

Volume 20, Number 25, December 10, 2001 © Copyright 2001

American Chemical Society

Communications

Direct Observation of the Conversion of a Palladium 5-Hexenyl Chelate Complex to a Palladium Cyclopentylmethyl Complex

Nicholas S. Perch and Ross A. Widenhoefer*

P. M. Gross Chemical Laboratory, Duke University, Durham, North Carolina 27708-0346

Received October 5, 2001

*Summary: Warming a solution of {(phen)Pd[η1:η2- CH(CH2SiEt3)CH2C(CO2Me)2CH2CH*d*CH2]}*+*[BAr4]*- *(4)* $at -41$ °*C led to first-order decay (k = (4.7* \pm 0.3) \times 10⁻⁴ $M s^{-1}$, $\Delta G^{\dagger} = 17.1 \pm 0.1$ kcal mol⁻¹) with formation of *the palladium cyclopentylmethyl complex {(phen)Pd-*

[CH2CHCH2C(CO2Me)2CH2CHCH2SiEt3](NCAr)}+*- [BAr₄]* \sim *(5) in 96* \pm *10% yield (¹H NMR).*

The *â*-migratory insertion of a coordinated olefin into the M-C bond of a transition-metal alkyl olefin chelate complex is the presumed $C-C$ bond forming process in numerous transition-metal-mediated and -catalyzed annulation protocols.¹ In contrast, the majority of wellcharacterized transition-metal alkyl olefin chelate complexes are unreactive toward insertion.2 In two rare exceptions, insertion of Pt^3 and Y^4 4-pentenyl chelate complexes was implicated by the scrambling of deuterium atoms between the $C(1)$ and $C(3)$ carbon atoms of the pentenyl ligand. However, in neither case was the presumed cyclobutylmethyl insertion product observed.3,4 Although *â*-migratory insertion has been directly observed in a small number of nonchelated alkyl olefin complexes,⁵ the effect of the chelate backbone on β -migratory insertion remains unknown and may be significant due to the geometric constraints of this transformation.6 Here we report the first direct observation of the *â*-migratory insertion of a coordinated olefin into the ^M-C bond of a transition-metal alkyl olefin chelate complex.

We have developed several related procedures for the cyclization/hydrosilylation of functionalized dienes catalyzed by cationic palladium phenanthroline⁷ and optically active palladium pyridine-oxazoline complexes.⁸ Based on the work of Brookhart,⁹ we have proposed a mechanism for palladium-catalyzed diene cyclization/ hydrosilylation initiated by insertion of one of the double

^{(1) (}a) Ojima, I.; Tzamarioudaki, M.; Li, Z.; Donovan, R. J. *Chem. Rev.* **1996**, *96*, 635. (b) Lautens, M.; Klute, W.; Tam, W. *Chem. Rev.* **1996**, *96*, 49. (c) Trost, B. M. *Angew. Chem., Int. Ed. Engl.* **1995**, *34*, 259.

⁽²⁾ Lehmkuhl, H. *Pure Appl. Chem*. **1986**, *58*, 495 and references therein.

^{(3) (}a) Flood, T. C.; Bitler, S. P. *J. Am. Chem. Soc.* **1984**, *106*, 6076. (b) Ermer, S. P.; Struck, G. E.; Bitler, S. P.; Richards, R.; Bau, R.; Flood,

T. C. *Organometallics* **1993**, *12*, 2634. (4) (a) Casey, C. P.; Hallenbeck, S. L.; Pollock, D. W.; Landis, C. R. *J. Am. Chem. Soc.* **1995**, *117*, 9770. (b) Casey, C. P.; Hallenbeck, S. L.; Wright, J. M.; Landis, C. R. *J. Am. Chem. Soc.* **1997**, *119*, 9680.

⁽⁵⁾ Rix, F. C.; Brookhart, M.; White, P. S. *J. Am. Chem. Soc.* **1996**,

¹¹⁸, 2436 and refs 11-22 therein. (6) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. *Principles and Applications of Organotransition Metal Chemistry*; University Science Books: Mill Valley, CA, 1987; pp 383-391. (7) (a) Widenhoefer, R. A.; DeCarli, M. A. *J. Am. Chem. Soc.* **1998**,

¹²⁰, 3805. (b) Stengone, C. N.; Widenhoefer, R. A. *Tetrahedron Lett*. **1999**, *40*, 1451. (c) Widenhoefer, R. A.; Stengone, C. N. *J. Org. Chem*. **1999**, *64*, 8681. (d) Widenhoefer, R. A.; Vadehra, A. *Tetrahedron Lett.*
1999, *40*, 8499. (e) Wang, X.; Chakrapani, H.; Stengone, C. N.; Widenhoefer, R. A. *J. Org. Chem.* **2001**, *66*, 1755.
(8) (a) Perch, N. S.; W

⁽d) Pei, T.; Widenhoefer, R. A. *Tetrahedron Lett*. **2000**, *41*, 7597. (e) Pei, T.; Widenhoefer, R. A. *J. Org. Chem.*, in press.

⁽⁹⁾ LaPointe, A. M.; Rix, F. C.; Brookhart, M. *J. Am. Chem. Soc.* **1997**, *119*, 906.

bonds of the diene into the Pd-Si bond of the palladium silyl complex **I** to form the palladium alkyl olefin chelate complex **II** (Scheme 1).⁷ β -Migratory insertion of the coordinated olefin into the Pd-C bond of **II** could form the palladium cyclopentylmethyl intermediate **III**, which could react with silane to release the carbocycle and regenerate **I**.

In an effort to support our proposed cyclization/ hydrosilylation mechanism, we have investigated the reaction of dimethyl diallylmalonate (**1**) with the cationic palladium silyl complex $[(phen)Pd(SiEt₃)(NCAr)]⁺$ $[BAr_4]^-$ (Ar = 3,5-C₆H₃(CF₃)₂) (2) by low-temperature NMR spectroscopy. Thermally sensitive **2** was generated in quantitative yield (101 \pm 10% by ¹H NMR) by addition of HSiEt₃ (1 equiv) to a CD_2Cl_2 solution of $[(phen)Pd(Me)(NCAT)]^{+}[BAT_{4}]^{-}$ (3) (42 mM) at -81 °C and was characterized in solution by ¹H NMR spectroscopy (Scheme 2).10 Silylation of **3** was established by the disappearance of the Pd-CH₃ resonance of **3** (δ 1.23) and the appearance of the $Pd-SiEt_3$ resonances of **2** (δ 0.97 (q), 1.06 (t), $J = 7.5$ Hz) and free methane (δ 0.21) in the 1H NMR spectrum.

Addition of **1** (1 equiv) to a solution of **2** at -62 °C led to rapid ($t_{1/2} \leq 5$ min) formation of the palladium 2-((triethylsilyl)methyl)-5-hexenyl chelate complex ${(phen)Pd[η ¹: η ²-CH(CH₂SiEt₃)CH₂C(CO₂Me)₂CH₂CH=$ CH_2]⁺[BAr₄]⁻ (4) in 84 \pm 10% yield by ¹H NMR spectroscopy as a single diastereomer.¹¹ Thermally sensitive 4 was characterized in solution at -62 °C by NMR spectroscopy.12 The 1H NMR spectrum of **4** displayed a one-proton multiplet at *^δ* 2.66 (Pd-C*H*), a one-proton doublet of doublets at δ 1.11 ($J = 3$, 13 Hz, $-CHHSiEt_3$), and a one-proton triplet at δ 1.23 ($J = 13$ Hz, $-CHHSEt₃$, which together established insertion of an olefin of **¹** into the Pd-Si bond of **²**. Olefin coordination was established by the large difference of

 J_{HH} coupling constants for **4** and **5** was facilitated by spectroscopic analysis of {(phen)Pd[*η*¹:*η*²-CD(CH₂SiEt₃)CH₂C(CO₂Me)₂CH₂CD=CH₂]} $[BAT_4]^-$ (4-*d*₂), {(phen)Pd[η ¹: η ²-CH(CH₂SiEt₃)CD₂C(CO₂Me)₂CD₂CH= CH_2]⁺[BAr₄]⁻ (4-*d*₄), {(phen)Pd[CH₂CDCH₂C(CO₂Me)₂CH₂CDCH₂-

 $SiEt_3[(NCAr)]^+[BAr_4]^-$ (5-*d*₂), and $\{(\text{phen})Pd[CH_2CHCD_2C(CO_2Me)_2-$

CD2CHCH2SiEt3](NCAr)}+[BAr4]- (**5**-*d*4) and through 1H COSY analysis of **4** and **5**.

the 1H NMR chemical shifts of the olefinic protons of **4** $(\delta$ 6.41 (m), 5.44 ($J_{\text{cis}} = 9$ Hz), and 4.22 ($J_{\text{trans}} = 16$ Hz)) relative to the corresponding olefinic resonances of uncomplexed **1** (*δ* 5.53, 5.09, and 5.06). Olefin coordination was further supported by the large difference of the ¹³C NMR chemical shifts and reduced $J_{C=C}$ coupling constant¹³ of the olefinic carbon atoms of {(phen)Pd[*η*¹:*η*²-¹³CH(¹³CH₂SiEt₃)¹³CH₂C(CO₂Me)₂¹³- CH_2 ¹³CH=¹³CH₂]}⁺[BAr₄]⁻ (**4**-¹³C₆) (*δ* 103.7 (dd), 87.5 (d), $J_{\text{C}=C} = 47$ Hz), relative to the olefinic carbon atoms of uncomplexed **1**⁻¹³C₆ (δ 131.4 (dd), 119.7 (d), $J_{C=C}$ = 69 Hz) under identical conditions. We assign **4** an axial boatlike conformation on the basis of DFT calculations of the hypothetical palladium hexenyl chelate complex {(NH=CHCH=NH)Pd[*η*¹:*η*²-CH(CH₂Me)CH₂C(Me)₂CH₂- $CH=CH₂]$ ⁺ (4a).¹⁴

Warming a solution of **4** and NCAr (released in the formation of **4**) at -41 °C for 2 h led to β -migratory insertion and formation of the palladium cyclopentyl-

methyl complex $\{(\text{phen})\text{Pd}[\text{CH}_2\text{CHCH}_2\text{C}(\text{CO}_2\text{Me})_2-\}$

 $CH_2CHCH_2SiEt_3[(NCAr)]^+[BAr_4]^-$ (5) in 96 \pm 10% yield by 1H NMR spectroscopy as a single diastereomer. Thermally sensitive **5** was characterized in solution by ¹H and ¹³C NMR spectroscopy at -41 °C.^{11,12} The ¹H NMR spectrum of **5** displayed two one-proton multiplets at *δ* 1.67 and 1.80, assigned to the cyclopentyl methine protons, and two one-proton doublets of doublets at *δ* 2.09 ($J = 8$, 11 Hz) and 2.52 ($J = 4$, 8 Hz), assigned to the palladium-bound methylene group, which together established *â*-migratory insertion and cyclopentyl ring

⁽¹⁰⁾ Similar palladium silyl complexes have been reported.9 (11) No byproducts were observed in any of these transformations. The formation of **6** in 93% overall yield from **3** suggests that the yield for the conversion of **2** to **4** was higher than indicated by ¹H NMR.
(12) Assignment of ¹H NMR resonances and determination of

⁽¹³⁾ Benn, R.; Rufin˜ ska, A. *J. Organomet. Chem*. **1982**, *238*, C27. (14) Landis, C. R.; Feldgus, S. Unpublished results.

formation. Disappearance of 4 at -41 °C obeyed firstorder kinetics to >3 half-lives with a rate constant of *^k* $= (4.7 \pm 0.3) \times 10^{-4}$ M s⁻¹ ($\Delta G^{\ddagger} = 17.1 \pm 0.1$ kcal mol⁻¹). The barrier for β -migratory insertion of **4** to form **5** was significantly lower than the insertion barriers of unchelated (phen) $Pd(R)$ (ethylene)⁺ complexes, which range from 18.5 to 19.4 kcal mol⁻¹.¹⁵

Warming a solution of 5 at -9 °C for 2 h led to rearrangement and formation of the thermally stable cyclopentyl chelate complex {(phen)Pd[CHCH(Me)CH-

 $(CH_2SiEt_3)CH_2C(C\overset{\,\,{}_\circ}{O}OMe)(COOMe)]$ }⁺[BAr₄]⁻ (6) in 110

 $\overline{\pm 10\%}$ yield (93 \pm 10% from **3**) by ¹H NMR spectroscopy as a single diastereomer (Scheme 2).15 Complex **6** was subsequently isolated in 78% yield from the preparativescale reaction of [(phen)Pd(Me)(CH3CN)]+[BAr4]- (**3a**), 1, and HSiEt₃ and was characterized by spectroscopy and elemental analysis. The 1H NMR spectrum of **6** displayed a one-proton doublet at δ 2.47 ($J = 10.5$ Hz, Pd-C*H*) and a three-proton doublet at δ 1.20 ($J = 6.5$) Hz, CH-C*H*3), which together established migration of the palladium atom from the exocyclic methylene carbon to the cyclopentyl ring.

Cyclopentylmethyl complex 5 reacted with HSiEt₃ (1.6) equiv) within 5 min at -40 °C to form a 1:1 mixture of **2** and 1,1-dicarbomethoxy-3-((triethylsilyl)methyl)-4 methylcyclopentane (**7**) as the exclusive products (Scheme 2). In comparison, reaction of 6 with $HSEt₃$ required 2 h at room temperature to form **7** as the exclusive organic product (Scheme 2).16 The facile silylation of **5** coupled with the slow isomerization of **5** to **6** precludes the

(15) Rix, F. C.; Brookhart, M.; White, P. S. *J. Am. Chem. Soc*. **1995**, *117*, 1137.

intermediacy of **6** in the palladium-catalyzed cyclization/ hydrosilylation of **1**.

In summary, conversion of the palladium 5-hexenyl chelate complex **4** to the palladium cyclopentylmethyl complex **5** represents the first direct observation of the *â*-migratory insertion of a coordinated olefin into the ^M-C bond of a transition-metal alkyl olefin chelate complex. In addition, the experiments described above provide direct support for the intermediacy of complexes **2**, **4**, and **5** and rule out the intermediacy of cyclopentyl chelate complex **6** in the palladium-catalyzed cyclization/hydrosilylation of **1**.

Acknowledgment is made to the National Institutes of Health (Grant No. GM59830-01) for support of this research. R.W. thanks DuPont for a Young Professor award, the Alfred P. Sloan Foundation for a Research Fellowship, and the Camille and Henry Dreyfus Foundation for New Faculty and Teacher-Scholar Awards. We thank Dr. Susan L. Hallenbeck for helpful discussions, Prof. Clark R. Landis and Dr. Steven Feldgus for performing DFT calculations on **4a**, Mr. Jeff Cross for obtaining the ¹³C NMR spectra of 4 -¹³C₆ and 5 -¹³C₆, and Mr. Tao Pei for synthesizing $1^{13}C₆$.

Supporting Information Available: Text and figures giving experimental procedures and spectroscopic data for the synthesis of new compounds and isotopomers and kinetic data for the conversion of **4** to **5** and of **5** to **6**. This material is available free of charge via the Internet at http://pubs.acs.org.

OM010876U

⁽¹⁶⁾ We assume complex **2** was also formed in this reaction. However, the low thermal stability of **2** precluded its detection under these conditions.