Synthesis, Structural Characterization, and Olefin **Polymerization Behavior of Group 4 Metal Complexes** with Constrained-Geometry Carborane Ligands

Haiping Wang, Yaorong Wang, Hung-Wing Li, and Zuowei Xie*

Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China

Received July 18, 2001

Several new group 4 metal amide complexes with recently developed constrained-geometry carborane ligands, $[\eta^{5}:\sigma-Me_{2}A(C_{9}H_{6})(C_{2}B_{10}H_{10})]M(NR_{2})_{2}$ and $[\eta^{5}:\sigma-Me_{2}A(C_{5}H_{4})(C_{2}B_{10}H_{10})]M(NR_{2})_{2}$ $(NR_2)_2$ (A = C, Si; M = Ti, Zr; R = Me, Et), were prepared in good yield via amine elimination reactions of M(NR₂)₄ and the corresponding neutral ligands in toluene. Treatment of the amide complexes with 2.5 equiv of Me₂NH·HCl or Me₃N·HCl led to high yields of the corresponding chloride complexes, $[\{\eta^5:\sigma-Me_2A(C_9H_6)(C_2B_{10}H_{10})\}ZrCl(\mu-Cl)_{1.5}]_2^-$ (A = C, Si), which could also be prepared from an equimolar reaction between ZrCl₄(THF)₂ and [Me₂C- $(C_9H_6)(C_2B_{10}H_{10})$ Li₂. In contrast, excess Me₃SiCl could only convert $[\eta^5:\sigma$ -Me₂C(C₅H₄)- $(C_2B_{10}H_{10})$ Ti $(NMe_2)_2$ to $[\eta^5:\sigma$ -Me₂C $(C_5H_4)(C_2B_{10}H_{10})$ TiCl (NMe_2) , due to steric effects. All these new complexes have been fully characterized by ¹H, ¹³C, and ¹¹B NMR and IR spectroscopic data and elemental analyses. Thirteen out of fourteen newly prepared complexes have been structurally characterized by single-crystal X-ray diffraction studies. The chloride complexes exhibit a very high ethylene polymerization activity when they are activated with MMAO.

Introduction

Ligand modifications have played a key role in developing new catalyst precursors for optimizing polymerization activity as well as polymer properties such as stereoregularity, molecular weight, bulky and polar comonomer incorporation, and microstructure.¹ It has been documented that a ligand containing bifunctional groups often offers complexes with some additional advantages.² Recently developed "constrained-geometry" ligands containing both monocyclopentadienyl and σ -heteroatom components have attracted considerable attention.³ Group 4 metallocenes derived from these ligands are very active catalysts (so-called constrained-geometry catalysts (CGC)) for the copolymerization of ethylene with α -olefins due to the increased electron deficiency and more open coordination environment of the central metal ions.³ Given the impact of the cyclopentadienylappended heteroatom donor groups on the catalytic performance of the group 4 metal complexes, we have recently designed several silicon- and carbon-bridged versatile ligands, $Me_2A(C_5H_5)(C_2B_{10}H_{11})$ (A = C,⁴ Si⁵), $Me_2A(C_9H_7)(C_2B_{10}H_{11})$ (A = C,⁶ Si⁷), and $Me_2Si(C_{13}H_9)$ -

 $(C_2B_{10}H_{11})$ ⁸ which can be conveniently converted into a novel class of "constrained-geometry" ligands bearing a carboanion as σ -donor, shown in Chart 1. These ligands contain a highly electron-deficient carborane moiety, which should enhance the Lewis acidity of the central metal ion and, thus, increase the activity of the resulting group 4 metal complexes. Recent examples illustrated by Do et al. exemplify the importance of these ligands in group 4 metal chemistry.⁹ We report herein our detailed study on the synthesis, structural charac-

(4) (a) Xie, Z.; Chui, K.; Yang, Q.; Mak, T. C. W. Organometallics **1999**, *18*, 3947. (b) Chui, K.; Yang, Q.; Mak, T. C. W.; Xie, Z. Organometallics 2000, 19, 1391.

(5) (a) Xie, Z.; Wang, S.; Zhou, Z.-Y.; Xue, F.; Mak, T. C. W. Organometallics 1998, 17, 489. (b) Xie, Z.; Wang, S.; Zhou, Z.-Y.; Mak, T. C. W. Organometallics 1998, 17, 1907. (c) Xie, Z.; Wang, S.; Zhou, Z.-Y.; Mak, T. C. W. Organometallics 1999, 18, 1641.
(6) Wang, S.; Yang, Q.; Mak, T. C. W.; Xie, Z. Organometallics 2000, 10, 2024.

19. 334.

(8) Wang, S.; Li, H.-W.; Xie, Z. Organometallics 2001, 20, 3842.

^{*} To whom correspondence should be addressed. Fax: (852)-26035057. Tel: (852)26096344. E-mail: zxie@cuhk.edu.hk.

⁽¹⁾ For reviews, see: (a) Britovsek, G. J. P.; Gibson, V. C.; Wass, D. F. Angew. Chem., Int. Ed. Engl. 1999, 38, 428. (b) Kaminsky, W.; Arndt, M. Adv. Polym. Sci. 1997, 127, 144. (c) Bochmann, M. J. Chem. Soc., Dalton Trans. 1996, 255. (d) Kaminsky, W. Macromol. Chem. Phys. 1996, 197, 3907. (e) Brintzinger, H. H.; Fisher, D.; Mülhaupt, R.;
 Rieger, B.; Waymouth, R. M. Angew. Chem., Int. Ed. Engl. 1995, 34, 1143. (f) Möhring, R. C.; Coville, N. J. J. Organomet. Chem. 1994, 479, 1. (g) Marks, T. J. Acc. Chem. Res. 1992, 25, 57. (h) Jordan, R. F. Adv. Organomet. Chem. 1991, 32, 325.

⁽²⁾ For reviews, see: (a) Siemeling, U. *Chem. Rev.* **2000**, *100*, 1495. (b) Jutzi, P.; Siemeling, U. *J. Organomet. Chem.* **1995**, *500*, 175. (c) Okuda, J. Comm. Inorg. Chem. 1994, 16, 185.

^{(3) (}a) Shapiro, P. J.; Bunel, E. E.; Schaefer, W. P.; Bercaw, J. E. Organometallics 1990, 9, 867. (b) Shapiro, P. J.; Cotter, W. D.; Schaefer, W. P.; Labinger, J. A.; Bercaw, J. E. J. Am. Chem. Soc. **1994**, *116*, 4623. (c) Woo, T. K.; Margl, P. M.; Lohrenz, J. C. W.; Blochl, P. E.; Ziegler, T. J. Am. Chem. Soc. **1996**, *118*, 13021. (d) Chen, Y.-X.; Marks, T. J. Organometallics 1997, 16, 3649. (e) Chen, Y.-X.; Fu, P.-F.; Stern, C. L.; Marks, T. J. Organometallics **1997**, *16*, 5958 and references therein. (f) Canich, J. M.; Hlatky, G. G.; Turner, H. W. PCT Appl. WO 92-00333, 1992. Canich, J. M. Eur. Patent Appl. EP 420 436-A1, 1991 (Exxon Chemical Co.). (g) Stevens, J. C.; Timmers, F. J.; Wilson, D. R.; Schmidt, G. F.; Nickias, P. N.; Rosen, R. K.; Knight, G. W.; Lai, S. Eur. Patent Appl. EP 416 815-A2, 1991 (Dow Chemical Co.). (h) Hultzsch, K. L.; Spaniol, T. P.; Okuda, J. *Angew. Chem., Int. Ed.* **1999**, *38*, 227. (i) Park, J. T.; Yoon, S. C.; Bae, B.-J.; Seo, W. S.; Suh, I.-H.; Han, T. K.; Park, J. R. *Organometallics* **2000**, *19*, 1269. (j) Trouvé, G.; Laske, D. A.; Meetsma, A.; Teuben, J. H. J. Organomet. Chem. 1996, 511, 255.

^{(7) (}a) Xie, Z.; Wang, S.; Yang, Q.; Mak, T. C. W. Organometallics **1999**, 18, 2420. (b) Wang, S.; Yang, Q.; Mak, T. C. W.; Xie, Z. Organometallics **1999**, 18, 4478. (c) Wang, S.; Yang, Q.; Mak, T. C. W.; Xie, Z. Organometallics **1999**, 18, 1578.
(c) Wang, S.; Li, L. W.; Xie, Z. Organometallics **20**, 2842.

terization, and olefin polymerization behavior of group 4 metal complexes derived from this new type of "constrained-geometry" ligands (Chart 1).¹⁰

Experimental Section

General Procedures. All experiments were performed under an atmosphere of dry nitrogen with the rigid exclusion of air and moisture using standard Schlenk or cannula techniques or in a glovebox. All organic solvents (except methylene chloride) were freshly distilled from sodium benzophenone ketyl immediately prior to use. Methylene chloride was distilled from phosphorus pentoxide prior to use. ZrCl₄- $(THF)_2$,¹¹ M(NR₂)₄ (M = Ti, Zr; R = Me, Et),¹² Me₂A(C₉H₇)- $(C_2B_{10}H_{11}), Me_2A(C_5H_5)(C_2B_{10}H_{11}) (A = C, {}^{4,6}Si^{5,7}), [Me_2C(C_9H_6)-$ (C₂B₁₀H₁₀)]Li₂,⁶ Me₂NH·HCl,¹³ and Me₃N·HCl¹⁴ were prepared according to the literature methods. All other chemicals were purchased from Aldrich Chemical Co. and used as received unless otherwise noted. Infrared spectra were obtained from KBr pellets prepared in the glovebox on a Nicolet Magna 550 Fourier transform spectrometer. ¹H and ¹³C NMR spectra were recorded on a Bruker DPX 300 spectrometer at 300.13 and 75.47 MHz, respectively. ¹¹B NMR spectra were recorded on a Varian Inova 400 spectrometer at 128.32 MHz. All chemical shifts are reported in δ units with reference to internal or external TMS (0.00 ppm) or with respect to the residual protons of the deuterated solvents for proton and carbon chemical shifts and to external BF₃·OEt₂ (0.00 ppm) for boron chemical shifts. Elemental analyses were performed by MEDAC Ltd., Brunel University, Middlesex, U.K.

Preparation of $[\eta^5:\sigma-Me_2C(C_9H_6)(C_2B_{10}H_{10})]Ti(NMe_2)_2$ (1a). To a toluene (20 mL) solution of $Me_2C(C_9H_7)(C_2B_{10}H_{11})$ (0.30 g, 1.0 mmol) was added a toluene (5 mL) solution of Ti(NMe₂)₄ (0.225 g, 1.0 mmol) at room temperature, and the reaction mixture was refluxed for 2 days to give a red solution. A small amount of precipitate was filtered off. The resulting clear red solution was concentrated to about 5 mL. 1a was isolated as red crystals after this solution stood at room temperature for several days (0.335 g, 77%). ¹H NMR (pyridine- d_3): δ 7.96 (d, J = 8.4 Hz, 1H), 7.48 (d, J = 7.5 Hz, 1H), 7.15 (m, 1H), 7.11 (m, 1H), 6.60 (m, 1H), 6.57 (m, 1H) (C₉H₆), 3.29 (s, 6H), 2.22 (s, 6H) (N(CH₃)₂), 1.91 (s, 3H), 1.68 (s, 3H) ((CH₃)₂C). ¹³C NMR (pyridine-d₅): δ 137.67, 125.55, 125.12, 124.93, 124.01, 122.08, 118.90, 105.92, 103.7 (C9H6), 101.32 $(C_2B_{10}H_{10})$, 51.45, 44.01 (N(CH₃)₂), 34.01, 31.43, 22.15 ((CH₃)₂C). ¹¹B NMR (pyridine- d_5): δ -4.9 (2), -7.5 (2), -11.3 (4), -13.3 (2). IR (KBr, cm⁻¹): v 2979 (m), 2859 (s), 2764 (m), 2593 (vs), 2547 (vs), 2314 (m), 1451 (s), 1100 (m), 1042 (s), 941 (vs), 800 (s), 743 (m), 561 (m). Anal. Calcd for $C_{18}H_{34}B_{10}N_2Ti$: C, 49.76; H, 7.89; N, 6.45. Found: C, 50.07; H, 7.86; N, 6.27.

Preparation of $[\eta^5:\sigma-Me_2C(C_9H_6)(C_2B_{10}H_{10})]Zr(NMe_2)_2$ (2a). This compound was prepared as pale yellow crystals from $Me_2C(C_9H_7)(C_2B_{10}H_{11})$ (0.151 g, 0.5 mmol) and $Zr(NMe_2)_4$ (0.134 g, 0.5 mmol) in toluene (20 mL) by using procedures similar to those used in the synthesis of 1a, except the reaction time was reduced to 1 day: yield 0.206 g (86%). ¹H NMR (pyridine- d_5): δ 8.05 (d, J = 8.4 Hz, 1H), 7.22 (dd, J = 6.9 and 8.4 Hz, 1H), 7.02 (dd, J = 8.4 and 6.9 Hz, 1H), 6.80 (d, J = 3.6Hz, 1H), 6.33 (d, J = 8.4 Hz, 1H), 5.86 (d, J = 3.6 Hz, 1H) (C_9H_6) , 2.99 (s, 6H), 2.35 (s, 6H) $(N(CH_3)_2)$, 1.97 (s, 3H), 1.79 (s, 3H) ((CH₃)₂C). ¹³C NMR (pyridine- d_5): δ 133.05, 125.31, 124.81, 124.77, 124.65, 123.57, 123.39, 121.50, 106.29 (C₉H₆), 102.43, 99.23 (C2B10H10), 45.85, 45.03 (N(CH3)2), 35.72, 31.67, 22.80 ((CH_3)₂C). ¹¹B NMR (pyridine- d_5): δ -3.8 (2), -5.5 (2), -9.3 (4), -11.1 (2). IR (KBr, cm⁻¹): v 3093 (w), 2979 (m), 2861 (s), 2822 (m), 2774 (s), 2591 (vs), 2562 (vs), 1452 (m), 1371 (m), 1333 (w), 1247 (m), 1210 (m), 1182 (m), 1129 (m), 1052 (m), 1021 (m), 932 (vs), 793 (m), 742 (s), 698 (w). Anal. Calcd for C18H34B10N2Zr: C, 45.25; H, 7.17; N, 5.86. Found: C, 45.02; H, 7.28; N, 5.78.

Preparation of [Me₃NH][$\{\eta^{5}:\sigma\text{-Me}_{2}C(C_{9}H_{6})(C_{2}B_{10}H_{10})\}$ -**ZrCl**(*µ*-**Cl**)_{1.5}]₂·**CH**₂**Cl**₂ (2b). To a toluene (25 mL) solution of $[\eta^5:\sigma-Me_2C(C_9H_6)(C_2B_{10}H_{10})]Zr(NMe_2)_2$ (**2a**; 0.24 g, 0.5 mmol) was incrementally added a dry powder of Me₃NHCl (0.119 g, 1.25 mmol) over a period of several hours at 0 °C, and then the reaction mixture was stirred overnight. The solvent and the volatiles were pumped off, leaving a yellow solid. Recrystallization from a toluene/CH2Cl2 solution gave 2b as yellow crystals (0.242 g, 88%). ¹H NMR (pyridine- d_5): δ 8.24 (d, J =8.7 Hz, 2H), 7.65 (d, J = 3.0 Hz, 2H), 7.58 (dd, J = 7.8 and 6.9 Hz, 2H), 7.13 (dd, J = 7.8 and 6.9 Hz, 2H), 6.58 (d, J = 8.7Hz, 2H), 6.15 (d, J = 3.0 Hz, 2H) (C₉H₆), 5.66 (s, 2H) (CH₂Cl₂), 2.70 (s, 9H) (N(CH₃)₃), 1.99 (s, 6H), 1.87 (s, 6H) ((CH₃)₂C). ¹³C NMR (pyridine- d_5): δ 144.96, 129.50, 129.18, 128.88, 127.96, 127.56, 126.13, 125.48, 110.10 (C_9H_6), 104.37, 103.83 ($C_2B_{10}H_{10}$), 55.39 (CH₂Cl₂), 45.55 (N(CH₃)₃), 35.43, 33.87, 23.19 ((CH₃)₂C). ¹¹B NMR (pyridine- d_5): δ -3.1 (2), -5.5 (2), -8.9 (4), -13.2 (2). IR (KBr, cm⁻¹): ν 3066 (w), 2954 (m), 2864 (s), 2777 (s), 2576 (vs), 1253 (s), 1158 (m), 1128 (m), 1086 (s), 1050 (m), 933 (vs), 803 (s), 745 (m). Anal. Calcd for C32H56B20Cl7NZr2: C, 34.89; H, 5.12; N, 1.27. Found: C, 34.89; H, 5.36; N, 1.32.

Preparation of $\{ [\eta^5: \sigma - Me_2C(C_9H_6)(C_2B_{10}H_{10})] ZrCl(\mu - Me_2C(C_9H_6)(C_2B_{10}H_{10})] ZrCl(\mu - Me_2C(C_9H_6)(C_2B_{10}H_{10})) \}$ Cl)_{1.5}}₂{Li(THF)₂}·C₆H₅CH₃ (2c). To a suspension of [Me₂C- $(C_9H_6)(C_2B_{10}H_{10})]Li_2$ (0.157 g, 0.5 mmol) in diethyl ether (30 mL) was added ZrCl₄(THF)₂ (0.189 g, 0.5 mmol) in one portion at -30 °C with stirring, and the mixture was slowly warmed to room temperature and stirred overnight. After removal of the precipitate, the solvent was evaporated under vacuum, leaving an oily residue which was extracted with a mixed solvent of toluene and THF (10:1, 2×15 mL). The extractions were combined and concentrated to about 10 mL. n-Hexane vapor diffusion afforded 2c as yellow crystals (0.180 g, 60%). ¹H NMR (pyridine- d_5): δ 8.25 (d, J = 8.7 Hz, 2H), 7.66 (d, J =3.3 Hz, 2H), 7.26 (dd, J = 6.9 and 7.8 Hz, 2H), 7.13 (dd, J =6.9 and 7.8 Hz, 2H), 6.58 (d, J = 8.7 Hz, 2H), 6.15 (d, J = 3.3 Hz, 2H) (C₉H₆), 7.15 (m, 5H), 2.20 (s, 3H) (C₆H₅CH₃), 3.63 (m, 8H), 1.58 (m, 8H) (OC₄ H_8), 1.99 (s, 6H), 1.87 (s, 6H) ((CH₃)₂C). ¹³C NMR (pyridine- d_5): δ 145.00, 129.50, 129.19, 128.88, 127.95, 127.48, 126.09, 125.45, 110.10 (C₉H₆), 104.35, 103.75 $(C_2B_{10}H_{10})$, 129.74, 129.00, 125.27, 123.13, 23.17 $(C_6H_5CH_3)$, 68.17, 26.14 (OC4H8), 45.55, 35.41, 33.85 ((CH3)2C). 11B NMR (pyridine-d₅): δ -2.9 (2), -5.6 (2), -9.4 (4), -13.5 (2). IR (KBr, cm⁻¹): v 2977 (m), 2954 (m), 2881 (m), 2600 (vs), 2550 (vs), 1608 (w), 1455 (m), 1374 (m), 1260 (w), 1209 (m), 1093 (m), 1042 (s), 890 (w), 828 (m), 742 (s), 696 (m). Anal. Calcd for C43H68B20Cl5LiO2Zr2: C, 43.04; H, 5.71. Found: C, 43.05; H, 5.46.

^{(9) (}a) Hong, E.; Kim, Y.; Do, Y. Organometallics 1998, 17, 2933.
(b) Lee, M.-H.; Hwang, J.-W.; Kim, Y.; Do, Y. Organometallics 2000, 19, 5514.

⁽¹⁰⁾ Communicated in part in: Wang, H.; Xie, Z. Book of Abstracts, 7th Symposium on Chemistry Postgraduate Research in Hong Kong, Hong Kong, China, April 2000; I-19, and 19th IUPAC International Conference on Organometallic Chemistry, Shanghai, China, July 2000; PS-206.

⁽¹¹⁾ Manzer, L. E. Inorg. Synth. 1982, 21, 135.

⁽¹²⁾ Diamond, G. M.; Jordan, R. F.; Petersen, J. L. J. Am. Chem. Soc. 1996, 118, 8024.

⁽¹³⁾ Hughes, A. K.; Meetsma, A.; Teuben, J. H. Organometallics 1993, 12, 1936.

⁽¹⁴⁾ Carpenetti, D. W.; Kloppenburg, L.; Kupec, J. T.; Petersen, J. L. Organometallics **1996**, *15*, 1572.

Treatment of 2c with 1 equiv of Me₃NHCl in CH₂Cl₂ gave 2b as yellow crystals in 90% yield.

Preparation of $[\eta^5:\sigma-Me_2C(C_9H_6)(C_2B_{10}H_{10})]Zr(NEt_2)_2$ (3a). This compound was prepared as pale yellow crystals from Me₂C(C₉H₇)(C₂B₁₀H₁₁) (0.151 g, 0.50 mmol) and Zr(NEt₂)₄ (0.191 g, 0.50 mmol) in toluene (20 mL) by using procedures similar to those used in the synthesis of 1a: yield 0.181 g (68%). ¹H NMR (pyridine- d_5): δ 8.04 (d, J = 8.7 Hz, 1H), 7.25 (m, 1H), 7.08 (m, 1H), 7.06 (m, 1H), 6.70 (d, J = 3.6 Hz, 1H), 6.32 (d, J = 3.6 Hz, 1H) (C₉H₆), 3.55 (q, J = 6.9 Hz, 2H), 2.73 (m, 4H), 2.56 (q, J = 6.9 Hz, 2H) (N(CH₂CH₃)₂), 1.92 (s, 3H), 1.72 (s, 3H) ((C H_3)₂C), 1.04 (t, J = 6.9 Hz, 6H), 0.69 (t, J = 6.9Hz, 6H) (N(CH₂CH₃)₂). ¹³C NMR (pyridine- d_5): δ 132.93, 124.55, 124.31, 123.97, 123.67, 120.15, 104.68, 104.37, 97.84 (C₉H₆), 42.86, 40.66, 12.79, 12.54 (N(CH₂CH₃)₂), 34.65, 32.56, 22.1 ((CH_3)₂C); the cage carbons were not observed. ¹¹B NMR (pyridine- d_5): $\delta - 4.7$ (2), -6.5 (2), -10.3 (4), -12.1 (2). IR (KBr, cm⁻¹): ν 2965 (m), 2869 (w), 2575 (vs), 2412 (m), 1592 (w), 1454 (s), 1366 (s), 1025 (vs), 786 (vs). Anal. Calcd for C₂₂H₄₂B₁₀N₂Zr: C, 49.49; H, 7.93; N, 5.25. Found: C, 49.61; H, 7.61; N, 5.31.

Preparation of $[\eta^5:\sigma-Me_2Si(C_9H_6)(C_2B_{10}H_{10})]Zr(NMe_2)_2$ (4a). This compound was prepared as pale yellow crystals from Me₂Si(C₉H₇)(C₂B₁₀H₁₁) (0.158 g, 0.50 mmol) and Zr(NMe₂)₄ (0.134 g, 0.50 mmol) in toluene (20 mL) by using procedures similar to those used in the synthesis of 2a: yield 0.225 g (91%). ¹H NMR (pyridine- d_3): δ 7.86 (d, J = 8.4 Hz, 1H), 7.26 (dd, J = 7.4 and 7.8 Hz, 1H), 7.10 (dd, J = 7.8 and 7.4 Hz, 1H), 6.89 (d, J = 3.5 Hz, 1H), 6.61 (d, J = 8.4 Hz, 1H), 6.26 (d, J = 3.5 Hz, 1H) (C₉H₆), 2.99 (s, 6H), 2.35 (s, 6H) (N(CH₃)₂), 0.82 (s, 3H), 0.62 (s, 3H) ((CH₃)₂Si). ¹³C NMR (pyridine- d_5): δ 132.30, 130.44, 128.91, 128.86, 126.26, 126.21, 125.77, 125.13, 108.43 (C₉H₆), 103.51, 82.65 (C₂B₁₀H₁₀), 46.86, 45.49 (N(CH₃)₂), 0.49, 0.00 ((CH_3)₂Si). ¹¹B NMR (pyridine- d_5): δ 1.4 (2), -2.8 (2), -8.5 (4), -12.0 (2). ¹H NMR (benzene- d_6): δ 7.51 (d, J =8.4 Hz, 1H), 7.13 (m, 1H), 7.03 (m, 1H), 6.80 (m, 1H), 6.27 (d, J = 3.6 Hz, 1H), 6.24 (m, 1H) (C₉H₆), 2.82 (s, 6H), 1.97 (s, 6H) $(N(CH_3)_2)$, 0.52 (s, 3H), 0.37 (s, 3H) $((CH_3)_2Si)$. ¹³C NMR (benzene- d_6): δ 129.66, 128.89, 126.90, 126.63, 126.02, 125.05, 124.87, 124.47, 105.07 (C_9H_6), 97.83, 84.73 ($C_2B_{10}H_{10}$), 46.00, 41.18 (N(CH₃)₂), -0.86, -0.96 ((CH₃)₂Si). ¹¹B NMR (benzene d_6): $\delta - 0.8$ (2), -4.4 (2), -10.0 (4), -13.6 (2). IR (KBr, cm⁻¹): v 3066 (w), 2954 (m), 2864 (s), 2824 (m), 2777 (m), 2576 (vs), 1444 (m), 1253 (s), 1158 (m), 1128 (m), 1086 (s), 1050 (m), 934 (vs), 803 (s), 745 (m), 681 (m). Anal. Calcd for C₁₇H₃₄B₁₀N₂-SiZr: C, 41.34; H, 6.94; N, 5.67. Found: C, 41.42; H, 7.01; N, 5.72.

Preparation of [Me₂NH₂][{ η^{5} : σ -Me₂Si(C₉H₆)(C₂B₁₀H₁₀)}-ZrCl(µ-Cl)_{1.5}]₂·0.5CH₂Cl₂ (4b). To a toluene (20 mL) solution of $[\eta^5:\sigma-Me_2Si(C_9H_6)(C_2B_{10}H_{10})]Zr(NMe_2)_2$ (4a; 0.247 g, 0.50 mmol) was added a toluene (5 mL) solution of Me₃SiCl (0.434 g, 4.0 mmol), and the reaction mixture was then stirred at room temperature overnight. The solvent was pumped off along with excess Me₃SiCl, leaving a yellow solid. Recrystallization from a toluene/CH₂Cl₂ solution afforded a yellow powder (2.10 g). The ¹H NMR spectrum of this product is complicated, showing many peaks in the aromatic region and the presence of an amido group. This solid was then treated with Me₂NH·HCl (0.082 g, 1.0 mmol) in toluene (20 mL) by using procedures similar to those used in the synthesis of 2b to afford 4b as yellow crystals (0.137 g, 51%). ¹H NMR (pyridine- d_5): δ 8.06 (d, J = 8.6 Hz, 2H), 7.89 (dd, J = 3.5 and 5.7 Hz, 2H), 7.51 (dd, J = 5.7 and 3.5 Hz, 2H), 7.26 (d, J = 3.3 Hz, 2H), 6.72 (d, J = 8.6 Hz, 2H), 6.35 (d, J = 3.3 Hz, 2H) (C₉H₆), 4.37 (m, 6H) ((CH₃)₂NH₂), 0.91 (s, 6H), 0.86 (s, 6H) ((CH₃)₂Si). ¹³C NMR (pyridine-d₅): δ 132.00, 130.41, 128.94, $128.46, 126.11, 126.01, 125.71, 124.13, 108.41 (C_9H_6), 103.31,$ 82.45 ($C_2B_{10}H_{10}$), 46.90 (N(CH_3)₂), 0.48, 0.00 ((CH_3)₂Si). ¹¹B NMR (pyridine- d_5): δ -1.7 (2), -5.1 (2), -8.7 (4), -10.3 (2). IR (KBr, cm⁻¹): v 3080 (w), 2960 (m), 2862 (w), 2572 (vs), 1604 (m), 1489 (m), 1444 (s), 1255 (s), 1228 (m), 1158 (m), 1154 (m), 1090 (s), 1060 (m), 1042 (m), 1008 (m), 960 (m), 836 (s), 809 (s), 756 (s), 698 (s), 670 (m), 629 (m). Anal. Calcd for $C_{28}H_{52}B_{20}$ - $Cl_5NSi_2Zr_2$ (**4b** $-0.5CH_2Cl_2$): C, 32.50; H, 5.07; N, 1.35. Found: C, 31.93; H, 5.50; N, 1.52.

This complex could be prepared in 81% yield by direct treatment of 4a with 2.5 equiv of Me₂NH·HCl in toluene.

Preparation of $[Me_3NH][\eta^5:\sigma-Me_2Si(C_9H_6)(C_2B_{10}H_{10})-$ ZrCl(µ-Cl)_{1.5}]₂· THF (4c). This compound was prepared as yellow crystals from $[\eta^5: \sigma - Me_2Si(C_9H_6)(C_2B_{10}H_{10})]Zr(NMe_2)_2$ (4a; 0.247 g, 0.5 mmol) and Me₃NHCl (0.119 g, 1.25 mmol) in toluene (25 mL) by using procedures similar to those used in the synthesis of 2b: yield 0.238 g (85%). ¹H NMR (pyridine d_5 : δ 8.06 (d, J = 8.4 Hz, 2H), 7.71 (d, J = 3.2 Hz, 2H), 7.63 (t, J = 7.5 Hz, 2H), 7.27 (t, J = 7.5 Hz, 2H), 6.73 (d, J = 8.4Hz, 2H), 6.36 (d, J = 3.2 Hz, 2H) (C₉H₆), 3.63 (m, 4H), 1.59 (m, 4H) (OC₄H₈), 2.87 (s, 9H) (N(CH₃)₃), 0.78 (s, 6H), 0.71 (s, 6H) ((CH₃)₂Si). ¹³C NMR (pyridine- d_5): δ 134.91, 129.30, $129.11, 128.00, 127.91, 127.51, 126.10, 125.41, 110.00 (C_9H_6),$ 103.85 (C2B10H10), 68.10, 26.16 (OC4H8), 45.61 (N(CH3)3), 0.30, -0.21 ((*C*H₃)₂Si). ¹¹B NMR (pyridine-*d*₅): δ -1.7 (2), -5.1 (2), -8.7 (4), -10.6 (2). IR (KBr, cm⁻¹): v 3066 (w), 2954 (m), 2869 (s), 2576 (vs), 1449 (m), 1252 (s), 1158 (m), 1129 (m), 1080 (s), 1055 (m), 936 (vs), 808 (s), 747 (m), 681 (m). Anal. Calcd for C₃₃H₆₂B₂₀Cl₅NOSi₂Zr₂: C, 35.36; H, 5.58; N, 1.25. Found: C, 35.04; H, 5.35; N, 1.28.

Preparation of $[\eta^5:\sigma-Me_2Si(C_9H_6)(C_2B_{10}H_{10})]Zr(NEt_2)_2$ (5a). This compound was prepared as pale yellow crystals from $Me_2Si(C_9H_7)(C_2B_{10}H_{11})$ (0.162 g, 0.51 mmol) and $Zr(NEt_2)_4$ (0.195 g, 0.51 mmol) in toluene (20 mL) by using procedures similar to those used in the synthesis of 1a: yield 0.152 g (54%). ¹H NMR (pyridine- d_5): δ 7.90 (d, J = 8.4 Hz, 1H), 7.67 (d, J = 8.4 Hz, 1H), 7.31 (m, 1H), 7.28 (m, 1H), 6.86 (d, J =3.3 Hz, 1H), 6.79 (d, J = 3.3 Hz, 1H) (C₉H₆), 3.57 (m, 4H), 2.70 (m, 2H), 2.53 (m, 2H) (N(CH_2CH_3)₂), 1.05 (t, J = 6.9 Hz, 6H), 0.68 (t, J = 6.9 Hz, 6H) (N(CH₂CH₃)₂), 0.74 (s, 3H), 0.56 (s, 3H) ((CH₃)₂Si). ¹³C NMR (pyridine- d_5): δ 131.55, 128.46, 126.60, 125.63, 125.31, 124.44, 124.31, 108.11, 104.70 (C₉H₆), 98.33, 84.30 (C2B10H10), 42.86, 40.32 (N(CH2CH3)2), 13.20, 13.11 (N(CH₂CH₃)₂), -1.60, -1.98 ((CH₃)₂Si). ¹¹B NMR (pyridine- d_5): δ -0.3 (2), -4.1 (2), -9.4 (4), -12.5 (2). ¹H NMR (benzene- d_6): δ 7.62 (d, J = 8.1 Hz, 1H), 7.24 (d, J = 8.1 Hz, 1H), 6.85 (m, 2H), 6.32 (m, 2H) (C₉H₆), 3.40 (m, 4H), 2.60 (m, 2H), 2.35 (m, 2H) (N(C H_2 CH₃)₂), 0.89 (t, J = 6.9 Hz, 6H), 0.60 (t, J = 6.9 Hz, 6H) (N(CH₂CH₃)₂), 0.51 (s, 3H), 0.36 (s, 3H) $((CH_3)_2Si)$. ¹³C NMR (benzene- d_6): δ 132.12, 128.68, 126.44, 125.96, 125.67, 125.09, 124.58, 109.40, 104.27 (C9H6), 98.25, 84.47 (C2B10H10), 43.43, 40.90 (N(CH2CH3)2), 13.90, 13.86 (N(CH₂CH₃)₂), -0.95, -1.34 ((CH₃)₂Si). ¹¹B NMR (benzene d_6): $\delta -0.4$ (2), -4.4 (2), -9.9 (4), -13.4 (2). IR (KBr, cm⁻¹): v 2967 (s), 2567 (vs), 1446 (s), 1364 (s), 1256 (s), 1138 (m), 1093 (s), 1000 (m), 798 (vs). Anal. Calcd for C₂₁H₄₂B₁₀N₂SiZr: C, 45.86; H, 7.70; N, 5.09. Found: C, 45.51; H, 7.47; N, 4.97.

Preparation of [η^5 :*σ*-Me₂C(C₅H₄)(C₂B₁₀H₁₀)]Ti(NMe₂)₂ (**6a**). This compound was prepared as red crystals from Me₂C-(C₅H₅)(C₂B₁₀H₁₁) (0.250 g, 1.0 mmol) and Ti(NMe₂)₄ (0.225 g, 1.0 mmol) in toluene (30 mL) by using procedures similar to those used in the synthesis of **1a**: yield 0.309 g (80%). ¹H NMR (pyridine- d_5): δ 6.15 (m, 2H), 6.01 (m, 2H) (C₅H₄), 3.10 (s, 12H) (N(CH₃)₂), 1.56 (s, 6H) ((CH₃)₂C). ¹³C NMR (pyridine- d_5): δ 148.01, 113.10, 110.48 (C₅H₄), 103.81, 101.45 (C₂B₁₀H₁₀), 47.46 (N(CH₃)₂), 31.57, 22.52 ((CH₃)₂C). ¹¹B NMR (pyridine- d_5): δ -4.4 (2), -7.3 (2), -11.2 (4), -12.9 (2). IR (KBr, cm⁻¹): ν 2972 (m), 2858 (s), 2597 (vs), 2561 (vs), 1622 (m), 1454 (s), 1098 (s), 1044 (s), 930 (s), 816 (s), 520 (vs). Anal. Calcd for C₁₄H₃₂B₁₀N₂-Ti: C, 43.74; H, 8.39; N, 7.29. Found: C, 43.90; H, 8.34; N, 7.29.

Preparation of $[\eta^{5:}\sigma$ -Me₂C(C₅H₄)(C₂B₁₀H₁₀)]TiCl(NMe₂) (**6b**). To a toluene solution (20 mL) of **6a** (0.309 g, 0.80 mmol) was added Me₃SiCl (1.3 mL, 10 mmol), and the reaction mixture was stirred overnight. The solvent was pumped off along with excess Me₃SiCl, leaving a red solid which was

Table 1. Crystal Data and Summary of Data Collection and Refinement for 1a, 3a-7a, and 9a

	1a	3a	4 a	5a	6a	7a	9a
formula	C ₁₈ H ₃₄ B ₁₀ -	C ₂₂ H ₄₂ B ₁₀ -	C ₁₇ H ₃₄ B ₁₀ -	C ₂₁ H ₄₂ B ₁₀ -	C ₁₄ H ₃₂ B ₁₀ -	C ₁₄ H ₃₂ B ₁₀ -	C ₁₇ H ₄₀ B ₁₀ -
	N ₂ Ti	N_2Zr	N ₂ SiZr	N ₂ SiZr	N ₂ Ti	N_2Zr	N ₂ SiZr
cryst size (mm)	0.56 $ imes$ 0.45 $ imes$	0.58 imes 0.45 imes	0.45 \times 0.36 \times	0.54 imes 0.28 imes	0.25 imes 0.21 imes	0.42 imes 0.23 imes	0.63 imes 0.59 imes
-	0.23	0.40	0.24	0.25	0.20	0.20	0.45
fw	434.47	533.90	493.87	549.98	384.42	427.74	499.92
cryst syst	monoclinic	monoclinic	monoclinic	orthorhombic	monoclinic	monoclinic	monoclinic
space group	$P2_{1}/c$	$P2_{1}/c$	$P2_{1}/c$	$P2_{1}2_{1}2_{1}$	$P2_1/n$	$P2_1/n$	$P2_1/n$
a, Å	9.394(2)	14.381(1)	9.603(2)	10.321(2)	9.182(2)	9.915(1)	9.171(1)
<i>b</i> , Å	13.723(2)	11.257(1)	13.971(3)	15.679(4)	13.594(2)	13.811(1)	19.792(1)
<i>c</i> , Å	18.675(3)	16.974(1)	19.096(4)	18.018(4)	17.701(2)	16.936(1)	14.722(1)
β , deg	99.38(1)	90.54(1)	99.35(3)	90.00	97.22(1)	105.79(1)	98.23(1)
$V, Å^3$	2375.3(7)	2747.8(3)	2527.9(9)	2915.7(12)	2191.9(5)	2231.67(14)	2644.9(2)
Ζ	4	4	4	4	4	4	4
$D_{\text{calcd}}, \text{Mg/m}^3$	1.215	1.291	1.298	1.253	1.165	1.273	1.255
radiation (λ , Å)				Μο Κα (0.710 73)		
2θ range, deg	3.70 - 52.00	2.84 - 52.00	3.62 - 50.00	3.44 - 52.00	3.78 - 52.00	3.86 - 52.00	3.48 - 52.00
μ , mm ⁻¹	0.369	0.416	0.491	0.433	0.392	0.494	0.470
F(000)	912	1112	1016	1144	808	880	1040
no. of obsd rflns	4659	5382	3156	5713	4309	4359	5188
no. of params refined	281	317	321	313	245	244	271
goodness of fit	1.052	1.099	1.060	0.998	1.105	1.081	1.069
Ř1	0.067	0.025	0.075	0.039	0.047	0.044	0.025
wR2	0.187	0.071	0.187	0.086	0.136	0.131	0.067

washed with *n*-hexane $(3 \times 5 \text{ mL})$. Recrystallization from a toluene solution at -20 °C gave **6b** as red crystals (0.195 g, 65%). ¹H NMR (pyridine- d_3): δ 6.85 (m, 1H), 6.60 (m, 1H), 6.50 (m, 1H), 6.23 (m, 1H) (C₅H₄), 3.61 (s, 6H) (N(CH₃)₂), 1.60 (s, 3H), 1.50 (s, 3H) ((CH₃)₂C). ¹³C NMR (pyridine- d_5): δ 151.86, 117.22, 117.10, 116.58, 115.38 (C_5 H₄), 102.71 (C_2 B₁₀H₁₀), 49.50 (N(CH₃)₂), 31.37, 30.51, 22.17 ((CH₃)₂C). ¹¹B NMR (pyridine- d_5): δ -4.4 (2), -7.6 (2), -10.7 (4), -12.9 (2). IR (KBr, cm⁻¹): ν 2992 (w), 2590 (vs), 2341 (m), 1462 (m), 1252 (m), 1048 (s), 915 (m), 823 (s), 547 (m). Anal. Calcd for C₁₂H₂₆B₁₀ClNTi: C, 38.35; H, 6.97; N, 3.73. Found: C, 38.68; H, 7.04; N, 3.70.

Preparation of [η^5 :σ-Me₂C(C₅H₄)(C₂B₁₀H₁₀)]Zr(NMe₂)₂ (7a). This compound was prepared as yellow crystals from Me₂C(C₅H₅)(C₂B₁₀H₁₁) (0.50 g, 2.0 mmol) and Zr(NMe₂)₄ (0.54 g, 2.0 mmol) in toluene (40 mL) by using procedures similar to those used in the synthesis of **2a**: yield 0.58 g (68%). ¹H NMR (pyridine- d_5): δ 6.31 (m, 2H), 5.62 (m, 2H) (C₅H₄), 2.95 (s, 12H) (N(CH₃)₂), 1.65 (s, 6H) ((CH₃)₂C). ¹³C NMR (pyridine- d_5): δ 145.05, 113.00, 110.17 (C₅H₄), 104.11, 100.73 (C₂B₁₀H₁₀), 45.71 (N(CH₃)₂), 32.60, 22.00 ((CH₃)₂C). ¹¹B NMR (pyridine- d_5): δ -5.2 (2), -7.2 (2), -11.0 (4), -12.4 (2). IR (KBr, cm⁻¹): ν 2986 (w), 2864 (s), 2776 (m), 2598 (vs), 2561 (vs), 1450 (m), 1253 (m), 1184 (w), 1142 (w), 1052 (s), 1024 (m), 921 (s), 862 (w), 808 (vs), 704 (w), 547 (m). Anal. Calcd for C₁₄H₃₂B₁₀N₂Zr: C, 39.31; H, 7.54; N, 6.55. Found: C, 39.01; H, 7.21; N, 6.23.

Preparation of [η^{5} :σ-**Me**₂**Si**(**C**₅**H**₄)(**C**₂**B**₁₀**H**₁₀)]**Zr**(**NMe**₂)₂ (**8a**). This compound was prepared as pale yellow crystals from Me₂Si(C₅H₅)(C₂B₁₀H₁₁) (0.142 g, 0.53 mmol) and Zr(NMe₂)₄ (0.142 g, 0.53 mmol) in toluene (20 mL) by using procedures similar to those used in the synthesis of **2a**: yield 0.15 g (64%). ¹H NMR (pyridine- d_3): δ 6.53 (m, 2H), 5.96 (m, 2H) (C₅H₄), 2.94 (s, 12H) (N(CH₃)₂), 0.38 (s, 6H) ((CH₃)₂Si). ¹³C NMR (pyridine- d_5): δ 120.17, 115.80, 112.96 (C_5 H₄), 100.62, 79.91 (C_2 B₁₀H₁₀), 45.10 (N(*C*H₃)₂), -2.66 ((*C*H₃)₂Si). ¹¹B NMR (pyridine- d_5): δ -0.5 (2), -4.6 (2), -10.4 (4), -12.2 (2). IR (KBr, cm⁻¹): ν 2970 (m), 2870 (s), 2569 (vs), 2415 (m), 2308 (m), 1485 (s), 1260 (m), 1056 (s), 925 (m), 806 (vs), 702 (w), 517 (s). Anal. Calcd for C₁₃H₃₂B₁₀N₂SiZr: C, 35.18; H, 7.27; N, 6.31. Found: C, 34.88; H, 7.48; N, 6.36.

Preparation of $[\eta^{5:}\sigma$ -**Me**₂**Si**(**C**₅**H**₄)(**C**₂**B**₁₀**H**₁₀)]**Zr**(**NE**t₂)₂ (**9a**). This compound was prepared as pale yellow crystals from Me₂Si(C₅H₅)(C₂B₁₀H₁₁) (0.133 g, 0.50 mmol) and Zr(NEt₂)₄ (0.191 g, 0.50 mmol) in toluene (20 mL) by using procedures similar to those used in the synthesis of **1a**: yield 0.182 g (73%). ¹H NMR (pyridine- d_3): 6.57 (m, 2H), 6.51 (m, 2H) (C₅H₄), 3.36 (m, 8H) (N(CH₂CH₃)₂), 0.99 (t, J = 6.9 Hz, 12H) (N(CH₂CH₃)₂), 0.49 (s, 6H) ((CH₃)₂Si). ¹³C NMR (pyridine- d_5): δ 121.26, 119.54, 113.64 ($C_5\mathrm{H}_4\mathrm{)}$, 96.51, 82.50 ($C_2\mathrm{B}_{10}\mathrm{H}_{10}\mathrm{)}$, 41.88 (N($C\mathrm{H}_2\mathrm{CH}_3\mathrm{)}_2\mathrm{)}$, 13.51 (N($C\mathrm{H}_2C\mathrm{H}_3\mathrm{)}_2\mathrm{)}$, -2.90 (($C\mathrm{H}_3\mathrm{)}_2\mathrm{Si}\mathrm{)}$. $^{11}\mathrm{B}$ NMR (pyridine- $d_5\mathrm{)}$: δ -0.3 (2), -3.9 (2), -8.9 (4), -12.1 (2). IR (KBr, cm^{-1}): ν 2956 (s), 2868 (s), 2573 (vs), 2341 (m), 1652 (m), 1450 (m), 1362 (m), 1264 (m), 802 (vs), 673 (m). Anal. Calcd for C_{17}\mathrm{H}_{40}\mathrm{B}_{10}\mathrm{N}_2\mathrm{Si}\mathrm{Zr}: C, 40.84; H, 8.07; N, 5.60. Found: C, 40.63; H, 7.82; N, 5.54.

Ethylene Polymerization. This experiment was carried out in a 150 mL glass reactor equipped with a magnetic stirrer and gas inlets. The reactor was charged with the catalyst (3.0 μ mol) together with MMAO (4.5 mmol) and toluene (50 mL). The mixture was stirred at 60 °C for 1 h. Ethylene gas was then introduced to the reactor, and its pressure was maintained continuously at 1 atm by means of bubbling. The polymerization was terminated by addition of acidic ethanol (100 mL). The white precipitate was filtered off and washed with ethanol and acetone. The resulting powder was finally dried in a vacuum oven at 80 °C overnight.

X-ray Structure Determination. All single crystals were immersed in Paratone-N oil and sealed under N2 in thin-walled glass capillaries. Data were collected at 293 K on an MSC/ Rigaku RAXIS-IIC imaging plate diffractometer using Mo Kα radiation from a Rigaku rotating-anode X-ray generator operating at 50 kV and 90 mA or on a Bruker SMART 1000 CCD diffractometer using Mo Ka radiation. An empirical absorption correction was applied using the SADABS program.¹⁵ All structures were solved by direct methods and subsequent Fourier difference techniques and refined anisotropically for all non-hydrogen atoms by full-matrix least squares calculations on F^2 using the Siemens SHELXTL program package (PC version).¹⁶ Most of the carborane hydrogen atoms were located from difference Fourier syntheses. All other hydrogen atoms were geometrically fixed using the riding model. For noncentrosymmetric structures, the appropriate enantiomorph was chosen by refining Flack's parameter x toward zero.¹⁷ Crystal data and details of data collection and structure refinement are given in Tables 1 and 2, respectively. Some key structural parameters are listed in Table 3. Further details are included in the Supporting Information.

⁽¹⁵⁾ Sheldrick, G. M. SADABS: Program for Empirical Absorption Correction of Area Detector Data; University of Göttingen, Göttingen, Germany, 1996.

⁽¹⁶⁾ SHELXTL V 5.03 Program Package; Siemens Analytical X-ray Instruments, Inc., Madison, WI, 1995.

⁽¹⁷⁾ Flack, H. D. Acta Crystallogr. 1983, A39, 876.

Table 2. Crystal Data and Summary of Data Collection and Refinement for 2a, 8a, 2b, 2c, 4b and 6b

Tuble 2. Orystal Data and Summary of Data Concerton and Kennement for 2a, 6a, 2b, 2c, 4b and 6b													
				2a	8 a		2b			2c		4b	6b
formula			C ₁₈ F	I ₃₄ B ₁₀ -	$C_{13}H_{32}B_{10}$	0-	C32H56B2	0-	C ₄₃ H	68B20-	C _{28.5}	$H_{53}B_{20}$ -	C ₁₂ H ₂₆ B ₁₀ -
			N	₂ Zr	N ₂ SiZr		CI ₇ NZ1	2	CI	₅ LiO ₂ Zr ₂	CI	$_6NSi_2Zr_2$	CINTi
cryst size	e (mm)		0.36	\times 0.28 \times	0.48×0.3	$32 \times$	0.40×0.1	20 ×	0.25	\times 0.20 \times	0.30	× 0.30 ×	0.60 imes 0.25 imes
			0.	08	0.27		0.18		0.2	20	0.2	20	0.20
fw			477.	79	443.82		1101.57		1199	.80	1077	.24	375.79
cryst syst	t		tricl	inic	rhomboh	edral	triclinic		tricli	nic	tricli	nic	monoclinic
space gro	oup		<i>P</i> 1	05(0)	<i>R</i> 3		P_1		P1		P1		$P2_{1}/c$
a, A			10.1	35(Z)	26.404(2)		11.935(2)		12.42	(3(3))	12.04	13(2)	9.557(2)
D, A			10.3	37(Z)	26.404(2)		12.085(2)		13.0	JZ(3)	12.10	JZ(Z)	14.472(2) 14.240(2)
C, A			13.3	72(3)	10.181(1)		20.557(4)		18.20	00(4)	20.30	(4)	14.346(2)
α , deg			00.0	9(3) 7(2)	90.00		00.07(3) 96.66(2)		95.73	$\mathcal{O}(\mathcal{O})$	00.00	2(3) (2)	90.00
ρ , deg			672	7(3) 9(2)	90.00		00.00(3) 76.24(2)		34.03	2(3) 24(2)	76.00	$\mathcal{O}(\mathcal{O})$	90.74(1)
γ , deg V Å ³			199/	0(<i>3)</i> 1 <i>1</i> (<i>1</i>)	61/6 8(10	n	2876 2(1)	n	2800	6(10)	2877	7(10)	1070 A(A)
7			2	1.4(4)	0140.0(10	")	2070.2(10	,	2000	.0(10)	2011	.7(10)	1370.4(4)
Dut Me	√m ³		1 29	6	1 079		~ 1 979		~ 1 429	2	1 249	2	1 267
radiation	(λ) Å		1.20	0	1.070		1. <i>212</i> M	ο Κα (0 '	710 73		1.210	,	1.207
2θ range.	deg		3.22	-50.00	4.38 - 50.0	00	3.46 - 50.0	00	3.28-	-50.00	4.02-	-48.00	4.02 - 52.00
$\mu \text{ mm}^{-1}$,		0.45	8	0.447		0.712		0.647	7	0.705	5	0.564
F(000)			492	0	2052		1108		1220		1082		776
no. of obs	d rflns		2615	5	4248		4338		5500		3739		3867
no. of par	rams re	fined	281		246		545		580		566		226
goodness	of fit		1.04	2	1.067		1.136		1.075	5	1.273	3	1.128
Ř1			0.07	4	0.038		0.087		0.074	1	0.132	2	0.038
wR2			0.19	5	0.102		0.244		0.192	2	0.314	ł	0.116
				T.	. L. L. O. C.		- C IV	C1		Data			
Table 3. Summary of Key Structural Data													
,	2.64	M-C(Q	5	$M-C(\sigma)$	M–N	M-Cl(µ	а) M-С	l(termin	nal)	$C(C_5 \text{ ring}) -$	A–	N-M-N	Cent-M-
compd	M^{4+}	ring) (A	4)	(A)	(A)	(A)		(A)		C(cage) (de	g)	(deg)	C(cage) (deg) ^a
1a	Ti	2.391(3)	2.196(3)	1.896(3)					108.7(2)		104.5(2)	105.4
2a	Zr	2.521(8	s)	2.326(7)	2.016(8)					109.4(6)		108.0(3)	101.6
3a	Zr	2.538(2)	2.361(2)	2.030(2)					110.5(2)		106.6(1)	100.6
4a	Zr	2.541(5)	2.348(5)	2.019(4)					104.8(2)		107.3(2)	109.9
5a	Zr	2.561(4	.)	2.362(4)	2.029(4)					105.0(2)		107.6(2)	107.5
6a	Ti	2.369(3)	5)	2.209(2)	1.894(2)					108.5(2)		106.1(2)	105.0
7a	Zr	2.510(3	5)	2.343(3)	2.024(3)					110.7(2)		113.1(2)	100.3
8a	Zr	2.519(5))	2.353(4)	2.015(4)					105.2(2)		110.6(2)	108.4
9a	Zr	2.543(2	()	2.384(2)	2.031(2)					104.7(1)		110.1(1)	107.6
2b	Zr	2.539(1	4)	2.367(12)		2.634(3	3) 2	.449(4)		111.0(14)			98.4
2c	Zr	2.527(9)	2.375(9)		2.641(3	3) 2	.424(3)		109.6(7)			99.5
4b	Zr	2.545(1	2)	2.393(10)	1.000/0	2.622(3	3) 2	.401(3)		104.1(4)			105.4
6b	Ti	2.341(2		2.179(2)	1.862(2)		2	.277(1)		108.5(2)		101 5(0)	105.7
10 ^{<i>p</i>}	Zr	2.544(6)	2.355(5)	2.028(5)		~	004(4)		105.8(2)		104.5(2)	110.3
11 ^c	Ti	2.365(5)	2.178(4)			2	.234(1)		102.0(1)			115.4

^{*a*} Cent = centroid of the five-membered ring of the indenyl or cyclopentadienyl group. ^{*b*} [η^5 : σ -Me₂Si(C₅Me₄)(C₂B₁₀H₁₀)]Zr(NMe₂)₂.^{9b} ^{*c*} [η^5 : σ -Me₂Si(C₅Me₄)(C₂B₁₀H₁₀)]TiCl₂.^{9b}

Results and Discussion

Amide Complexes. Lappert's eariler observation shows that group 4 metallocene compounds can be prepared by an amine elimination reaction.¹⁸ This methodology has then been adopted by several groups to synthesize many group 4 metal amide complexes.^{13,14,19,20} Treatment of $M(NR_2)_4$ with 1 equiv of $Me_2A(C_9H_7)(C_2B_{10}H_{11})$ or $Me_2A(C_5H_5)(C_2B_{10}H_{11})$ (A = C, Si) in toluene at reflux temperature gave, after workup, group 4 metal amides of the general formula [$\eta^{5}:\sigma$ -Me₂A- $(C_9H_6)(C_2B_{10}H_{10})$]M(NR₂)₂ (Scheme 1) and [$\eta^{5}:\sigma$ -Me₂A- $(C_5H_4)(C_2B_{10}H_{10})$]M(NR₂)₂ (Scheme 2) in good isolated yields, respectively. It is noteworthy that Ti(NEt₂)₄ does not react with any one of the neutral ligands mentioned above, due to the steric effects. The prolonged reaction

Scheme 1

would lead to an intensive color of the resulting solution and a lower isolated yield. These complexes are very soluble in polar organic solvents such as THF, DME, pyridine, and ether and soluble in toluene but insoluble in *n*-hexane. They were fully characterized by various spectroscopic data, elemental analyses, and X-ray diffraction studies.

In addition to six multiplets observed in the aromatic region of ¹H NMR spectra of 1a-5a, there are two sets

^{(18) (}a) Chandra, G.; Lappert, M. F. J. Chem. Soc. A 1968, 1940.
(b) Lappert, M. F.; Power, P. B.; Sanger, A. R.; Srivastava, R. C. Metal and Metalloid Amines; Ellis Horwood: Chichester, West Sussex, U.K., 1980.

⁽¹⁹⁾ Herrmann, W. A.; Morawietz, M. J. A. *J. Organomet. Chem.* **1994**, *482*, 169.

⁽²⁰⁾ Diamond, G. M.; Rodewald, S.; Jordan, R. F. Organometallics 1995, 14, 5.

Scheme 2

of singlets in the region 0.5-3.5 ppm corresponding to two diastereotopic bridging atom and nitrogen methyl groups for **1a**, **2a**, and **4a**, and there are two singlets, two triplets, and two quartets in the region 0.5-3.5 ppm attributable to two diastereotopic bridging atoms and nitrogen ethyl groups for **3a** and **5a**. Such diastereotopic splittings are also observed in benzene-*d* solution. These results are consistent with their ¹³C NMR spectra, suggesting that complexes **1a**–**5a** exhibit C_1 symmetry in both pyridine and benzene solutions. The ¹¹B NMR spectra all display a 1:1:2:1 splitting pattern regardless of the central metal ions and R groups.

The ¹H NMR spectra of **6a**–**9a** show a simpler splitting pattern than those of **1a**–**5a** due to the higher symmetry. Besides two multiplets corresponding to the cyclopentadienyl ring, there are two singlets in the region 0.3–3.0 ppm observed in **6a**–**8a** attributable to the bridging Me₂A and M(NMe₂)₂ units, and there are one singlet, one triplet, and one quartet observed in **9a** assignable to Me₂Si and Zr(NEt₂)₂ groups, respectively. These results are consistent with their ¹³C NMR. Their ¹¹B NMR spectra exhibit the same splitting pattern (1: 1:2:1) as that observed in **1a–5a**.

The solid-state structures of **1a**–**9a** confirm that they are all constrained-geometry complexes. The metal is η^5 -bound to one five-membered ring of either the cyclopentadienyl or the indenyl group and σ -bound to a cage carbon atom and two amido groups (NR₂) in a distortedtetrahedral geometry. Some are isostructural but not isomorphous. Their representative structures are shown in Figures 1–4, respectively.

Overall, the key structural parameters observed in **2a–5a**, **7a–9a**, and $[\eta^5:\sigma\text{-Me}_2\text{Si}(C_5\text{Me}_4)(C_2\text{B}_{10}\text{H}_{10})]\text{Zr-}$

Figure 1. Molecular structure of $[\eta^{5:}\sigma\text{-Me}_2C(C_9H_6)-(C_2B_{10}H_{10})]$ Ti(NMe₂)₂ (**1a**) (thermal ellipsoids drawn at the 35% probability level).

Figure 2. Molecular structure of $[\eta^{5}:\sigma-Me_2Si(C_9H_6)-(C_2B_{10}H_{10})]Zr(NEt_2)_2$ (**5a**) (thermal ellipsoids drawn at the 35% probability level).

Figure 3. Molecular structure of $[\eta^{5:}\sigma\text{-Me}_2C(C_5H_4)-(C_2B_{10}H_{10})]$ Ti(NMe₂)₂ (**6a**) (thermal ellipsoids drawn at the 35% probability level).

Figure 4. Molecular structure of $[\eta^{5}:\sigma$ -Me₂Si(C₅H₄)-(C₂B₁₀H₁₀)]Zr(NEt₂)₂ (**9a**) (thermal ellipsoids drawn at the 35% probability level).

 $(NMe_2)_2^{9b}$ (Table 3) are close to each other, suggesting that the central Zr atom adopts very similar geometries in these complexes. On the other hand, some trends do exist: (1) slightly longer $Zr-C(C_5 \operatorname{ring})$, $Zr-C(\sigma)$, and Zr-N bond distances are observed in $Zr(NEt_2)_2$ -containing complexes and (2) larger $C(C_5 \operatorname{ring})-A-C(\operatorname{cage})$ angles are also observed in complexes with a Me₂C linkage, which are probably due to the greater steric bulk of NEt₂ versus NMe₂ and Me₂Si versus Me₂C, respectively.

The nitrogen atoms (N(1) and N(2)) in 1a-9a are flat (sum of angles around N \sim 360°), which indicates the sp² hybridization at N and partial $N(p_{\pi}) \rightarrow M(d_{\pi})$ (M = Ti, Zr) interactions. The lack of additional electron donation from the carboranyl group to the M center strengthens this $p_{\pi} \rightarrow d_{\pi}$ interactions, leading to noticeably shorter M-N bond distances (see Table 3) compared with the corresponding Zr-N bond distances of 2.062(5) Å in [Me₂Si(C₅Me₄)(NBu⁴)]Zr(NMe₂)₂,¹⁴ 2.057(9) Å in *rac*- $[C_2H_4(C_9H_6)_2]$ Zr(NMe₂)₂,²¹ 2.07 Å in Zr(NMe₂)₄,²² and 2.06 Å in $(Me_2N)_2Zr(\mu-NBu^l)_2Zr(NMe_2)_2^{23}$ and Ti-N bond distances of 1.915(4) Å in [Me₂Si(C₅H₄)(NBu⁴)]Ti-(NMe₂)₂,¹⁴ 1.921(14) Å in (C₅Me₅)Ti(NMe₂)₃,²⁴ and 1.940(10) Å in Ti[N(SiMe₃)₂]₃Cl.²⁵

Chloride Complexes. It is documented that treatment of Cp₂Zr(NMe₂)₂ with excess Me₃SiCl results in a clean formation of Cp₂ZrCl₂.²⁶ However, reaction of $[\eta^5:\sigma-Me_2C(C_5H_4)(C_2B_{10}H_{10})]Ti(NMe_2)_2$ (6a) with excess Me₃SiCl in toluene or CH₂Cl₂ at room temperature generated $[\eta^{5}:\sigma-Me_{2}C(C_{5}H_{4})(C_{2}B_{10}H_{10})]TiCl(NMe_{2})$ (6b) in 65% isolated yield. The same product was isolated even at reflux temperature, suggesting that 6b does not react further with Me₃SiCl (Scheme 3). Similarly, reaction of $[\eta^5:\sigma-Me_2A(C_9H_6)(C_2B_{10}H_{10})]Zr(NMe_2)_2$ (A = C (2a), Si (4a)) with excess Me₃SiCl in toluene at room temperature or at 100 °C overnight did not lead to a complete conversion of Zr(NMe₂)₂ to ZrCl₂ on the basis of spectroscopic and elemental analyses, presumably due to steric reasons. We then turned our attention to other method.

It is reported that the stoichiometric addition of acid (HCl) in the form of Me₂NH·HCl or Me₃N·HCl to the amide complexes results in the clean formation of chloride derivatives.^{13,14} Reaction of [η^5 : σ -Me₂Si(C₉H₆)- $(C_2B_{10}H_{10})$]Zr(NMe₂)₂ (4a) with excess Me₃SiCl in toluene at room temperature overnight followed by treatment with 2 equiv of Me₂NH·HCl gave, after recrystallization from a CH_2Cl_2 solution, the ionic complex $[Me_2NH_2][{\eta^5:\sigma-Me_2Si(C_9H_6)(C_2B_{10}H_{10})}ZrCl(\mu-Cl)_{1.5}]_2$ $0.5CH_2Cl_2$ (**4b**) in 51% isolated yield. This yield can be greatly improved up to 81% by direct treatment of 4a with 2.5 equiv of Me₂NH·HCl in toluene. If Me₃N·HCl was used to replace Me₂NH·HCl, the corresponding Me₃NH⁺ salts [Me₃NH][{ $\eta^{5}:\sigma$ -Me₂A(C₉H₆)(C₂B₁₀H₁₀)}- $ZrCl(\mu-Cl)_{1.5}]_2 \cdot S$ (A = C, S = CH₂Cl₂ (**2b**); A = Si, S = THF (4c)) were isolated in a typical yield of 85%. It is

(26) For examples, see: Diamond, G. M.; Jordan, R. F.; Petersen, J. L. Organometallics 1996, 15, 4045 and refs 13, 14, and 21.

surprising that the Zr-C(cage) bond remains intact. The chloride derivative can also be prepared by a salt metathesis reaction. An equimolar reaction between $ZrCl_4(THF)_2$ and $[Me_2C(C_9H_6)(C_2B_{10}H_{10})]Li_2$ in ether produced, after recrystallization from a toluene/THF solution, { $[\eta^5:\sigma-Me_2C(C_9H_6)(C_2B_{10}H_{10})]ZrCl(\mu-Cl)_{1.5}$ }₂{Li- $(THF)_2$ · C₇H₈ (**2c**) in 60% yield. Treatment of **2c** with 1 equiv of Me₃N·HCl in CH₂Cl₂ resulted in the clean formation of **2b**. The above-mentioned transformations are outlined in Scheme 4.

The ¹H NMR spectra of **2b**,**c** and **4b**,**c** all show six multiplets in the aromatic region and two singlets corresponding to the bridging Me₂A group, which is similar to those observed in their parent amide complexes. These results are supported by the ¹³C NMR spectra. Replacement of one NMe2 group by a Cl atom in 6a reduces its symmetry, resulting in the observation of four multiplets of the cyclopentadienyl ring and two singlets of the Me₂C unit in the ¹H NMR spectrum of 6b compared with two multiplets of the cyclopentadienyl

⁽²¹⁾ Christopher, J. N.; Diamond, G. M.; Jordan, R. F. Organometallics 1996, 15, 4038.

⁽²²⁾ Hagen, K.; Holwill, C. J.; Rice, D. A.; Runnacles, J. D. Inorg. Chem. 1988, 27, 2032.

⁽²³⁾ Nugent, W. A.; Harlow, R. L. *Inorg. Chem.* **1979**, *18*, 2030.
(24) Martin, A.; Mena, M.; Yelamos, C.; Serrano, R.; Raithby, P. R. J. Organomet. Chem. **1994**, *467*, 79.

⁽²⁵⁾ Airoldi, C.; Brandley, D. C.; Chudzynska, H.; Hursthouse, M. B.; Abdul Malik, K. M.; Raithby, P. R. J. Chem. Soc., Dalton Trans. 1980, 2010.

Figure 5. Molecular structure of $[\eta^{5:}\sigma\text{-Me}_2C(C_5H_4)-(C_2B_{10}H_{10})]$ TiCl(NMe₂) (**6b**) (thermal ellipsoids drawn at the 35% probability level).

Figure 6. Molecular structure of the anion $[\{\eta^5:\sigma-\text{Me}_2\text{C}-(\text{C}_9\text{H}_6)(\text{C}_2\text{B}_{10}\text{H}_{10})\}\text{ZrCl}(\mu\text{-Cl})_{1.5}]_2^-$ in **2b** (thermal ellipsoids drawn at the 35% probability level).

ring and one singlet of the Me_2C unit found in the ¹H NMR spectrum of its parent complex **6a**. This is further supported by the ¹³C NMR spectrum of **6b**. The ¹¹B NMR spectra of all chloride complexes exhibit a 1:1:2:1 splitting pattern that is the same as their parent amide complexes.

An X-ray analysis reveals that 6b adopts a monomeric structure, shown in Figure 5. The structural features are similar to those of its parent amide complex 6a, except for the replacement of one NMe₂ group with one chlorine atom. The average $Ti-C(C_5 ring)$ distance of 2.341(2) Å and Ti $-C(\sigma)$ distance of 2.179(2) Å are comparable to the corresponding distances of 2.365(5) and 2.178(4) Å found in $[\eta^5:\sigma-Me_2Si(C_5Me_4)(C_2B_{10}H_{10})]$ -TiCl₂, respectively.^{9b} The Ti–N distance of 1.862(2) Å is shorter than the corresponding value of 1.894(2) Å in its parent complex 6a and the 1.896(3) Å in the closely related complex 1a. On the other hand, the Ti-Cl distance of 2.277(1) Å is longer than the corresponding distance of 2.234(1) Å in $[\eta^5:\sigma-Me_2Si(C_5Me_4)(C_2B_{10}H_{10})]$ - $TiCl_2^{9b}$ and 2.264(1) Å in $[Me_2Si(C_5H_4)NBu^t]TiCl_2$.¹⁴ The shorter Ti-N and longer Ti-Cl distances in **6b** clearly indicate the presence of $p_{\pi} \rightarrow d_{\pi}$ interactions.

X-ray diffraction studies show that **4b** and **2b** are isostructural and isomorphous. Figure 6 shows their representative structure. It is noted that the structure of **4b** is relatively poorly refined in comparison with that of **2b**, due to the disorder problems of both $Me_2NH_2^+$ and CH_2Cl_2 . Their solid-state structures consist of alternating layers of discrete cations $[Me_2NH_2]^+$ or

Figure 7. Molecular structure of $\{[\eta^{5}:\sigma-\text{Me}_2\text{C}(\text{C}_9\text{H}_6)-(\text{C}_2\text{B}_{10}\text{H}_{10})]\text{ZrCl}(\mu-\text{Cl})_{1.5}\}_2\{\text{Li}(\text{THF})_2\}$ (**2c**) (the solvated toluene molecule is not shown; thermal ellipsoids drawn at the 35% probability level).

 $[Me_3NH]^+$ and anions $\{[\eta^{5}:\sigma-Me_2A(C_9H_6)(C_2B_{10}H_{10})]$ -ZrCl(μ -Cl)_{1.5} $\}_2^-$. The anion is a dimeric species bearing the Zr(μ -Cl)₃Zr moiety. Each Zr atom is η^5 -bound to one five-membered ring of the indenyl group and σ -bound to a cage carbon atom, one terminal chlorine atom, and three doubly bridging chlorine atoms in a distortedoctahedral geometry. They are formally 16-electron complexes. These results differ significantly from the Ti complexes **6b** and $[\eta^5:\sigma-Me_2Si(C_5Me_4)(C_2B_{10}H_{10})]$ -TiCl₂^{9b} probably due to steric reasons.

Replacement of $[Me_3NH]^+$ with Li⁺ results in the formation of the new complex **2c**. As shown in Figure 7, the Li···Cl interactions force two terminal chlorine atoms to be on the same side, although the coordination environment of each Zr atom in **2c** is very similar to that of **2b** or **4b**. These electrostatic interactions lead to a dramatic decrease of the Cl(1)Zr(1)Zr(2)Cl(5) torsion angles from 102.9° in **2b** and 98.4° in **4b** to 17.2° in **2c**.

The average $\text{Zr}-\text{Cl}(\mu)$ and Zr-Cl(terminal) distances fall in the ranges 2.622(3)–2.641(3) and 2.401(3)– 2.449(4) Å, respectively. There is no other example of such [$\text{Zr}_2(\mu$ -Cl)_3] bridges containing zirconium in oxidation state IV. The measured $\text{Zr}-\text{Cl}(\mu)$ distances can be compared to the 2.6288(8) and 2.6797(9) Å in [{C₅H₄-(CH₂)₃NMe}Zr(CH₂C₆H₅)(μ -Cl)]₂¹³ and 2.692(2) and 2.579(2) Å in [(C₅Me₅)Zr(CH₂CH₂SiMe₃)Cl(μ -Cl)]₂.²⁷ The measured terminal Zr–Cl distances are comparable to the 2.408(1) Å in [Me₂Si(C₅Me₄)(NBu^t)]ZrCl₂,¹⁴ 2.450(1) Å in [Me₂Si(C₅Me₄)(NCH₂CH₂NMe₂)]ZrCl₂,²⁸ and 2.410(2) Å in [(C₅H₅)Zr(NPrⁱ₂)Cl₂.²⁹

Ethylene Polymerizations. Group 4 metal chloride complexes **2b**, **c** and **4b**, **c** underwent preliminary testing for catalytic activity, using modified methylalumoxane (MMAO) as cocatalyst (Al/Zr = 1500) in toluene at 60 °C (30 min., 1 atm of ethylene). The results are compiled in Table 4. All four complexes exhibit very high ethylene polymerization activity in the presence of MMAO. No clear ligand and cation effects on activity are evident from the data yet available. Molecular weights of the polymer samples could not be measured because of very

⁽²⁷⁾ Arnold, J.; Engeler, M. P.; Elsner, F. H.; Heyn, R. H.; Tilley, T. D. Organometallics **1989**, *8*, 2284.

⁽²⁸⁾ Du Plooy, K. E.; Moll, U.; Wocaldo, S.; Massa, W.; Okuda, J. Organometallics **1995**, *14*, 3129.

⁽²⁹⁾ Pupi, R. M.; Coalter, J. N.; Petersen, J. L. *J. Organomet. Chem.* **1995**, *497*, 17.

Table 4. Ethylene Polymerization Results^a

catalyst	yield (g)	activity (10 ⁶ g/(mol atm h))	T_{m} (°C) ^b
2b	5.01	3.34	130.5
2c	4.10	2.73	131.2
4b	3.92	2.61	129.8
4 c	4.36	2.91	129.5

^{*a*} Conditions: toluene (50 mL), 1 atm of ethylene, T = 60 °C, catalyst (3.0 μ mol), MMAO (4.5 mmol), Al/Zr = 1500, time 30 min. ^{*b*} Measured by DSC.

low solubility in polar organic solvents. However, melting temperatures (T_m) measured by differential scanning calorimetry (DSC) are typical of high-density polyethylene. No methyl bending resonances at around 1376 cm⁻¹ were observed in the IR spectra of the resulting polymers, suggesting that the branching might be absent.³⁰

Summary

Several new group 4 metal amide and chloride complexes with recently developed constrained-geometry carborane ligands $[Me_2A(C_9H_6)(C_2B_{10}H_{10})]^{2-}$ and $[Me_2A(C_5H_4)(C_2B_{10}H_{10})]^{2-}$ (A = C, Si) have been prepared and structurally characterized. The chloride derivatives exhibit a very high ethylene polymerization activity when they are activated with MMAO.

This work shows that the aminolysis reaction is very sensitive to the steric crowding of reactants. For example, there is no reaction between $Ti(NEt_2)_4$ and $Me_2A-(C_9H_7)(C_2B_{10}H_{11})$ or $Me_2A(C_5H_5)(C_2B_{10}H_{11})$, although both $Zr(NEt_2)_4$ and $Ti(NMe_2)_4$ react readily with these neutral ligands to give amide complexes in good yield.

Unlike most of the reported examples,²⁶ excess Me₃SiCl can only convert one $M-NMe_2$ to M-Cl; the second $M-NMe_2$ group remains intact even at higher temperatures. Again, steric factors play a role in these reactions. On the other hand, $Me_2NH\cdotHCl$ or $Me_3N\cdotHCl$ can effectively convert the $M(NMe_2)_2$ moiety to the MCl_2 group without attacking the M-C(cage) bond.

Acknowledgment. We thank Prof. Changtao Qian and Dr. Yaofeng Chen for help in performing polymerization experiments. The work described in this paper was supported by a grant from the Research Grants Council of the Hong Kong Special Administration Region (Project No. CUHK 4267/00P) and The Chinese University of Hong Kong Direct Grant (Project No. 2060187).

Supporting Information Available: Tables of crystallographic data and data collection details, atomic coordinates, bond distances and angles, anisotropic thermal parameters, and hydrogen atom coordinates and figures giving atomnumbering schemes for complexes **1a**–**9a**, **2b**,**c**, **4b**, and **6b**. This material is available free of charge via the Internet at http://pubs.acs.org.

OM010642A

⁽³⁰⁾ Koenig, J. L. Chemical Microstructure of Polymer Chains; Wiley: New York, 1982; p 63.