Configurational Stability at Ruthenium Revisited

Sir: Recently, Brunner and Zwack¹ investigated the configurational stability at ruthenium of the complexes (η^{6} -cymene)RuX[C₆H₄CH(Me)NMe₂] (X = Cl, I), which were found to exist as two diastereomers that are epimeric at ruthenium by ¹H NMR spectroscopy in room-temperature solutions. The authors prepared solutions of the crystals of these complexes in CD₂Cl₂ at -80 °C and measured their ¹H NMR spectra at this temperature. The ¹H NMR spectra showed only the resonances attributed to the major diastereomer of each complex. Only at higher temperatures were the signals due to the minor diastereomer observed.

We have since revisited three of our previously reported² analogous complexes— $(\eta^6-C_6H_6)RuX[C_6H_4CH-(Me)NMe_2]$ (X = N₃, NCO, NCS)—by their method. By dissolving crystals of these complexes in acetone- d_6 at -90 °C and obtaining ¹H NMR spectra of the resulting solutions at this temperature, we see only the resonances attributed to the major diastereomer of each complex. Epimerization at higher temperatures produces the same equilibrium diastereomeric mixtures that we previously reported² within 2 days. Detailed kinetic measurements have not been made. On the basis

of Brunner's report¹ and our current results, we see no reason that similar diastereomeric complexes we have reported³ in the series (η^6 -arene)RuX[C \sim N] should be any more configurationally stable at ruthenium. We concede that each complex we have reported may be configurationally labile at ruthenium, contrary to what we had previously postulated.^{2,3}

Heather D. Hansen and John H. Nelson*

Department of Chemistry/216, University of Nevada, Reno, Nevada 89557-0020

Received September 21, 2001 OM0108402

J. H. Organometallics **1999**, *18*, 709. (d) Gül, N.; Nelson, J. H. Polyhedron **1999**, *18*, 1835.

⁽¹⁾ Brunner, H.; Zwack, T. Organometallics 2000, 19, 2423.

⁽²⁾ Hansen, H. D.; Maitra, K.; Nelson, J. H. Inorg. Chem. 1999, 38, 2150.

^{(3) (}a) Attar, S.; Nelson, J. H.; Fischer, J.; De Cian, A.; Sutter, J.-P.; Pfeffer, M. *Organometallics* **1995**, *14*, 4559. (b) Attar, S.; Catalano,

V. J.; Nelson, J. H. *Organometallics* **1995**, *14*, 4559. (b) Attar, S.; Catalano, V. J.; Nelson, J. H. *Organometallics* **1996**, *15*, 2932. (c) Gül, N.; Nelson,