} (eqs 73–75).

$$C_6F_5XeF + Me_3SiOS(O)_2CF_3 \rightarrow [C_6F_5Xe][O_3SCF_3]$$
(73)

$$C_6F_5XeF + C_6F_5BF_2 \rightarrow [C_6F_5Xe][C_6F_5BF_3]$$
(74)

$$C_6F_5XeF + SiF_4 \rightarrow [C_6F_5Xe][SiF_5]$$
(75)

XI. Conclusions and Prospects

At the present time the following types of organoxenon compounds are known: the mononuclear xenonium(II) salts $[RXe]^+[Y]^-$ (R = aryl, polyfluoroalkenyl, alkynyl), the binuclear xenonium(II) salts $[(C_6F_5Xe)_2Z]^+$ - $[AsF_6]^-$ (Z = F, Cl), the arylxenonium(IV) salt $[C_6F_5-$ XeF₂]⁺[BF₄]⁻, the covalent xenon(II) compounds C₆F₅-XeZ (Z = F, Cl, CN, OC(O)C₆F₅), the symmetric diorganoxenon(II) compounds R₂Xe (R = C₆F₅, 2,4,6-C₆H₂F₃), and the unsymmetrical diorganoxenon(II) compounds RXeR' (R = C₆F₅, R' = 2,4,6-C₆H₂F₃).

To date there is no evidence for the existence of alkylxenon derivatives (salts or covalent species). However, recent experimental and theoretical data do not preclude their existence and the preparation of these two classes of xenon compounds is one of the "hot" points in this field.

Additionally, organoxenonium salts offer a promising access to new xenon-element compounds because of their lower oxidation potential in comparison to the [FXe]⁺ cation which has been used traditionally as basis for the preparation of new xenon-element bonds.

Further progress in carbon-xenon chemistry also will deal with the application of organoxenon compounds in synthesis: for instance, in the radical and, in particular, the electrophilic introduction of organic groups R into organic molecules and organoelement compounds. The first examples of such applications have been given here. They promise a good perspective for organoxenon compounds as useful synthetic reagents.

Acknowledgment. We are grateful to the Deutsche Forschungsgemeinschaft and the Russian Foundation for Basic Research for support under grants FR687/11, FR687/12, 436RUS113/588/0, and 00-03-04003 NNIO_a and to all the co-workers who contributed to these studies in the Duisburg group. Their names are cited in the references.

OM010490J