Activation of the Propargylic C–H Bond and Formation of the Unsaturated C₃S₂ Five-Membered Rings on the **RuSSRu** Core

Hiroyasu Sugiyama, Yoshihiro Moriya, and Kazuko Matsumoto*

Department of Chemistry, School of Science and Engineering, and Advanced Research Institute of Science and Technology, Waseda University, and Japan Science and Technology Corporation, 3-4-1 Ohkubo, Shinjuku, Tokyo 169-8555, Japan

Received July 20, 2001

The reactions of the disulfide-bridged dinuclear Ru^{III} complex [{ $Ru(P(OCH_3)_3)_2(CH_3CN)_3$ }_2- $(\mu$ -S₂)](CF₃SO₃)₄ (1) with terminal and internal alkynes gave [{Ru(P(OCH₃)₃)₂(CH₃CN)₃}₂- $(\mu$ -SCR¹=CHCHR²S)](CF₃SO₃)₄ (**2**, R¹ = H, R² = SC₆H₅; **3**, R¹ = H, R² = C₂H₅; **4**, R¹ = CH₃, $R^2 = H$; 5, $R^1 = C_2H_5$, $R^2 = CH_3$, 6, $R^1 = C_6H_5$, $R^2 = H$), in which an unsaturated C_3S_2 five-membered ring is formed via activation of the propargylic C-H bond. Treatment of 1 with an unsymmetric alkyne, 2-pentyne, gave a mixture of $[{Ru(P(OCH_3)_3)_2(CH_3CN)_3}_2(\mu SC(CH_3) = CHCH(CH_3)S) (CF_3SO_3)_4$ (7) and $[{Ru(P(OCH_3)_3)_2(CH_3CN)_3}_2(\mu-SC(CH_2CH_3)=$ $CHCH_2S$)](CF₃SO₃)₄ (8), which corresponds to the activation of secondary and primary propargylic C-H bonds, respectively. The reaction at 0 °C preferably gave 7, whereas 8 was obtained as the major component at 40 °C.

Introduction

Synthesis of the active centers of the biomolecules has been one of the most important research targets of transition metal sulfur chemistry. Among such active centers, molybdopterin, having a dithiolene ligand coordinated to the molybdenum center, has been widely investigated.¹ In the biomimetic approach to the molybdopterin, reaction of transition metal sulfides with alkynes is widely used to synthesize the model metalpterin complexes,² as well as the direct transmetalation of a dithiolene ligand to the metal center.³ Actually, many types of inorganic sulfur ligands on the transition metal center undergo [2+3] cycloaddition reactions with alkynes to give the dithiolene complexes.⁴⁻¹¹ It is also reported that $[{(S_2)MoS}_2(\mu-S)_2]^{2-1}$ reacts with RC=CR (R = COOCH₃) to give [{(SSCR=

- (2) Pilato, R. S.; Eriksen, K. A.; Greaney, M. A.; Stiefel, E. I.; Goswami, S.; Kilpatrick, L.; Spiro, T. G.; Taylor, E. C.; Rheingold, A. L. J. Am. Chem. Soc. 1991, 113, 9372.
- (3) Fisher, B.; Enemark, J. H.; Basu, P. J. Inorg. Biochem. 1998, 72. 13.
- (4) (a) Goodman, J. T.; Inomata, S.; Rauchfuss, T. B. J. Am. Chem. *Soc.* **1996**, *118*, 11674. (b) Goodman, J. T.; Rauchfuss, T. B. *Inorg. Chem.* **1998**, *37*, 5740.
- (5) (a) Kawaguchi, H.; Tatsumi, K. *J. Am. Chem. Soc.* **1995**, *117*, 3885. (b) Kawaguchi, H.; Yamada, K.; Lang, J.-P.; Tatsumi, K. *J. Am.* Chem. Soc. 1997, 119, 10346.
 (6) Shibahara, T.; Sakene, G.; Mochida, S. J. Am. Chem. Soc. 1993,
- 115. 10408.
- (7) Rakowski DuBois, M.; Jagirdar, B. R.; Dietz, S.; Noll, B. C. (8) Bolinger, C. M.; Rauchfuss, T. B. *Inorg. Chem.* **1982**, *21*, 3947.
- (9) Draganjac, M.; Coucouvanis, D. J. Am. Chem. Soc. 1983, 105, 139
- (10) Weberg, R.; Haltiwanger, R. C.; Rakowski Dubois, M. Organometallics 1985, 4, 1315.

CR)MoS $_2(\mu$ -S $_2]^{2-}$, where the alkyne is inserted into the Mo-S bond.¹² The alkynes used in these reactions are usually activated by the electron-withdrawing groups such as COOR, CF₃, and C₆H₅. Nonactivated alkynes usually do not react, and the starting complex is regarded as very reactive, if it reacts with phenylsubstituted alkynes such as $C_6H_5C \equiv CC_6H_5$ and $C_6H_5C \equiv$ CH. On the other hand, alkenyl carbon atoms are considerably less reactive toward these metal sulfide complexes. Actually, the very limited sulfide complexes are reactive enough to react with alkenes, for instance ReS_4^{-13} and $(\text{CpMo})_2(\mu - \text{S}_2\text{CH}_2)(\mu - \text{S}_2)$.¹⁴ As a summary, almost all of the previously known C-S bond formation reactions were found only with relatively reactive substrates.

We reported previously that the reaction of [{Ru- $(P(OCH_3)_3)_2(CH_3CN)_3\}_2(\mu-S_2)](CF_3SO_3)_4$ (1) with alkenes gives various C₃S₂-ring bridging ligands, and in all of these reactions, activation of the allylic C-H bond is the common initial key step.¹⁵ The reaction mechanism suggests that the bridging disulfide ligand having double bond nature cleaves the allylic C-H

- (11) Inomata, S.; Hiyama, K.; Tobita, H.; Ogino, H. Inorg. Chem. 1994, 33, 5337
- (12) Halbert, T. R.; Pan, W.-E.; Stiefel, E. I. J. Am. Chem. Soc. 1983, 105, 5476.
- (13) Goodman, J. T.; Rauchfuss, T. B. J. Am. Chem. Soc. 1999, 121, 5017.
- (14) (a) McKenna, M.; Wright, L. L.; Miller, D. J.; Tanner, L.;
 Haltiwanger, R. C.; Rakowski DuBois, M. J. Am. Chem. Soc. 1983, 105, 5329. (b) Birnbaum, J.; Laurie, J. C. V.; Rakowski DuBois, M. Organometallics 1990, 9, 156. (c) Birnbaum, J.; Haltiwanger, R. C.; Bernatis, P.; Teachout, C.; Parker, K.; Rakowski DuBois, M. Organo-metallics **1991**, *10*, 1779. (d) Koval, C. R.; Lopez, L. L.; Kaul, B. B.; Renshaw, S. Green, K.; Rakowski DuBois, M. Organometallics **1995**, 14, 3440.
- (15) (a) Hossain, Md. M.; Lin, Y.-S.; Sugiyama, H.; Matsumoto, K. J. Am. Chem. Soc. **2000**, *122*, 172. (b) Sugiyama, H.; Hossain, Md. M.; Lin, Y.-S.; Matsumoto, K. Inorg. Chem., in press.

^{*} Corresponding author. E-mail: kmatsu@mn.waseda.ac.jp. Tel: +81-3-5286-3108. Fax: +81-3-5273-3489.
(1) (a) Kilpatrick, L.; Rajagopalan, K. V.; Hilton, J.; Bastian, N. R.; Stiefel, E. I.; Pilato, R. S.; Spiro, T. G. *Biochemistry* 1995, *34*, 3032.
(b) Stiefel, E. I. *J. Chem. Soc., Dalton Trans.* 1997, 3915.

bond like the transition metal centers in organometallic complexes. The Ru centers may assist the reaction by adjusting the electronic state of the S_2 ligand and fixing the alkene molecule by coordination. Since the C-H bond activation is the initial and rate-determining step, the reaction depends on the reactivity of the allylic C–H bond rather than that of the C=C double bond. The different nature of the C=C double bonds gives several different subsequent steps resulting in a variety of products. It is noteworthy that C-H activation proceeds very smoothly on the disulfide bridging ligand at room temperature. Since the propargylic C-H bond has some similar reactivity to allylic C-H bonds, the reactivity of the propargylic C-H bond toward 1 and the related compound is studied in the present work.

Experimental Section

All the experiments were carried out under nitrogen or argon, by using standard Schlenk tube techniques or a glovebox. The solvent CD₃CN was dried over CaH₂ and purified by trap-to-trap distillation prior to use. Other solvents that were purchased dry were used without further purification. The NMR spectra were recorded on a JEOL Lambda 270 spectrometer, operating at 270 MHz for ¹H and 109 MHz for ³¹P. The chemical shifts are reported in δ unit (ppm) downfield from Me₄Si for ¹H and from H₃PO₄ (85%, external reference) for ³¹P. All the carbon, hydrogen, and nitrogen analyses were carried out on a Perkin-Elmer PE 2400II elemental analyzer.

Synthesis of [{Ru(P(OCH₃)₃)₂(CH₃CN)₃}₂{µ-SCH=CHCH-(R)S] $(CF_3SO_3)_4$ (2, $R = SC_6H_5$, 3, $R = C_2H_5$). To a CH₃CN (1 mL) solution of [{Ru(P(OCH₃)₃)₂(CH₃CN)₃}₂(µ-S₂)](CF₃SO₃)₄ (1) (80.3 mg, 0.05 mmol) was added phenylpropargyl sulfide (0.3 mL). The color of the solution gradually turned from dark blue to brown. This reaction mixture was allowed to stir for 3 h at room temperature before the addition of Et₂O to form a brown gummy solid. The crude product was recrystallized from CH₃CN/DME to give yellow crystals of [{Ru(P(OCH₃)₃)₂(CH₃-CN)₃₂{ μ -SCH=CHCH(SC₆H₅)S}](CF₃SO₃)₄ (**2**) in 63% yield. Anal. Calcd for C₃₇H₆₂F₁₂N₆O₂₄P₄Ru₂S₇: C, 25.34; H, 3.56; N, 4.79. Found: C, 25.16; H, 3.33; N, 4.61. ¹H NMR (270 MHz, CD₃CN): δ 1.95 (s, 12H, 4 CH₃CN), 2.47 (s, 3H, CH₃CN trans to S), 2.52 (s, 3H, CH₃CN trans to S), 6.12 (dd, ${}^{3}J_{H2H3} = 4$ Hz, ${}^{4}J_{\text{H1H3}} = 1$ Hz, 1H, H^{3}), 6.47 (dd, ${}^{3}J_{\text{H1H2}} = 6$ Hz, ${}^{4}J_{\text{H1H3}} = 1$ Hz, 1H, H1), 6.92 (dd, 1H, H2), 7.49-7.52 (m, 3H, C6H5), 7.60-7.64 (m, 2H, C₆ H_5). ³¹P{¹H} NMR (CD₃CN, 109 MHz): δ 123.9 and 124.3 (d, ${}^{2}J_{PP} = 79$ Hz, $2P(OCH_{3})_{3}$), 124.5 and 126.2 (d, ${}^{2}J_{PP} = 80$ Hz, $2P(OCH_{3})_{3}$). ${}^{13}C{}^{1}H}$ NMR (68 MHz, CD₃CN): δ 4.6 (CH₃CN), 55.5-56.3 (P(OCH₃)₃), 79.7 (SCHSC₆H₅), 128.0 (SCH=CH), 133.4 (SCH=CH), 130.7, 131.0, 133.6, and 133.8 $(C_{6}H_{5}).$

Analogously, treatment of 1 (80.3 mg, 0.050 mmol) with 1-pentyne (0.5 mL) in CH₃CN (1 mL) gave [{Ru(P(OCH₃)₃)₂- $(CH_3CN)_3_2\{\mu$ -SCH=CHCH $(C_2H_5)S\}$] (CF₃SO₃)₄ (3) (48.2 mg, 0.029 mmol, 58%), after workup. Anal. Calcd for C₃₃H₆₂F₁₂-N₆O₂₄P₄Ru₂S₂: C, 23.69; H, 3.73; N, 5.02. Found: C, 23.71; H, 3.86; N, 4.69. ¹H NMR (270 MHz, CD₃CN): δ 1.10 (dt, J= 7 and 2 Hz, 3H, SCH(CH₂CH₃)), 1.81-1.97 (m, 2H, SCH(CH₂-CH₃)), 1.95 (s, 12H, 4 CH₃CN), 2.47 (s, 3H, CH₃CN trans to S), 2.49 (s, 3H, CH₃CN trans to S), 3.81-3.90 (m, 36H, $P(OCH_3)_3)$, 4.75 (m, 1H, SCH(CH₂CH₃)), 6.31 (dd, J = 6 and 1 Hz, 1H, SC*H*=CH)), 6.73 (dd, *J* = 6 and 4 Hz, 1H, SCH=C*H*)). $^{31}P\{^{1}H\}$ NMR (CD₃CN, 109 MHz): δ 124.0 and 124.7 (d, $^{2}J_{PP}$ = 73 Hz), 125.8 (s). ${}^{13}C{}^{1}H$ NMR (CD₃CN, 68 MHz): δ 4.5 (CH₃CN trans to S), 12.9 (SCH(CH₂CH₃)), 28.9 (SCH(CH₂-CH₃)), 55.6–56.2 (P(OCH₃)₃), 74.4 (SCH(CH₂CH₃)), 126.1 (SCH=CH), 135.5 (SCH=CH).

Synthesis of $[{Ru(P(OCH_3)_3)_2(CH_3CN)_3}_2(\mu \cdot SCR^1 = CHCHR^2S)](CF_3SO_3)_4$ (4, $R^1 = CH_3$, $R^2 = H$; 5, $R^1 = CH_2CH_3$, $R^2 = CH_3$; 6, $R^1 = C_6H_5$, $R^2 = H$). Complexes 4-6 were synthesized by the procedure analogous to 2. Thus only the spectroscopic and elemental analysis data are given below.

4: yield 64.0 mg, 0.038 mmol, 48% (from 1 (126.1 mg, 0.079 mmol)). Anal. Calcd for $C_{32}H_{60}F_{12}N_6O_{24}P_4Ru_2S_6$: C, 23.16; H, 3.64; N, 5.06. Found: C, 23.19; H, 3.48; N, 4.94. ¹H NMR (270 MHz, CD₃CN): δ 1.95 (s, 12H, 4 CH₃CN), 2.08 (s, 3H, CH₃C=CH), 2.49 (s, 3H, CH₃CN), 2.50 (s, 3H, CH₃CN), 3.8–4.0 (m, 36H, P(OCH₃)₃), 4.08 (ddd, J = 14, 3, and 0.5 Hz, 1H, CHCHH'S), 4.52 (dt, J = 14 and 2 Hz, 1H, CHCHH'S), 6.55 (m, 1H, SC=CHCH₂). ³¹P{¹H} NMR (109 MHz, CD₃CN): δ 124.9 and 125.9 (d, ²J_{PP} = 77 Hz), 125.4 and 125.9 (d, ²J_{PP} = 76 Hz). ¹³C{¹H} NMR (CD₃CN, 68 MHz) δ 4.5 (CH₃CN trans to S), 16.3 (SC(CH₃)=CH), 138.1 (SC(CH₃)=CH).

5: yield 62.2 mg, 0.037 mmol, 74% (from **1** (80.3 mg, 0.050 mmol)). Anal. Calcd for $C_{34}H_{64}F_{12}N_6O_{24}P_4Ru_2S_6$: C, 24.20; H, 3.82; N, 4.98. Found: C, 24.08; H, 3.65; N, 4.78. ¹H NMR (270 MHz, CD₃CN): δ 1.19 (t, J = 7 Hz, 3H, SCCH₂CH₃), 1.57 (d, J = 7 Hz, 3H, SCHCH₃), 1.95 (s, 12H, 4 CH₃CN), 2.16 (m, 1 H, CH₃CHH'CS), 2.50 (s, 3H, CH₃CN), 2.52 (s, 3H, CH₃CN), 2.52 (m, 1H, CH₃CHH'CS), 3.8–4.0 (m, 36H, P(OCH₃)₃), 4.80 (m, 1H, SCHCH₃), 6.38 (m, 1H, SC=CHCH(CH₃)S). ³¹P{¹H} NMR (109 MHz, CD₃CN): δ 124.1 and 124.8 (d, ² $J_{PP} = 75$ Hz), 125.6 and 126.3 (d, ³ $J_{PP} = 78$ Hz). ¹³C{¹H} NMR (CD₃CN, 68 MHz): δ 4.6 (CH₃CN trans to S), 14.4 (SC(CH₂CH₃)=CH), 19.7 (SCH(CH₃)), 132.5 (SC(CH₂CH₃)=CH), 142.4 (SC(CH₂-CH₃)=CH).

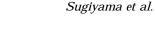
6: yield 44.2 mg, 0.026 mmol, 52% (from **1** (80.3 mg, 0.050 mmol)). Anal. Calcd for $C_{37}H_{62}F_{12}N_6O_{24}P_4Ru_2S_6$: C, 25.82; H, 3.63; N, 4.88. Found: C, 25.84; H, 3.36; N, 4.55. ¹H NMR (270 MHz, CD₃CN): δ 1.95 (s, 12H, 4 CH₃CN), 2.45 (s, 3H, CH₃-CN), 2.47 (s, 3H, CH₃CN), 3.63 (d, ³J_{PH} = 11 Hz, 9H, P(OCH₃)₃), 3.8–3.9 (m, 27H, P(OCH₃)₃), 4.31 (m, 1H, SCHH'), 4.77 (m, 1H, SCHH'), 7.12 (m, 1H, SCH₂=CH), 7.50–7.58 (5H, m, C₆H₅). ³¹P{¹H} NMR (109 MHz, CD₃CN): δ 123.9 and 125.3 (d, ²J_{PP} = 78 Hz), 125.2 (s).¹³C{¹H} NMR (CD₃CN, 68 MHz): δ 4.5 (CH₃CN trans to S), 52.2 (SCH₂), 55.5–55.9 (P(OCH₃)₃), 131.4 (SCH₂=CH), 131.8 (SC(C₆H₅)), 129.3, 129.7, and 130.5 (C₆H₅).

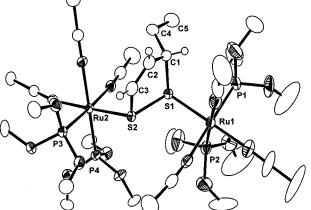
Reaction of 1 with 2-Pentyne. The reaction was carried out according to the procedures for 2-6 at temperatures of 0 and 40 °C. Each batch was recrystallized from CH₃CN/DME. The two products having the same elemental constitution, $[{Ru(P(OCH_3)_3)_2(CH_3CN)_3}_2{\mu-SC(CH_3)=CHCH(CH_3)S}](CF_3 SO_3$)₄ (7) and $[{Ru(P(OCH_3)_3)_2(CH_3CN)_3}_2{\mu-SC(CH_2CH_3)=$ $CHCH_2S\}](CF_3SO_3)_4$ (8), were obtained as a mixture and were identified with ¹H NMR spectroscopy. The relative abundances of 7 and 8 were determined with ¹H NMR spectroscopy. The yields of the mixture of 7 and 8 at respective temperature were as follows: 25% (22.5 mg, 0.013 mmol) based on 1 (85.2 mg, 0.053 mmol) at 0 °C and 14% (12.1 mg, 0.0072 mmol) based on 1 (80.3 mg, 0.050 mmol) at 40 °C. The elemental analysis of the mixture was also carried out. Anal. Calcd for C₃₃H₆₂-F12N6O24P4Ru2S6: C, 23.69; H, 3.73; N, 5.02. Found: C, 23.58; H, 3.58; N, 4.88.

7: ¹H NMR (270 MHz, CD₃CN): δ 1.55 (d, J = 7 Hz, 3H, SC(CH₃)=CHCH(CH₃)S)), 1.95 (s, 12H, 4 CH₃CN), 2.05 (s, 3H, SC(CH₃)=CHCH(CH₃)S)), 2.50 (s, 3H, CH₃CN), 2.52 (s, 3H, CH₃CN), 3.84–3.96 (m, 36H, P(OCH₃)₃), 4.75 (m, 1H, SC-(CH₃)=CHCH(CH₃)S)), 6.39 (m, 1H, SC(CH₃)=CHCH(CH₃)S).

8: ¹H NMR (270 MHz, CD₃CN): δ 1.22 (t, J = 7 Hz, 3H, SCH₂CH=C(CH₂CH₃)S), 1.93 (m, 1H, SCH₂CH=C(CHH'CH₃)S), overlapped with CD₂HCN), 1.95 (s, 12H, 4 CH₃CN), 2.18 (m, 1H, SCH₂CH=C(CHH'CH₃)S), 2.50 (s, 3H, CH₃CN), 2.51 (s, 3H, CH₃CN), 3.83-3.89 (m, 36H, P(OCH₃)₃), 4.07 (m, 1H, SCHH'CH=C(CH₂CH₃)S), 4.56 (m, 1H, SCHH'CH=C(CH₂-CH₃)S), 6.53 (m, 1H, SCH₂CH=C(CH₂CH₃)S).

Table 1. Summary of Crystallographic Data


	2	3		4	$5 \cdot (C_4 H_{10} O_2)$
formula	$\begin{array}{c} C_{37}H_{62}F_{12}N_6\\ O_{24}P_4Ru_2S_7 \end{array}$	$\begin{array}{c} C_{33}H_{62}F_{12}N_6\\ O_{24}P_4Ru_2S_6 \end{array}$		$C_{32}H_{60}F_{12}N_0 \\ O_{24}P_4Ru_2S_6$	$C_{38}H_{74}F_{12}N_6 O_{26}P_4Ru_2S_6$
fw	1753.37	1673.27	236	1659.24	$0_{26}r_4\kappa u_2 s_6$ 1777.41
cryst syst	monoclinic	triclinic		triclinic	triclinic
space group	$P2_1/n (\# 14)$	P1 (# 2)		$P\overline{1}$ (# 2)	$P\overline{1}$ (# 2)
a (Å)	15.049(2)	12.5250(10)	12.6118(7)	12.300(2)
b (Å)	21.692(3)	13.1414(13.5521(8)	13.352(2)
c (Å)	21.847(3)	20.1640(15)	19.9459(11)	23.217(4)
α (deg)		103.9240)(10)	104.7260(10	
β (deg)	88.001(3)	92.159(2)		92.3080(10)	
γ (deg)		91.140(2		92.3040(10)	
$V(Å^3)$	7127.3(16)	3217.7(4)		3289.9(3)	3526.7(11)
Z	4	2		2	2
d_{calcd} (g·cm ⁻³)	1.634	1.727		1.675	1.674
μ (mm ⁻¹)	0.821	0.873		0.853	0.804
abs corr no. of reflns	SADABS 16 281	SADABS 13 609	>	SADABS 14 656	SADABS 15 573
(total)					
no. of reflns $(F_0^2 > 2\sigma(F_0^2))$	6102	9909		6778	6222
no of params	690	674		635	704
R1 ^a	0.0856	0.0835		0.0985	0.1177
$w \mathbb{R}2^{b}$	0.2199	0.2303		0.2698	0.2913
GOF^c	0.906	1.047		1.002	0.952
	6			7	8
formula	$C_{37}H_{62}H$			$H_{62}F_{12}N_6$	$C_{33}H_{62}F_{12}N_6$
	$O_{24}P_4R_1$			$P_4Ru_2S_6$	$O_{24}P_4Ru_2S_6$
fw	1721.31				673.27
cryst syst	tr <u>i</u> clinio		tr <u>i</u> clinic		tr <u>i</u> clinic
space group	P1 (# 2)		P1 (# 2)		P1 (# 2)
a (Å)	12.7771	. ,	12.6346(10)		12.6158(11)
b (Å)	13.1696			211(11)	13.5141(12)
<i>c</i> (Å)	20.4717	. ,	20.8218(17)		20.0622(17)
α (deg)	104.725		84.677(2)		103.719(2)
β (deg)	90.0780	. ,		63(2)	91.919(2)
γ (deg)	90.2030			96(2)	92.209(2)
$V(Å^3)$	3331.6(4)		5.6(5)	3317.2(5)
Z	2		2	-	2
d_{calcd} (g·cm ⁻¹		1.65			1.675
μ (mm ⁻¹)	0.846		0.837		0.847
abs corr		SADABS		DABS	SADABS
no. of reflns (total)	14 884		14 894		14 851
no. of reflns $(F_0^2 > 2\sigma(F_0^2))$	7747		365	4	3758
no of param	s 678		671		643
$R1^a$	0.0743				0.1096
$wR2^{b}$	0.1934			22	0.2669
GOF^c	0.779		0.84		0.806
		. c			


^a R1 = $\sum |F_o - F_c| / \sum |F_o|$ for reflections $F_o^2 > 2\sigma(F_o^2)$. ^b wR2 = $[\sum w(F_o^2 - F_c^2)^2 / \sum w(F_o^2)^2]^{1/2}$. ^c GOF = $[\sum w(F_o^2 - F_c^2)^2 / \sum (n - p)]^{1/2}$.

X-ray Diffraction Studies. The diffraction data for 2-8 were collected on a Bruker CCD SMART 1000 diffractometer using Mo K α radiation. All intensity data were processed by using the SAINT-plus program package. All structure solutions were performed with the SHELXTL software package. Details of the six crystallographic analyses are summarized in Table 1.

Results and Discussion

In the previous study on the reaction of **1** with alkenes, only terminal alkenes reacted with **1** and internal alkenes such as 2-pentene were inert toward **1**. Therefore, **1** was treated with terminal alkynes, such as 1-pentyne and phenylpropargyl sulfide in CH₃CN, to give orange- to red-colored solutions. The standard workup of the solutions gave yellow crystals of $[{Ru(P(OCH_3)_3)_2(CH_3CN)_3}_2(\mu$ -SCH=CHCH-

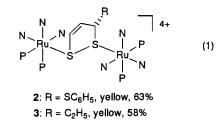


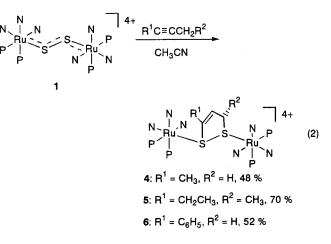
Figure 1. Structure of complex **3** (the cation part, the methyl and aromatic H atoms are omitted for clarity).

(R)S}](CF₃SO₃)₄ (**2**, R = SC₆H₅, 63%; **3**, R = C₂H₅, 58%) (eq 1).

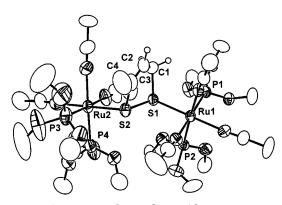
 $P = P(OCH_3)_3$, $N = CH_3CN$

Through the reactions, the propargylic C–H bond is cleaved and the H atom is transferred to the neighboring sp²-hybridized carbon atom, and two C–S bonds are formed. As a result, the dithiacyclopentene framework is formed and bridges the two Ru centers. In the ¹H NMR spectrum of **2**, the characteristic signals due to the two olefinic protons and a methyne proton in the dithiacyclopentene ring are observed at δ 6.92 (dd with ${}^{3}J_{\rm H1H2} = 5.9$ Hz and ${}^{3}J_{\rm H2H3} = 4.0$ Hz), 6.47 (dd with ${}^{3}J_{\rm H1H2}$ and ${}^{4}J_{\rm H1H3} = 0.8$ Hz), and 6.12 (dd with ${}^{3}J_{\rm H2H3}$ and ${}^{4}J_{\rm H1H3}$), respectively. Figure 1 shows the structure of **3**, whereas that of **2** is deposited in the Supporting Information.

The two C–C distances in the C₃S₂ framework of C1– C2 (1.466(12) Å) and C2–C3 (1.286(12) Å) are assigned to a single and a double bond, respectively. The S2– C3–C2–C1 torsion angle of 3.7(11)° indicates that the four atoms sit almost on a plane, and the C2 and C3 are sp²-hybridized carbon atoms. The S1–S2 bond distance of 2.139(3) Å is comparable to those found in the previously reported [{Ru(P(OCH₃)₃)₂(CH₃CN)₃}₂(μ -SCH₂CH₂CHRS)](CF₃SO₃)₄ (R = C₂H₅, OC₆H₅, and CH=CHCH₃, S1–S2: 2.1102(15)–2.164(5) Å),¹⁵ which were synthesized from the reaction of **1** with 1-alkenes and are longer than that of **1** (1.933(11) Å),¹⁶ those in ketonated complexes having one C–S bond (2.040(7)– 2.069(4) Å)¹⁷ and typical S–S single and double bonds


Table 2. Selected Bond Distances (Å) and Angles (deg) for 2, 3, 4, 5, and 6

A Beleetted Boll	a 215tantees (11) a	(408) 1		
2	3	4	5	6
	Bond Dista	nces		
2.329(2)	2.3528(18)	2.325(3)	2.334(3)	2.3209(19)
2.333(2)	2.3244(17)	2.360(3)	2.349(3)	2.3592(19)
2.253(3)	2.243(2)	2.252(3)	2.255(4)	2.255(2)
2.258(3)	2.252(2)	2.260(3)	2.259(3)	2.253(2)
2.267(3)	2.2548(18)	2.252(4)	2.250(3)	2.248(2)
2.266(2)	2.2481(18)	2.250(4)	2.246(3)	2.259(2)
2.149(3)	2.139(2)	2.121(4)	2.137(4)	2.119(3)
1.854(9)	1.865(7)	1.809(13)	1.886(12)	1.836(9)
1.751(9)	1.776(8)	1.822(13)	1.791(11)	1.800(9)
1.485(12)	1.466(12)	1.465(19)	1.470(17)	1.473(12)
1.304(12)	1.286(12)	1.257(19)	1.262(16)	1.333(12)
	Bond Ang	les		
106.51(11)	108.35(9)	110.96(14)	108.81(14)	108.96(10)
113.01(11)	113.61(9)	108.70(14)	111.42(13)	108.99(10)
109.6(3)	110.0(3)	109.5(4)	108.7(4)	109.7(3)
110.0(3)	108.7(3)	110.9(4)	110.0(4)	112.9(3)
107.9(6)	107.5(6)	108.1(10)	106.1(8)	107.0(6)
119.2(7)	118.6(7)	115.1(10)	118.4(9)	115.2(6)
	Torsion Ang	gles ^a		
147.28(9)	152.77(7)	158.03(12)	151.43(11)	159.09(8)
93.7(6)	90.0(5)	86.7(8)	93.4(8)	80.8(6)
108.0(8)	104.8(7)	93.5(11)	102.5(9)	92.6(6)
3.2(13)	3.7(11)	0.0(18)	1.6(17)	0.9(10)
	2 2.329(2) 2.333(2) 2.253(3) 2.258(3) 2.266(2) 2.149(3) 1.854(9) 1.751(9) 1.485(12) 1.304(12) 106.51(11) 113.01(11) 109.6(3) 110.0(3) 107.9(6) 119.2(7) 147.28(9) 93.7(6) 108.0(8)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 3 4 Bond Distances 2.329(2) 2.3528(18) 2.325(3) 2.333(2) 2.3244(17) 2.360(3) 2.253(3) 2.243(2) 2.252(3) 2.258(3) 2.252(2) 2.260(3) 2.267(3) 2.254(18) 2.252(4) 2.266(2) 2.2481(18) 2.252(4) 2.266(2) 2.2481(18) 2.250(4) 2.149(3) 2.139(2) 2.121(4) 1.854(9) 1.865(7) 1.809(13) 1.751(9) 1.776(8) 1.822(13) 1.485(12) 1.466(12) 1.465(19) 1.304(12) 1.286(12) 1.257(19) Bond Angles 106.51(11) 108.35(9) 110.96(14) 113.01(11) 113.61(9) 108.70(14) 109.6(3) 110.0(3) 109.5(4) 100.0(3) 109.5(4) 100.4(10) 119.2(7) 118.6(7) 115.1(10) Torsion Angles ^a 147.28(9) 152.77(7) 158.03(12) <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

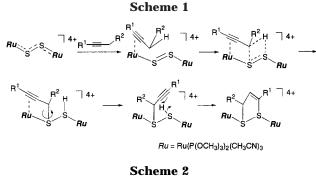

^a Reported without the sign.

in the disulfides (2.05 and 1.89 Å).¹⁸ The Ru–S distances (2.3528(18) and 2.3244(17) Å) are longer than those of 1 (2.279(9) and 2.245(9) Å).¹⁶

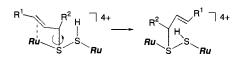
In contrast to the inertness of internal alkenes, internal alkynes such as 2-butyne, 3-hexyne, and 1-phenyl-2-propyne react with **1** to give a series of disubstituted dithiacyclopentene complexes, $[{Ru(P(OCH_3)_3)_2(CH_3-CN)_3}_2(\mu$ -SCR¹=CHCHR²S)](CF₃SO₃)₄ (**4**, R¹ = CH₃, R² = H, 48%; **5**, R¹ = CH₂CH₃, R² = CH₃, 70%; **6**, R¹ = C₆H₅, R² = H, 52%) (eq 2).

Complexes **4**–**6** were successfully isolated as crystalline materials and were fully characterized by X-ray analysis. The selected structural parameters are summarized in Table 2 together with those of **2** and **3**. Complexes **4**, **5**, and **6** were more easily purified than **2** and **3**: after the reaction, the remaining excess terminal alkyne seems to decompose the product in the reaction mixture, whereas the internal alkyne is inert toward

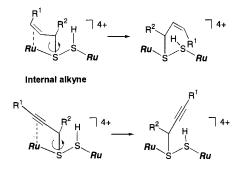
Figure 2. Structure of complex **4** (the cation part, the methyl H atoms are omitted for clarity).


the product, and therefore the purification is easier. The X-ray structural analysis of **4**, **5**, and **6** confirmed the formation of a dithiacyclopentene ring. The structure of **4** is shown in Figure 2.

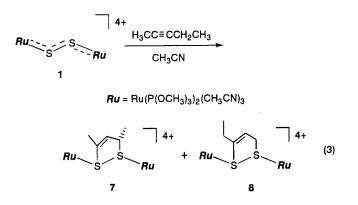
The long C1-C2 and short C2-C3 distances are assigned to single and double C-C bond distances. Since the S2-C3-C2-C1 torsion angle is close to 0°, the C3 and C2 are *sp²*-hybridized carbon atoms in each case. Since the propargylic C-H bonds in 2-butyne and 3-hexyne are chemically equivalent, the single products 4 and 5 were obtained, respectively. Complex 6 was also obtained as a sole product via methyl C-H bond activation. We attempted a similar reaction with $C_6H_5C \equiv$ CCD_3 to obtain **6**- d_3 ; however, the isolation was not successful, since the product did not give the expected ¹H NMR spectrum. A significant primary kinetic isotope effect is reported at the stage of the C-H bond activation in the reaction of $1-d_{18}$ (CD₃CN-substituted 1) with 1-pentene-3,3- d_2 (estimated $k_{\rm H}/k_{\rm D} = 9$).¹⁵ This isotopic effect suggests the mechanism that the C-S bond formation on 1 is initiated by the activation of the appropriate C-H bond of the ketones and alkenes. When the C-H bond is replaced by a C-D bond, the initial step is hampered due to the isotope effect, and

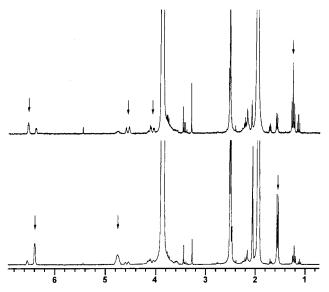

⁽¹⁶⁾ Matsumoto, K.; Matsumoto, T.; Kawano, M.; Ohnuki, H.; Shichi, Y.; Nishide, T.; Sato, T. *J. Am. Chem. Soc.* **1996**, *118*, 3597.

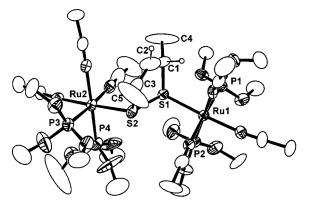
 ^{(17) (}a) Matsumoto, K.; Uemura, H.; Kawano, M. *Inorg. Chem.* 1995, 34, 658. (b) Sugiyama, H.; Hossain, Md., M.; Lin, Y.-S.; Matsumoto, K. *Inorg. Chem.* 2000, 39, 3948.


⁽¹⁸⁾ Kuczkowski, R. L. J. Am. Chem. Soc. 1964, 86, 3617.

Internal alkene (trans)




Internal alkene (cis)


the contribution of the unidentified side reaction may become significant. The mechanism for the cyclization reaction of the alkyne with the S_2 in **1** is shown in Scheme 1. For the internal alkenes, the rotation of the C-S bond in Scheme 1 seems to be hindered by the bulky substituent on the ligands, and therefore the reaction does not proceed. In contrast, the substituent groups in internal alkynes are separated from the coordination sphere due to the linear C=C triple bond, and the reaction is less hindered (Scheme 2).

When an unsymmetric alkyne having two different propargylic C–H bonds is used, two possible compounds are expected to form. The reaction of **1** with 2-pentyne gave a mixture of complexes [{Ru(P(OCH₃)₃)₂-(CH₃CN)₃}₂ { μ -SC(CH₃)=CHCH(CH₃)S}](CF₃SO₃)₄ (**7**) and [{Ru(P(OCH₃)₃)₂(CH₃CN)₃}₂{ μ -SC(CH₂CH₃)=CH-CH₂S}](CF₃SO₃)₄ (**8**), as a result of the C–H bond activation at the methylene and methyl group, respectively (eq 3).

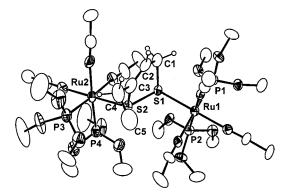


Figure 3. ¹H NMR spectra of the once precipitated mixture of 7 and 8 obtained at 40 °C (top) and 0 °C (bottom) in CD₃CN. Arrowed peaks arise from the major products at the respective temperature.

Figure 4. Structure of complex **7** (the cation part, the methyl H atoms are omitted for clarity).

Figure 5. Structure of complex **8** (the cation part, the methyl H atoms are omitted for clarity).

The molar ratio of **7/8** was dependent on the reaction temperature. The signals of both **7** and **8** were monitored with ¹H and ³¹P{¹H} NMR spectroscopy, and the ¹H NMR spectra at 40 and 0 °C are shown in Figure 3.

The olefin proton resonances are observed at δ 6.39 for 7 and δ 6.53 for 8. Their integrated intensities were used for the determination of the 8/7 ratio. Compound 7 is preferably formed at lower temperature, whereas 8 is more abundantly formed at higher temperature, as

 Table 3. Selected Structural Parameters for 7 and

	δ	
	7	8
Bor	nd Distances (Å)	
Ru1-S1	2.342(5)	2.327(4)
Ru2-S2	2.337(5)	2.374(4)
Ru1–P1	2.257(5)	2.244(4)
Ru1–P2	2.256(5)	2.251(4)
Ru2–P3	2.252(5)	2.247(5)
Ru2–P4	2.250(6)	2.249(5)
S1-S2	2.123(6)	2.119(6)
S1-C1	1.84(2)	1.85(2)
S2-C3	1.81(2)	1.85(2)
C1-C2	1.38(3)	1.42(3)
C2-C3	1.32(3)	1.29(3)
Bo	nd Angles (deg)	
Ru1-S1-S2	111.2(2)	111.6(2)
Ru2-S2-S1	110.7(2)	108.5(2)
Ru1-S1-C1	108.8(7)	109.8(6)
Ru2-S2-C3	109.4(7)	109.5(6)
S1-C1-C2	110.5(17)	108.0(16)
S2-C3-C2	114.4(18)	114.1(16)
Tors	ion Angles ^a (deg)	
Ru1-S1-S2-Ru2	154.63(18)	156.42(17)
Ru1-S1-C1-C2	94.9(16)	89.4(13)
Ru2-S2-C3-C2	95.8(17)	95.6(15)
S2-C3-C2-C1	7(3)	2(3)

^{*a*} Reported without the sign.

the **8**/7 ratios of 0.18 at 0 and 2.4 at 40 °C show. Similar temperature-dependent selectivity was found in the reaction of **1** with butanone as described in the previous report, in which the keto-C–H bond is more favorably cleaved in the order $1^{\circ} > 2^{\circ}$ at 40 °C, whereas the order is reversed at 0 °C.¹⁷ From the present temperature-dependent results, it is conceived that the rotation of

the C–S bond in Scheme 1 also affects the product distribution as well as the C–H bond activation. On this assumption, it is reasonable that the approach of the C–H bond to the S₂ in Scheme 1 is less favorable for the bulkier ethylpropargyl group at high temperatures and **8** becomes the dominant product.

It was difficult to obtain selectively either **7** or **8** only by varying the temperature. However, both crystals of **7** and **8** suitable for X-ray analysis were picked up from the **7**-rich and the **8**-rich samples to obtain their structures as shown in Figures 4 and 5, respectively. The selected structural parameters are listed in Table 2, and these are comparable to those of 2-6.

Conclusion

Complex 1 reacts with both terminal and internal alkynes to give a series of C_3S_2 ring complexes via activation of the propargylic C–H bond. The reaction mechanism is basically parallel to the alkene reactions except that both internal and terminal alkynes react, whereas only terminal alkenes react with 1.

Acknowledgment. The financial support of CREST from Japan Science and Technology Corporation and the Grant-in-Aid for COE Research, Ministry of Education, Culture, Sports, Science and Technology (MEXT), are acknowledged.

Supporting Information Available: X-ray crystallographic files for the determinations of **2–8**, and tables and figures with full numbering schemes. This material is available free of charge via the Internet at http://pubs.acs.org.

OM0106534