Rational Synthesis and Reversible Metal-**Metal Bond Scission of Heterobimetallic Xenophilic Complexes Containing an Unsupported, Polar Metal**-**Metal Bond,** $Tp^{iPr_2}M-Co(CO)_3L$ (M = Ni, Co, Fe, Mn; L = CO, PPh₃)

Kazuhiro Uehara, Shiro Hikichi, and Munetaka Akita*

Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan

Received July 20, 2001

Summary: A series of heterobimetallic xenophilic complexes containing an unsupported polar metal-*metal* \tilde{D} bond, $Tp^{iPr_2}M\text{-}\tilde{Co}(CO)_4$ ($M = Ni$, Co, Fe, Mn), is synthe*sized by treatment of the labile cationic species [TpiPr2M- (NCMe)3]*⁺ *with PPN[Co(CO)4], and the polar nature of the metal*-*metal bond is characterized by spectroscopic and crystallographic methods as well as by the reaction with MeCN, causing metal*-*metal bond heterolysis to give the ion pairs [TpiPr2M(NCMe)3]*+*[Co(CO)4]*-*.*

The chemistry of polar metal-metal bonds has attracted increasing attention,¹ because they are expected to display structural and reaction features based on the cooperativity of the two metal centers with different properties. In particular, so-called "xenophilic" species² having a polar bond between a Werner complex type hard open-shell metal center and a metal carbonyl fragment are now recognized as a new class of polymetallic complexes, but they are still rare. Previous examples of xenophilic complexes resulted from a series of complicated redox disproportionation of metal carbonyls, and no rational systematic synthetic method has been developed. The hydrotris(pyrazolyl)borato ligand (Tp^R) , recognized as a tetrahedral enforcer, may be used as the ancillary ligand for the "hard" part in such species.³ In previous papers we reported the tetrahedral, highly coordinatively unsaturated alkyl complexes $Tp^{iPr_2}M-X$ (X = alkyl),⁴ and the successful synthesis of such unusual organometallic species prompted us to introduce a metal fragment as the *σ*-ligand (X). Although a considerable number of polymetallic complexes containing a Tp^R ligand have been reported so far, very few examples of $Tp^RM-M'L_n$ -type xenophilic complexes containing an unsupported $M-M'$ bond (M, $M' =$ transition metal) are known. $5-7$ In most of the previous polymetallic Tp^RM complexes⁶ the metal-metal bond

Scheme 1

is supported by bridging ligands (e.g. μ -CO) or the Tp^RM moiety is coordinatively saturated due to coordination of other auxiliaries (e.g. *η*1-CO). Herein we wish to report the rational, systematic synthesis and characterization of a series of a new type of heterobimetallic complexes, $Tp^RM\text{-}Co(CO)_4$ (1; M = Ni, Co, Fe, Mn).⁸

The first attempts to prepare the dimetallic complexes by treatment of the corresponding chloro complexes $\text{Tp}^{\text{iPr}_2}M-\text{Cl}$ (2) with cobaltates, $M'[\text{Co(CO)}_4]$ ($M' = \text{Na}$, PPN), were unsuccessful (Scheme 1). The reactions were very slow and, after a prolonged reaction time, cationic aquo or carbonato complexes containing $[Co(CO)_4]$ ⁻ as the counteranion⁹ were formed as a result of interaction with adventitious moisture or carbon dioxide in the basic reaction media. To activate the $\text{Tp}^{\text{iPr}_2}M$ fragments toward nucleophiles, the chloro complexes **2** were converted to the cationic solvated complexes [TpiPr₂M- $(NCMe)₃$ ⁺ (3⁺) via dechlorination with a silver salt in acetonitrile.9 Complex **3**⁺ was so labile as to be decomposed in the absence of acetonitrile. As we expected, treatment of $3^{+}PF_{6}^{-}$ with $PPN[Co(CO)₄]$ in $CH_{2}Cl_{2}$ afforded bimetallic complexes with a polar metal-metal bond, TpiPr2M-Co(CO)4 (**1**), in moderate yields.

(9) Uehara, K.; Hikichi, S.; Akita, M. To be submitted for publication.

^{(1) (}a) Gade, L. H. *Angew. Chem., Int. Ed.* **²⁰⁰⁰**, *³⁹*, 2659. For early-late heterobimetallics, see for example: (b) Wheatley, N.; Kalck, P. *Chem. Rev.* **1999**, *99*, 3379.

^{(2) (}a) Fachinetti, G.; Fochi, G.; Funaioli, T.; Zanazzi, P. F. *Angew. Chem., Int. Ed. Engl.* **1987**, *26*, 680. (b) Harakas, G. N.; Whittlesey, B. R. *J. Am. Chem. Soc.* **1996**, *118*, 4219. (c) Gade, L. H. *Angew. Chem.,*

Int. Ed. Engl. **1996**, 35, 2089 and references cited therein.

(3) Trofimenko, S. *Scorpionates: The Coordination Chemistry of*
 Polypyrazolylborate Ligands; Imperial College Press: London, 1999.

(4) Akita, M.; Shirasaw

⁽⁵⁾ Abu Salah, O. M.; Bruce, M. I. *Aust. J. Chem.* **1977**, *30*, 2291.
CpMo(H)₂CuTp reported therein might be supported only by the dative $M_0 \rightarrow$ Cu bond, but the interaction mode of the hydride ligands (η ¹ or *µ*) has been left unclarified.

⁽⁶⁾ Bimetallic complexes with bridging ligands or coordinatively saturated TpRML_n-type fragments: (a) Curtis, M. D.; Shiu, K.-B.; Butler, W. M.; Huffman, J. C. *J. Am. Chem. Soc.* **1986**, *108*, 3335. (b)
Liu, Y.-Y.; Mar, A.; Rettig, S. J.; Storr, A.; Trotter, J. *Can. J. Chem.*
1988, *66*, 1997. (c) de V. Steyn, M. M.; Singleton, E.; Hietkamp, S.; Liles, D. C. *J. Chem. Soc., Dalton Trans.* **1990**, 2991. (d) Shiu, K. B.; Guo, W.-N.; Peng, S.-M.; Cheng, M.-C. *Inorg. Chem.* **1994**, *33*, 3010.

⁽⁷⁾ A few Tp^RM-M'L_n-type dimetallic complexes, where M and M' are a main-group metal and a transition metal, respectively, are known: Reger, D. L.; Mason, S. S.; Rheingold, A. L.; Haggarty, B. S.; Arnold, F. P. *Organ*

G.; Rheingold, A. L.; Yap, G. P. A. *Organometallics* **1998**, 17, 3624.
(8) Abbreviations used in this paper: Tp^{IPr₂, hydrotris(3,5-diisopro-
pylpyrazolyl)borato ligand; Tp^{Me₂4-Br}, hydrotris(3,5-dimethyl-4-bro-
mop} borato ligand.

^a Bond lengths in Å and bond angles in deg. ^b Mirror-symmetrical structure. ^cCo-P distance. ^d Averaged values of Co-(C2-C4) lengths.
^e Averaged values of CO(2-4) lengths. ^f Averaged values of M-N lengths. ^g

Figure 1. Molecular structures of (a) 1^{Ni} , (b) 1^{Ni} , and (c) 4^{Ni} drawn at the 30% probability level.

Because the polar metal-metal bond in **¹** might be kinetically stabilized by the bulky Tp^{iPr_2} ligand, synthesis of a complex with a less sterically demanding methyl-substituted ligand was examined for the nickel system. Reaction of the bromide complex bearing the 3,5-dimethyl-4-bromo derivative Tp^{Me₂,4–Br_{Ni}—Br (2^{/Ni)8,9}
with K[Co(CO),] produced the corresponding bimetallic} with K[Co(CO)₄] produced the corresponding bimetallic complex **1**′ **Ni** (eq 1) in contrast to the sluggishness of the

TpiPr2 derivative **2** mentioned above, which could be ascribed to the bulkiness and electron-donating property of the TpiPr₂ ligand. Synthesis of the analogue with the 3,5-dimethylpyrazolyl derivative $(Tp^{Me₂})^8$ via similar procedures, however, has not met with success, suggesting that the Lewis acidic property of the metal center in $Tp^{R}M-X$ is another important factor for the metal-metal bond formation. Although complexes **¹** and **1**′ **Ni** are air- and moisture-sensitive, no significant difference has been observed for their thermal stabilities and, therefore, kinetic stabilization is not essential for the polar metal-metal bond in $Tp^RM-Co(CO)_4$.

IR data for **1** and $\mathbf{1}'^{\mathbf{N} \mathbf{i}}$ (v_{CO} pattern peculiar to C_{3v^-} symmetrical X-Co(CO)₄ species and *ν*_{BH} indicative of *κ*3-TpiPr2 coordination)10,11 suggest formation of the desired structures, which have been characterized by X-ray crystallography.12 The five complexes turn out to be isostructural, as compared in Table 1, and ORTEP views of **1Ni** and **1**′ **Ni** (Figure 1a,b) show the virtually C_{3v} -symmetrical structure with the staggered conformation of the three pz^R rings and the three equatorial CO ligands. The M-Co vector is superimposed on the 3-fold axis of the TpNi moiety, as judged by the $B1\cdots M-C01$ angle (175.18-179.55°). Although the equatorial CO ligands are tilted toward the nickel center, the linear Co-C-O linkage $(175.7-178.3^{\circ})$ and the Ni \cdots CO distances longer than 2.6 Å reveal that the CO ligands are *η*1-bonded to Co1 without any bonding interaction with M, leaving the TpiPr₂M moiety electron-deficient, as in the alkyl complexes.⁴ We wish to point out that one of the three $M-Co-CO_{\text{equatorial}}$ angles $(M-Co-C2)$ is larger than the other two angles, although the reason for the slight distortion from a C_{3v} structure is not clear at the moment. In the series of the **1**-type complexes the increase in the M-Co and M-N distances is associated with that of the atomic radius of M, but no apparent systematic change is observed for other structural parameters. It should be noted that (1) the Co-

⁽¹⁰⁾ Akita, M.; Ohta, K.; Takahashi, Y.; Hikichi, S.; Moro-oka, Y. *Organometallics* **1997**, *16*, 4121.

Scheme 2

Co distance in 1^{Co} is comparable to the covalent $Co-$ Co bond length in $Co_2(CO)_8$ with three μ -CO ligands (2.522 Å) ¹³ and (2) 1^{Co} is isoelectronic with the cationic part of $[(py)_3Co-Co(CO)_4]^+[Co(CO)_4]^-$ reported by Fachinetti,²^a which has been regarded as the first example of a xenophilic complex.^{2b} Thus, the electrondeficient dimetallic complexes **1** with 29 (**1Mn**), 30 (**1Fe**), 31 (**1Co**), and 32 (**1Ni**, **1**′ **Ni**) valence electrons turn out to be xenophilic complexes with the open-shell $\mathrm{Tp^R M}$ fragment.

The M-M bonds in **¹** are polar, as indicated by their CO vibrations and Co-CO distances, 11 which are intermediate between those for $R - Co^{I}(CO)_{4}$ with a cova-
lent $Co-C$ bond $(R = \text{nhthalimidovlmethvl: } 2107$ lent Co–C bond (R = phthalimidoylmethyl; 2107,
2040, 2029, 2020 cm⁻¹;^{14a} 1.818 (axial), 1.802 Å (equatorial)^{14b})^{14a} and the ionic species $[Co^{-1}(CO)_4]$ ⁻ $(1880 \text{ cm}^{-1})^{14c}$ 1.756 Å^{14b}).^{14d} The polar nature of the ^M-M bond, which is interpreted in terms of the contribution of the ionic form **1A** (Scheme 2), is also verified by a chemical reaction. Dissolution of **1** in MeCN caused M-M bond heterolysis to form the ion pairs $[Tp^{iPr_2}M(NCMe)_3]^+[Co(CO)_4]^-$, the UV-vis and IR features of which were identical with those of the starting compounds 3^+ (UV-vis) and PPN[Co(CO)₄] (IR; $v_{\rm CO}$), confirming the presence of the corresponding metallic components in the solution (eq 2). Removal of the volatiles under reduced pressure regenerated **1**, although partial decomposition was evident. The bond heterolysis should be promoted by nucleophilic attack of MeCN at the positively charged TpiPr2M moiety and

$$
1 \xrightarrow{\text{dissolution in MeCN}} Tp^{\text{iPr2}M} \xrightarrow{\text{D}} N \text{CMe} \text{[Co(CO)4]}^{\text{O}} \quad (2)
$$

1
$$
\xrightarrow{\text{PPh}_3} \text{Tp}^{\text{iPr}_2} \text{M} - \text{Co(CO)}_3(\text{PPh}_3) \quad 4
$$
 (3)
[M= Ni (4^{Ni}), Co (4^{Co}), Fe (4^{Fe}), Mn (4^{Mn})]

ionic cleavage of a metal-metal bond has several precedents.¹⁵ In contrast, addition of PPh₃ to 1 resulted in selective CO displacement at the $Co(CO)₄$ moiety to give the substituted products **4** (eq 3). These results reveal the ambident character of **1**; hard and soft nucleophiles attack the hard open-shell $Tp^R M$ moiety and the metal carbonyl fragment, respectively, in a specific manner (Scheme 2). The core part of the phosphine-substituted heterometallic complex **4Ni** characterized crystallographically (Figure 1c) 12 is isostructural with that of **1Ni**, while the Ni-Co distance in **4Ni** is shorter than that in 1^{Ni} (Table 1) due to an increase of electron density at the $Co(CO)_3L$ moiety causing an increase of the Co-to-M donation: i.e., the covalent character of the Co-M bond. The M-Co bond in **4Ni,Co**, however, was also cleaved in $CH_3CN-CH_2Cl_2$, judging from the IR data.¹⁶ The substitution caused a blue shift of a couple of the UV-vis absorptions, which could be assigned to MMCT transitions. It is also notable that **4Ni** could not be obtained by reaction of **3Ni**⁺ with the more nucleophilic but bulkier cobaltate $Na[Co(CO)₃$ (PPh₃)], indicating that the sterically demanding Tp^{iPr_2} ligand prevented the metal-metal bond formation.

In conclusion, we have developed a rational synthetic method for a series of heterobimetallic xenophilic complexes with a polar M-M bond and the polar nature of the M-M bond has been characterized by (i) X-ray crystallography, (ii) comparison with the related $Tp^{iPr_2}M-X$ and $X-Co(CO)_4$ species, and (iii) the reversible M-M heterolysis induced by a hard donor. Thus, the TpRM fragment serves as a versatile component of xenophilic complexes. Further study on the reactivity of the obtained xenophilic species is now under way, and the result will be reported in due course.

Acknowledgment. We are grateful to the Ministry of Education, Culture, Sports, Science and Technology of the Japanese Government for financial support of this research (Grant-in-Aid for Scientific Research for Priority Area No. 11228201).

Supporting Information Available: Experimental procedures for X-ray crystallography and crystallographic results. This material is available free of charge via the Internet at http://pubs.acs.org.

OM010651J

⁽¹¹⁾ Synthesis of 1^{Ni} : to a mixture of $3^{Ni+}PF_6$ ⁻ (300 mg, 0.379 mmol) and PPN[Co(CO)₄] (403 mg, 0.568 mmol) was added \widetilde{CH}_2Cl_2 (10 mL), and the resultant solution was stirred for 2 h at ambient temperature. After removal of the volatiles under reduced pressure, the residue was extracted with ether and deep purple crystals of **1Ni** (143 mg, 0.206 mmol, 55% yield) were obtained by crystallization at -20 °C. Data for 1^{Ni} are as follows. IR (KBr): v_{BH} 2534 (m); v_{CO} 2052 (s), 1982 (vs), 1937 (vs) cm⁻¹. IR (CH₂Cl₂): 2051 (s), 1980 (s), 1947 (vs). cm⁻¹. UV-vis (λ_{max} /nm (ϵ/M^{-1} cm⁻¹), in CH₂Cl₂): 922 (100), 867 (90), 544 (460), 488 (230). $\mu_{\text{eff}} = 2.75 \mu_{\text{B}}$. Anal. Calcd for C₃₁H₄₆BN₆O₄CoNi: C, 53.56; H, 6.67; N, 12.09. Found: C, 53.34; PPh3 (113 mg, 0.432 mmol) was stirred for 3 h at ambient temperature. Filtration through a Celite plug followed by concentration of the filtrate and crystallization from toluene—pentane gave 4^{Ni} as dark red crystals
(95 mg, 0.102 mmol, 35% yield). Data for 4^{Ni} are as follows. IR (KBr):
 v_{BH} 2534 (w); v_{CO} 1979 (m), 1907 (vs), 1896 (vs) cm⁻¹. IR (CH₂ (m), 1905 (vs), 1892 (vs) cm⁻¹. IR (1/1 CH₃CN/CH₂Cl₂): 1927 (m), 1892
(vs), 1838 (vs) cm⁻¹. UV-vis (λ_{max}/nm (ε/M⁻¹ cm⁻¹)): 955 (130), 520
(630), 404 (720), μ_α = 3.16 μ_p. Anal. Calcd for C₄₂H₂₂BN₂ (630), 404 (720). $\mu_{\text{eff}} = 3.16 \mu_{\text{B}}$. Anal. Calcd for C₄₈H₆₂BN₆O₃PCoNi: C, 62.33; H, 6.62; N, 9.04. Found: C, 61.88; H, 6.76; N, 8.99. Spectroscopic and analytical data for other complexes are included in Supporting Information.

⁽¹²⁾ X-ray diffraction measurements were made on a Rigaku RAXIS IV imaging plate area detector at -60 °C. Details of the experimental procedures and the results are described in the Supporting Information.

⁽¹³⁾ Bang, W. B.; Carpenter, G. B. *Acta Crystallogr.* **1964**, *17*, 742.

^{(14) (}a) Nagy-Gergely, I.; Szalontai, G.; Ungvary, F.; Marko, L.; Moret, M.; Sironi, A.; Zucchi, C.; Sisak, A.; Tschoerner, C. M.; Martinelli, A.; Sorkau, A.; Palyi, G. *Organometallics* **1997**, *16*, 2740. (b) Averaged values. (c) PPN salt. (d) [Rh(CN-*o*-xylyl)4][Co(CO)4]: Ojima, I.; Clos, N.; Donovan, J.; Ingallina, P. *Organometallics* **1991**, *10*, 3211.

⁽¹⁵⁾ Roberts, D. A.; Mercer, W. C.; Zahurak, S. M.; Geoffroy, G. L.; DeBrosse, C. W.; Cass, W. E.; Pierpont, C. G. *J. Am. Chem. Soc.* **1982**, *104*, 910. Bearman, P. S.; Smith, A. K.; Tong, N. C.; Whyman, R. *J. Chem. Soc., Chem. Commun.* **1996**, 2061. Schubart, M.; Mitchell, G.; Gade, L. H.; Kottke, T.; Scowen, I. J.; Macpartlin, M*. Chem. Commun.* **1999**, 233.

^{(16) (}a) Because complexes **4Co,Ni** were sparingly soluble in CH3CN, the IR measurements were done in a CH_3CN/\check{CH}_2Cl_2 mixed solvent system (1/1).