Intramolecular Coupling Reaction of 1-Aza-1,3-butadiene Ligand and Iminoacyl Ligand Giving Amido-Imido **Complexes of Tantalum**

Yutaka Matsuo, Kazushi Mashima,* and Kazuhide Tani

Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan

Received August 8, 2001

We have synthesized dibenzyl complexes of tantalum, $Cp^{*}Ta(CH_{2}Ph)_{2}(\eta^{2}-C,N-Ar-AD)$ (Ar-AD = 1-aryl-4-phenyl-1-aza-1,3-butadiene) (**1a**, Ar = Ph; **1b**, Ar = o-Tol), by the reaction of the corresponding dichloro complexes $Cp^*TaCl_2(\eta^4$ -supine-Ar-AD) (**2a**, Ar = Ph; **2b**, Ar = o-Tol) with Mg(CH₂Ph)₂ in toluene, and their reaction with 1 equiv of XylNC (Xyl = 2,6dimethylphenyl) afforded amido-imido complexes, Cp*Ta(=NAr){N(Xyl)C(CH₂Ph)=CHCH= CHPh}(CH₂Ph) (**5a**, Ar = Ph; **5b**, Ar = o-Tol). These complexes were characterized by spectral data and crystallographic studies. The mechanism for the formation of the mixed amidoimido complexes was elucidated by NMR measurement, which detected an iminoacyl complex, $Cp*Ta(\eta^2-Ph-AD){C(=NXyl)CH_2Ph}(CH_2Ph)$ (3a).

Introduction

Chemical transformations of organic compounds using organometallic compounds in catalytic and stoichiometric reactions have been investigated intensively.¹⁻³ Although many examples of intramolecular coupling reactions of organic functional groups bound to transition metals have been reported, few studies for group 5 metals have been conducted.⁴⁻¹⁴ We have recently reported that group 5 metal complexes containing nitrogen-substituted 1,3-diene ligands such as 1,4-diaza-1,3-butadiene (DAD) and 1-aza-1,3-butadiene (AD) not only showed versatile coordination modes (Chart 1 for the AD ligand) but also exhibited unique reactivity, depending on the substituents on the ligand as well as on the metal center.^{15–18} As an extension of our continuous interest in these chemistries, in this contribution

- (3) Cornils, B.; Herrmann, W. A. Applied Homogeneous Catalysis with Organometallic Compounds; Wiley-VCH: Weinheim, 2000.
- (4) Bianconi, P. A.; Vrtis, R. N.; Rao, C. P.; Williams, I. D.; Engler,
 M. P.; Lippard, S. J. Organometallics 1987, 6, 1968.
 (5) Carnahan, E. M.; Lippard, S. J. J. Am. Chem. Soc. 1992, 114,
- 4166
- (6) Bronk, B. S.; Protasiewicz, J. D.; Pence, L. E.; Lippard, S. J. Organometallics 1995, 14, 2177.
- Organometallics 1993, 14, 2177.
 (7) Curtis, M. D.; Real, J. J. Am. Chem. Soc. 1986, 108, 4668.
 (8) Curtis, M. D.; Real, J. Organometallics 1990, 9, 66.
 (9) Hirpo, W.; Curtis, M. D. Organometallics 1994, 13, 2706.
 (10) Galakhov, M. V.; Gómez, M.; Jiménez, G.; Pellinghelli, M. A.;
 Royo, P.; Tiripicchio, A. Organometallics 1994, 13, 1564.
 (11) Galakhov, M. V.; Gómez, M.; Jiménez, G.; Royo, P.; Pellinghelli, M. A.;
 Tiripicchio, A. Organometallics 1995, 14, 1901.
- M. A.; Tiripicchio, A. Organometallics 1995, 14, 1901
- (12) Galakhov, M. V.; Gómez, M.; Jiménez, G.; Royo, P.; Pellinghelli, M. A.; Tiripicchio, A. Organometallics 1995, 14, 2843.
 (13) Gómez, M.; Gómez-Sal, P.; Jiménez, G.; Martin, A.; Royo, P.;
- Sánchez-Nieves, J. Organometallics 1996, 15, 3579.
- (14) Sánchez-Nieves, J.; Royo, P.; Pellinghelli, M. A.; Tiripicchio, A. Organometallics **2000**, *19*, 3161.
- (15) Mashima, K.; Matsuo, Y.; Tani, K. Chem. Lett. 1997, 767.

Chart 1 Ń. Ń Ń. в C D

we report a unique intramolecular coupling reaction between an AD ligand and an iminoacyl ligand bound to a Cp*Ta moiety; reaction of isonitrile with dibenzyl complexes of tantalum bearing an η^5 -C₅Me₅ (Cp^{*}) and a 1-aryl-4-phenyl-1-aza-1,3-butadiene (Ar-AD) afforded amido-imido complexes. The X-ray structures of the starting dibenzyl complexes and the mixed amidoimido complex and the mechanism of the coupling reaction are also described.

Results and Discussion

Dibenzyl complexes of tantalum, $Cp^*Ta(CH_2Ph)_2(\eta^2 -$ C, N-Ar-AD) (1a, Ar = Ph; 1b, Ar = o-Tol), were prepared by the reaction of the corresponding dichloro complexes $Cp^*TaCl_2(\eta^4$ -supine-Ar-AD) (**2a**, Ar = Ph; **2b**, Ar = o-Tol) with Mg(CH₂Ph)₂ in toluene.¹⁷ The alkylation altered the η^4 -coordination mode of the Ar-AD ligand to a η^2 -one. The structures of **1a** and **1b** were determined by X-ray analyses, and selected bond distances and angles are summarized in Table 1. The molecular structures of 1a and 1b are presented in Figures 1 and 2, respectively, which show three-legged piano stool geometry around the tantalum center. The AD ligand of **1a** and **1b** coordinated in an η^2 -C=N mode

^{*} Corresponding author. E-mail: mashima@chem.es.osaka-u.ac.jp. Fax: 81-6-6850-6296.

⁽¹⁾ Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles and Applications of Organotransition Metal Chemistry, University Science Books: Mill Valley, CA, 1987.

⁽²⁾ Crabtree, R. H. The Organometallic Chemistry of the Transition Metals, 3rd ed.; Wiley-Interscience: New York, 2001.

⁽¹⁶⁾ Mashima, K.; Matsuo, Y.; Tani, K. Organometallics 1999, 18, 1471.

⁽¹⁷⁾ Mashima, K.; Matsuo, Y.; Nakahara, S.; Tani, K. J. Organomet. Chem. 2000, 593/594, 69.

⁽¹⁸⁾ Matsuo, Y.; Mashima, K.; Tani, K. Angew. Chem., Int. Ed. 2001, 40. 960.

Table 1. Selected Bond Lengths and Angles for 1a and 1b

	1a	1b
Be	ond Distances (Å)	
Ta-N	1.956(9)	1.941(5)
Ta-C(2)	2.15(1)	2.167(8)
Ta-C(6)	2.20(1)	2.253(8)
Ta-C(7)	2.19(1)	2.218(8)
N-C(2)	1.40(1)	1.42(1)
C(2) - C(3)	1.48(2)	1.46(1)
C(3) - C(4)	1.33(2)	1.32(1)
Ta-CCP ^a	2.166	2.149
В	ond Angles (deg)	
C(2) - Ta - C(6)	109.2(5)	106.0(3)
C(2) - Ta - C(7)	115.5(5)	119.7(3)
N-Ta-C(2)	39.5(4)	39.8(3)
Ta-N-C(2)	77.8(7)	78.7(5)
Ta-C(2)-N	62.7(6)	61.5(4)
Ta - C(2) - C(3)	123.1(8)	130.9(6)
N-C(2)-C(3)	117(2)	119.3(7)
C(2) - C(3) - C(4)	127(1)	127.1(8)
C(3) - C(4) - C(6)	127(1)	127.1(9)
Ta-N-C(5)	156.7(8)	155.5(7)
C(2) - N - C(5)	123(1)	125.3(7)

^a CCP: the centroid of the cyclopentadienyl ring.

Figure 1. Molecular structure of 1a with the labeling scheme.

Figure 2. Molecular structure of **1b** with the labeling scheme.

to the tantalum atom, in contrast to the reported η^4 coordination mode found for some 1-aza-1,3-diene complexes of late transition metals as well as for the dichloro complexes 2.17 The nitrogen atom of azatantalacyclopropane was oriented away from the Cp* ligand, while that of a related tantalum-imine complex, $Cp*TaMe_2(\eta^2-Me_2C=N(C_6H_3Me_2-2,6))$, was reported to point upward to the Cp* ligand.¹¹

One equivalent of XylNC (Xyl = 2,6-dimethylphenyl) reacted with the dibenzyl complexes 1a and 1b in toluene at room temperature to give amido-imido complexes Cp*Ta(=NAr){N(Xyl)C(CH₂Ph)=CHCH= CHPh}(CH₂Ph) (**5a**, Ar = Ph; **5b**, Ar = o-Tol), respectively (Scheme 1). The ¹H NMR spectrum of **5a** showed

Figure 3. Molecular structure of one of two crystallographically independent molecules of 5b showing the labeling scheme.

two sets of ABq signals; one set of the proton signals (δ 2.54 and δ 2.81) is due to the benzyl group bound to the tantalum atom, while the other (δ 3.02 and δ 3.81) is assignable to the benzylic protons of the migrated benzyl group. Similar spectral data were observed for **5b**. These ¹H NMR spectral data were not able to rule out the other possible species **3**; however, the ¹³C NMR spectra ruled out **3** because of no signal assignable to the iminoacyl carbon of 3. The amido-imido structure of 5 was confirmed by the X-ray analysis of 5b (Figure 3). The selected bond distances and angles of **5b** are shown in Table 2. The short bond distances (1.772(7) and 1.767(6) Å) of Ta-N(1) and the linear arrangement $(171.5(6)^{\circ} \text{ and } 174.1(8)^{\circ}) \text{ of } Ta-N(1)-C(1) \text{ indicate that}$ a Ta=N bond has triple-bond character,¹⁹⁻²³ while the distance (2.030(7) Å) of Ta-N(2) is slightly longer than

⁽¹⁹⁾ Wigley, D. E. *Prog. Inorg. Chem.* **1994**, *42*, 239.
(20) Jayaratne, K. C.; Yap, G. P. A.; Haggerty, B. S.; Rheingold, A. L.; Winter, C. H. *Inorg. Chem.* **1996**, *35*, 4910.
(21) Royo, P.; Sánchez-Nieves, J.; Pellinghelli, M. A.; Tiripicchio, A.

J. Organomet. Chem. 1998, 563, 15.

⁽²²⁾ Nielson, A. J.; Glenny, M. W.; Rickard, C. E. F.; Waters, J. M. J. Chem. Soc., Dalton Trans. 2000, 4569.

⁽²³⁾ Castro, A.; Galakhov, M. V.; Gómez, M.; Gómez-Sal, P.; Martin, A.; Sánchez, F. J. Organomet. Chem. 2000, 595, 36.

Table 2. Selected Bond Lengths and Angles for 5b^a

	-	-		
	molecule I	molecule II		
Bond Distances (Å)				
Ta-N(1)	1.772(7)	1.767(6)		
Ta-N(2)	2.030(7)	2.019(9)		
Ta-C(10)	2.216(9)	2.204(10)		
N(2)-C(2)	1.42(1)	1.45(1)		
Bond Angles (deg)				
N(1)-Ta-N(2)	100.3(3)	99.8(3)		
N(1)-Ta-C(10)	97.9(3)	98.8(3)		
N(2)-Ta-C(10)	108.7(3)	100.1(3)		
Ta-N(1)-C(1)	171.5(6)	174.1(8)		
Ta - N(2) - C(7)	127.1(5)	120.7(5)		
Ta-N(2)-C(2)	120.5(5)	127.2(7)		
C(2) - N(2) - C(7)	112.3(7)	111.6(9)		
Ta1-C(10)-C(11)	121.9(6)	125.9(6)		

^a Two independent molecules (I and II) of **5b** crystallized in the asymmetric unit.

those (ca. 1.93–1.98 Å) found for a typical Ta–N(alkylamido) bond,²⁴⁻³² but is comparable to a Ta-N(arylamido) bond,^{28,33,34} presumably due to a contribution of π conjugation in the dienamido moiety.

We proposed the reaction mechanism as outlined in Scheme 1: the first step of the reaction is the insertion of XylNC into a Ta-C(benzyl) bond to give 3, whose iminoacyl moiety can react with the C² atom of the AD ligand, leading to bicyclometallacycles 4. Since the intermediate species 4 includes a four-membered skeleton, metathesis-type reaction cleaved the Ta-C and $C^2-N(AD)$ bonds and spontaneously formed the C=C bond to give 5. This mechanism was confirmed by detecting an iminoacyl complex $Cp^{*}Ta(\eta^{2}-Ph-AD)$ - $\{C(=NXyl)CH_2Ph\}(CH_2Ph)$ (3a) by NMR measurement. The ¹H NMR spectrum of **3a** indicated that the Ph-AD ligand of **3a** kept the η^2 -*C*,*N*-coordination mode; the H² proton of the Ph-AD ligand was observed at δ 2.65, comparable to that (δ 3.07) of **1a**, and showed two kinds of benzyl groups; one benzyl group binds to the tantalum atom and the other is adjacent to a quaternary carbon. Moreover, the direct evidence was the signal of the iminoacyl carbon (δ 251.2), the chemical shift value of which is in good accordance with that (δ 220–248) reported for some η^2 -iminoacyl complexes of tantalum.^{7,9,12–14,35–38} Complex **3a** was thermally unstable and gradually converted to 5a at room temperature.

- (27) Fox, P. A.; Gray, S. D.; Bruck, M. A.; Wigley, D. E. Inorg. Chem. 1996, 35, 6027.
- (28) Suh, S.; Hoffman, D. M. *Inorg. Chem.* **1996**, *35*, 5015.
 (29) Blacke, R. E., Jr; Antonelli, D. M.; Henling, L. M.; Schaefer, W. P.; Hardcastle, K. I.; Bercaw, J. E. *Organometallics* **1998**, *17*, 718.
- (30) Tin, M. K. T.; Yap, G. P. A.; Richeson, D. S. Inorg. Chem. 1998, 37. 6728
- (31) Tin, M. K. T.; Yap, G. P. A.; Richeson, D. S. Inorg. Chem. 1999, 38, 998
- (32) Riley, P. N.; Parker, J. R.; Fanwick, P. E.; Rothwell, I. P. Organometallics 1999, 18, 3579.
- (33) Polamo, M.; Leskela, M. J. Chem. Soc., Dalton Trans. 1996, 4345.
- (34) Gountchev, T. I.; Tilley, T. D. J. Am. Chem. Soc. 1997, 119, 12831.
- (35) Chamberlain, L. R.; Steffey, B. D.; Rothwell, I. P.; Huffman, J. C. Polyhedron 1989, 8, 341.
- (36) Boring, E.; Sabat, M.; Finn, M. G.; Grimes, R. N. Organo-metallics **1997**, *16*, 3993.
- (37) Mulford, D. R.; Clark, J. R.; Schweiger, S. W.; Fanwick, P. E.; Rothwell, I. P. Organometallics 1999, 18, 4448.

Royo et al. already reported the same type of insertion reaction of XylNC into an imine complex, Cp*TaMeCl- $(\eta^2-Me_2C=NXyl)$ to give an amido-imido complex, $Cp*TaCl(NXyl)(N(Xyl)C(Me)=C(Me)_2)$,¹² for which two possible pathways were proposed without alternative judgment: one is the same as Scheme 1, and the other involves the insertion of isonitrile into an azametallacyclopropane. We additionally carried out the reaction of the dichloro complex 2a with XylNC and found that the replacement of the Ph-AD ligand by the isonitrile predominantly gave Cp*TaCl₂(CNXyl)₃ (**6**),³⁹ in sharp contrast to the reported insertion reaction of isonitrile into an azametallacyclopropane moiety of the imine complex $Cp^{*}TaCl_{2}(\eta^{2}-Me_{2}C=NAr)$, giving the imido complex Cp*TaCl₂(NAr).¹²

In summary, we have demonstrated the flexibility of the coordination mode of the AD ligand bound to the tantalum center and the unique intramolecular coupling reaction between the imine moiety of the AD ligand and the iminoacyl group on the tantalum center, resulting in the selective formation of the amido-imido complexes through intramolecular metathesis reaction. We are exploring the coordination flexibility and the unique reactivity of the AD and related heterosubstituted diene ligands.

Experimental Section

General Procedure. All manipulations involving air- and moisture-sensitive organometallic compounds were carried using standard Schlenk techniques under argon. Hexane, THF, and toluene were dried and deoxygenated by distillation over sodium benzophenone ketyl under argon. Benzene- d_6 and THF-d₈ were distilled from Na/K alloy and thoroughly degassed by trap-to-trap distillation before use. Complex Cp*TaCl4 was prepared according to the literature.⁴⁰ Complexes 1a and 2a were prepared according to the literature.¹⁷

The ¹H (500, 400, 300, and 270 MHz) and ¹³C (125, 100, 75, and 68 MHz) NMR spectra were measured on a Varian Unity Inova-500, a JEOL JNM-AL400, a Varian Mercury-300, or a JEOL GSX-270 spectrometer. When benzene- d_6 was used as the solvent, the spectra were referenced to the residual solvent protons at δ 7.20 in the ¹H NMR spectra and to the residual solvent carbons at δ 128.0 in the ¹³C NMR spectra. Assignments for ¹H and ¹³C NMR peaks for some of the complexes were aided by 2D 1H-1H COSY, 2D 1H-1H NOESY, and 2D ¹H-¹³C COSY spectra, respectively. Other spectra were recorded by the use of the following instruments: IR, JASCO FT/IR-230; UV/vis spectra, JASCO V-570; elemental analyses, Perkin-Elmer 2400. All melting points were measured in sealed tubes under argon atmosphere and were not corrected.

Preparation of Cp*TaCl₂(o-Tol-AD) (2b). A mixture of Cp*TaCl₄ (892 mg, 1.95 mmol), 1-(o-methylphenyl)-4-diphenyl-1-aza-1,3-butadiene (992 mg, 1.52 mmol), aluminum (73.0 mg, 2.69 mmol), and HgCl₂ (5 mg) in THF (30 mL) was stirred at room temperature for 12 h. After insoluble products were separated by centrifugation, all volatiles were removed under reduced pressure. The resulting solid was extracted with toluene (80 mL, 6 times). The extract was concentrated under reduced pressure to give **2b** as purple crystalline solids, which were washed with hexane (10 mL). Complex 2b (922 mg) was obtained in 78% yield, mp 115-117 °C (dec). ¹H NMR (400 MHz, C₆D₆, 35 °C): δ 1.63 (d, ${}^{3}J_{H-H} = 7.8$ Hz, 1H, H⁴), 1.75 (s,

⁽²⁴⁾ Chisholm, M. H.; Huffman, J. C.; Tan, L.-S. Inorg. Chem. 1981, 20, 1859.

⁽²⁵⁾ Chisholm, M. H.; Tan, L.-S.; Huffman, J. C. J. Am. Chem. Soc. 1982, 104, 4879.

⁽²⁶⁾ Profilet, R. D.; Fanwick, P. E.; Rothwell, I. P. Polyhedron 1992, 12. 1559.

⁽³⁸⁾ Cook, K. S.; Piers, W. E.; Rettig, S. J.; McDonald, R. Organometallics 2000, 19, 2243.

⁽³⁹⁾ Gómez, M.; Gómez-Sal, P.; Nicolás, M. P.; Royo, P. J. Orgometal. Chem. 1995. 491. 121.

⁽⁴⁰⁾ Cardoso, A. M.; Clark, R. J. H.; Moorhouse, S. J. Chem. Soc., Dalton Trans. 1980, 1156.

3H, CH₃), 1.89 (s, 15H, C₅Me₅), 6.01 (dd, ${}^{3}J_{H-H} = 5.3$ and 7.8 Hz, 1H, H³), 6.06 (d, ${}^{3}J_{H-H} = 5.3$ Hz, 1H, H²), 7.01 (d, 1H, 3-C₆H₄), 7.02 (t, 1H, 4-C₆H₄), 7.02 (t, 1H, *p*-Ph), 7.12 (t, 2H, 5-C₆H₄), 7.32 (d, 2H, *m*-Ph), 7.32 (s, 2H, *o*-Ph), 7.70 (d, 1H, 6-C₆H₄). 13 C NMR (100 MHz, C₆D₆, 35 °C): δ 12.0 (q, ${}^{1}J_{C-H} = 128$ Hz, C₅Me₅), 18.0 (q, ${}^{1}J_{C-H} = 127$ Hz, CH₃), 81.9 (d, ${}^{1}J_{C-H} = 135$ Hz, C⁴), 117.0 (d, ${}^{1}J_{C-H} = 187$ Hz, C²), 117.3 (d, ${}^{1}J_{C-H} = 165$ Hz, C³), 122.5 (s, C₅Me₅), 125.5 (d, ${}^{1}J_{C-H} = 160$ Hz, 6-C₆H₄), 125.7 (d, ${}^{1}J_{C-H} = 158$ Hz, *p*-Ph), 126.6 (d, ${}^{1}J_{C-H} = 158$ Hz, 5-C₆H₄), 127.1 (d, ${}^{1}J_{C-H} = 158$ Hz, *m*-Ph), 130.1 (d, ${}^{1}J_{C-H} = 158$ Hz, n-Ph), 130.1 (d, ${}^{1}J_{C-H} = 158$ Hz, n-C₆H₄), 135.4 (s, 2-C₆H₄), 142.2 (s, *ipso*-Ph), 147.8 (s, 1-C₆H₄). Anal. Calcd for C₂₆H₃₀Cl₂NTa: C, 51.33; H, 4.97; N, 2.30. Found: C, 51.10; H, 5.30; N, 2.07.

Preparation of Cp*Ta(CH₂Ph)₂(o-Tol-AD) (1b). To a solution of 2b (700 mg, 1.15 mmol) in toluene (15 mL) at -20 °C was added a suspension of Mg(CH₂Ph)₂ (1.5 equiv, 357 mg, 0.669 mmol) in toluene (5 mL). The reaction mixture was allowed to warm to room temperature and stirred for 1 h. After all volatiles were removed under reduced pressure, the resulting solid was extracted with hexane (80 mL). The extract was concentrated in vacuo, followed by washing with hexane (1 mL), to give yellow crystalline solids 1b (612 mg, 74% yield), mp 125-127 °C (dec). ¹H NMR (400 MHz, C₆D₆, 35 °C): δ 1.71 (s, 15H, C₅Me₅), 1.85 (s, 2H, Ta-C H_2 Ph), 2.25 (d, ${}^2J_{H-H} = 11.1$ Hz, 1H, Ta-CH₂Ph), 2.42 (s, 3H, Ar-CH₃), 2.50 (d, ${}^{2}J_{H-H} = 11.1$ Hz, 1H, Ta-CH₂Ph), 3.49 (d, ${}^{3}J_{H-H} = 7.8$ Hz, 1H, H²), 6.24 (d, ${}^{3}J_{H-H} = 15.6$ Hz, 1H, H⁴), 6.66 (dd, ${}^{3}J_{H-H} = 7.8$ and 15.6 Hz, 1H, H³), 6.87 (t, 1H, p-Ph), 6.89 (d, 1H, 6-C₆H₄), 6.93 (d, 2H, o-Ph), 6.96 (t, 1H, p-Ph), 6.98 (t, 1H, p-Ph), 7.01 (t, 1H, 5-C₆H₄), 7.02 (d, 1H, 3-C₆H₄), 7.04 (t, 1H, 4-C₆H₄), 7.04 (d, 2H, o-Ph), 7.05 (t, 2H, m-Ph), 7.19 (t, 2H, m-Ph), 7.20 (d, 2H, o-Ph), 7.21 (t, 2H, *m*-Ph). ¹³C NMR (100 MHz, C_6D_6 , 35 °C): δ 11.1 (q, ${}^{1}J_{C-H} = 127$ Hz, C₅Me₅), 21.0 (q, ${}^{1}J_{C-H} = 126$ Hz, Ar-CH₃), 76.7 (t, ${}^{1}J_{C-H} = 119$ Hz, Ta- $CH_{2}Ph$), 79.8 (t, ${}^{1}J_{C-H} = 119$ Hz, Ta- CH_2Ph), 82.0 (d, ${}^{1}J_{C-H} = 160$ Hz, C²), 116.9 (s, C_5Me_5), 123.3 (d, ${}^{1}J_{C-H} = 162$ Hz, $6 \cdot C_{6}H_{4}$), 123.8 (d, ${}^{1}J_{C-H} = 158$ Hz, p-Ph), 123.9 (d, ${}^{1}J_{C-H} = 159$ Hz, *p*-Ph), 124.5 (d, ${}^{1}J_{C-H} = 159$ Hz, 4-C₆H₄), 124.9 (d, ${}^{1}J_{C-H} = 154$ Hz, C⁴), 126.2 (d, ${}^{1}J_{C-H} = 158$ Hz, p-Ph), 126.2 (d, ${}^{1}J_{C-H} = 158$ Hz, o-Ph), 126.6 (d, ${}^{1}J_{C-H} =$ 160 Hz, 5-C₆H₄), 127.9 (d, ${}^{1}J_{C-H} = 159$ Hz, m-Ph), 128.0 (d, ${}^{1}J_{C-H} = 159$ Hz, *m*-Ph), 128.5 (d, ${}^{1}J_{C-H} = 159$ Hz, *m*-Ph), 129.2 (d, ${}^{1}J_{C-H} = 158$ Hz, o-Ph), 129.9 (d, ${}^{1}J_{C-H} = 159$ Hz, o-Ph), 130.0 (s, 2-C₆H₄), 131.9 (d, ${}^{1}J_{C-H} = 157$ Hz, 3-C₆H₄), 138.5 (s, *ipso*-Ph), 138.8 (d, ${}^{1}J_{C-H} = 147$ Hz, C³), 145.4 (s, *ipso*-Ph), 147.0 (s, *ipso*-Ph), 154.6 (s, $1-C_6H_4$). The 2D $^1H-^1H$ NOESY spectrum indicates neighboring protons in the molecule, e.g., (C5Me5 and H^2), (C₅Me₅ and H^3), (C₅Me₅ and H^4), (C₅Me₅ and CH₂Ph), (C₅Me₅ and o-Ph of AD), (C₅Me₅ and o-Ph of CH₂Ph), (CH₂Ph and o-Ph of CH_2Ph), (Me and $3-C_6H_4$), (H² and H⁴), (H² and H³), (H³ and H⁴), and so on. IR (KBr): ν (C=C)/cm⁻¹ 1590 (s) and ν (C=N)/cm⁻¹ 1495 (s). Anal. Calcd for C₄₀H₄₄NTa: C, 66.75; H, 6.16; N, 1.95. Found: C, 66.64; H, 6.24; N, 2.02.

Synthesis of TaCp*(η^2 -Ph-AD){C(=N-C_6H_3Me_2-2,6)-CH₂Ph}CH₂Ph (3a). Complex 1a (48 mg, 0.068 mmol) and 2,6-dimethylphenylisocyanide (XylNC; 8.9 mg, 0.068 mmol) were dissolved in 0.6 mL of C_6D_6 in a 5 mm NMR tube. The NMR tube was sealed under reduce pressure, and then ¹H NMR was measured immediately. The spectrum showed formation of **3a** with a small amount of a second migration product, 5a. ¹H NMR (C₆D₆, 35 °C): δ 1.10 (s, 3H, Me), 1.71 (s, 15H, C₅Me₅), 1.88 (s, 3H, Me), 2.14 (d, ${}^{2}J_{H-H} = 11.7$ Hz, 1H, Ta-C H_2 Ph), 2.65 (d, ${}^{3}J_{H-H} = 8.1$ Hz, 1H, H²), 3.80 (d, ${}^{2}J_{H-H}$ = 11.7 Hz, 1H, Ta-C H_2 Ph), 4.06 (d, ${}^2J_{H-H}$ = 16.6 Hz, 1H, $CH'_{2}Ph$), 4.31 (d, ${}^{2}J_{H-H} = 16.6$ Hz, 1H, $CH'_{2}Ph$), 6.28 (d, 1H, *m*-xyl), 6.47 (dd, ${}^{3}J_{H-H} = 8.1$ and 15.6 Hz, 1H, H³), 6.65 (m, 3H, *m*- and *p*-Ph), 6.70 (d, ${}^{3}J_{H-H} = 15.6$ Hz, 1H, H⁴), 6.70 (m, 2H, m- and p-xyl), 6.80 (d, 2H, o-Ph), 6.89 (m, 3H, m- and p-Ph), 6.01 (t, 1H, p-Ph), 7.05 (d, 2H, o-Ph), 7.22 (t, 2H, m-Ph), 7.34 (d, 2H, o-Ph), 7.37 (t, 2H, m-Ph), 7.86 (d, 2H, o-Ph). 13C NMR (toluene- d_8 , 5 °C): δ 10.8 (q, ${}^1J_{C-H} = 127$ Hz, C_5Me_5), 19.2 (q, ${}^{1}J_{C-H} = 128$ Hz, Me), 19.8 (q, ${}^{1}J_{C-H} = 128$ Hz, Me), 41.9 (t, ${}^{1}J_{C-H} = 127$ Hz, $CH_{2}Ph$), 47.4 (d, ${}^{1}J_{C-H} = 155$ Hz, C²), 49.5 (t, ${}^{1}J_{C-H} = 120$ Hz, $CH_{2}Ph$), 112.1 (s, $C_{5}Me_{5}$), 120.1–155.8 (aromatic and olefinic carbons), 251.2 (s, N= $C(CH_{2}Ph)_{2}$).

Preparation of TaCp*(=NPh){N(C₆H₃Me₂-2,6)C(CH₂-Ph)=CHCH=CHPh}(CH₂Ph) (5a). To a solution of 1a (125 mg, 0.177 mmol) in toluene (2.0 mL) was added a solution of XylNC (23 mg, 0.177 mmol) in toluene (2.0 mL) at -25 °C. The reaction mixture was allowed to warm to room temperature and further stirred for 12 h at room temperature. After removal of the solvent under reduced pressure, the resulting solid was washed with hexane (1.2 mL) to give analytically pure yellow microcrystals of 5a (115 mg), in 78% yield, mp 190-194 °C (dec). ¹H NMR (C₆D₆, 35 °C): δ 1.61 (s, 3H, Me), 1.95 (s, 15H, C₅Me₅), 2.48 (s, 3H, Me), 2.54 (d, ${}^{2}J_{H-H} = 12.2$ Hz, 1H, Ta-C H_2 Ph), 2.81 (d, ${}^2J_{H-H} = 12.2$ Hz, 1H, Ta-C H_2 Ph), 3.02 (d, ${}^{2}J_{H-H} = 14.9$ Hz, 1H, CH₂Ph), 3.81 (d, ${}^{2}J_{H-H} = 14.9$ Hz, 1H, CH₂Ph), 5.97 (d, ${}^{3}J_{H-H} = 10.7$ Hz, 1H, H²), 6.33 (d, 2H, o-Ph), 6.50 (d, 1H, m-xyl), 6.71 (d, ${}^{3}J_{H-H} = 15.6$ Hz, 1H, H4), 6.76 (t, 1H, p-Ph), 6.76 (t, 1H, p-xyl), 6.81 (d, 2H, o-Ph), 6.89 (t, 1H, p-Ph), 6.89 (m, 3H, m- and p-Ph), 7.01 (d, 1H, m-xyl), 7.01 (t, 1H, p-Ph), 7.10 (t, 1H, p-Ph), 7.10 (t, 2H, m-Ph), 7.12 (t, 2H, *m*-Ph), 7.22 (t, 2H, *m*-Ph), 7.32 (dd, ${}^{3}J_{H-H} = 10.7$ and 15.6 Hz, 1H, H³), 7.43 (d, 2H, o-Ph), 7.50 (d, 2H, o-Ph). ¹³C NMR (C₆D₆, 35 °C): δ 12.0 (q, ¹*J*_{C-H} = 127 Hz, C₅*Me*₅), 18.5 (q, ${}^{1}J_{C-H} = 127$ Hz, Me), 21.9 (q, ${}^{1}J_{C-H} = 126$ Hz, Me), 38.2 (t, ${}^{1}J_{C-H} = 126$ Hz, $CH_{2}Ph$), 59.7 (t, ${}^{1}J_{C-H} = 119$ Hz, Ta-*C*H₂Ph), 116.2 (d, ${}^{1}J_{C-H} = 163$ Hz, C²), 117.0 (s, *C*₅Me₅), 122.3 (d, ${}^{1}J_{C-H} = 158$ Hz, *p*-xyl), 123.2 (d, ${}^{1}J_{C-H} = 157$ Hz, *p*-Ph), 125.2 (d, ${}^{1}J_{C-H} = 157$ Hz, p-Ph), 125.6 (d, ${}^{1}J_{C-H} = 157$ Hz, o-Ph), 126.0 (d, ${}^{1}J_{C-H} = 156$ Hz, p-Ph), 126.4 (d, ${}^{1}J_{C-H} = 157$ Hz, o-Ph), 127.0 (d, ${}^{1}J_{C-H} = 147$ Hz, C³), 127.3 (d, ${}^{1}J_{C-H} = 159$ Hz, p-Ph), 127.9 (d, ${}^{1}J_{C-H} = 159$ Hz, m-xyl), 128.0 (d, ${}^{1}J_{C-H} =$ 158 Hz, *m*-Ph), 128.0 (d, ${}^{1}J_{C-H} = 158$ Hz, *m*-Ph), 128.0 (d, ${}^{1}J_{C-H}$ = 158 Hz, *m*-Ph), 128.6 (d, ${}^{1}J_{C-H}$ = 157 Hz, *o*-Ph), 129.0 (d, ${}^{1}J_{C-H} = 158$ Hz, *m*-Ph), 129.2 (d, ${}^{1}J_{C-H} = 159$ Hz, *m*-xyl), 129.7 (d, ${}^{1}J_{C-H} = 155$ Hz, o-Ph), 130.1 (d, ${}^{1}J_{C-H} = 156$ Hz, C⁴), 132.5 (s, o-xyl), 136.4 (s, o-xyl), 138.2 (s, ipso-Ph on C4), 138.6 (s, NC(CH₂Ph)=), 149.2 (s, ipso-Ph of Ta-CH₂Ph), 151.9 (s, ipso-Ph of CH₂Ph), 152.5 (s, ipso-xyl), 156.0 (s, ipso-Ph on N). IR (KBr): 1578, 1481, 1349, 1264, 1120, 1095, 1026, 803, 751, 692. UV (cyclohexane): λ_{max} 302 nm (ϵ 1.9 \times 10⁴) and λ_{max} 364 nm ($\epsilon 1.7 \times 10^4$). FAB-MS: m/z 837 (M⁺), 746 [(M - CH₂Ph)⁺, base peak]. Anal. Calcd for C₄₈H₅₁N₂Ta: C, 68.89; H, 6.14; N, 3.35. Found: C, 68.53; H, 6.41; N, 3.33.

Preparation of TaCp ${=N(C_6H_4Me-2)}{N(C_6H_3Me_2-$ 2,6)C(CH₂Ph)=CHCH=CHPh}(CH₂Ph) (5b). A solution of 1b (200 mg, 0.278 mmol) and XylNC (36.5 mg, 0.278 mmol) in toluene (2.0 mL) was stirred overnight. After removal of all volatiles under reduced pressure, the resulting solids were rinsed with hexane (1.2 mL) to give analytically pure yellow crystals of 5b (213 mg, 0.250 mmol, 90% yield), mp 220-202 °C (dec). ¹H NMR (C₆D₆, 35 °C): δ 1.68 (s, 3H, Me), 1.94 (s, 15H, C₅Me₅), 2.02 (s, 3H, Me(xyl)), 2.49 (s, 3H, Me(xyl)), 2.72 (d, ${}^{2}J_{H-H} = 12.7$ Hz, 1H, Ta-CH₂Ph), 2.98 (d, ${}^{2}J_{H-H} = 14.6$ Hz, 1H, Ta-C H_2 Ph), 3.05 (d, ${}^2J_{H-H} = 12.9$ Hz, 1H, C H_2 Ph), 3.86 (d, ${}^{2}J_{H-H} = 14.6$ Hz, 1H, CH₂Ph), 6.04 (d, ${}^{3}J_{H-H} = 10.5$ Hz, 1H, H²), 6.45 (d, 1H, *m*-xyl), 6.68 (t, 1H, *p*-xyl), 6.71 (d, ³J_{H-H} = 15.3 Hz, 1H, H⁴), 6.74 (d, 1H, 4-C₆H₄), 6.78 (t, 1H, 5-C₆H₄), 6.79 (d, 2H, o-Ph), 6.89 (d 1H, m-xyl), 6.0.89 (d, 2H, m-Ph), 6.89 (t, 1H, p-Ph), 7.00 (d, 1H, 3-C₆H₄), 7.11 (t, 2H, m-Ph), 7.11 (d, 2H, 6-C₆H₄), 7.23 (t, 2H, *m*-Ph), 7.36 (dd, ${}^{3}J_{H-H} = 10.5$ and 15.3 Hz, 1H, H3), 7.45 (d, 2H, o-Ph), 7.47 (d, 2H, o-Ph). ¹³C NMR (C₆D₆, 35 °C): δ 11.8 (q, ¹J_{C-H} = 127 Hz, C₅Me₅), 18.2 (q, ${}^{1}J_{C-H} = 127$ Hz, Me), 18.8 (q, ${}^{1}J_{C-H} = 127$ Hz, Me(xyl)), 22.0 (q, ${}^{1}J_{C-H} = 126$ Hz, Me(xyl)), 38.2 (t, ${}^{1}J_{C-H} = 125$ Hz, CH_2Ph), 58.2 (t, ${}^{1}J_{C-H} = 118$ Hz, Ta- CH_2Ph), 158.4 (d, ${}^{1}J_{C-H}$ = 158 Hz, C²), 117.1 (s, C_5 Me₅), 122.6 (d, ${}^{1}J_{C-H} = 158$ Hz, 4-C₆H₄), 123.5 (d, ${}^{1}J_{C-H} = 158$ Hz, p-Ph), 125.3 (d, ${}^{1}J_{C-H} =$ 159 Hz, *p*-xyl), 125.3 (d, ${}^{1}J_{C-H} = 157$ Hz, *p*-Ph), 125.9 (d, ${}^{1}J_{C-H}$ = 159 Hz, p-Ph), 126.4 (d, ${}^{1}J_{C-H}$ = 160 Hz, o-Ph), 126.8 (d,

Table 3. Crystal Data and Data CollectionParameters of 1a and 1b

	1a
formula	C ₃₉ H ₄₂ NTa
fw	705.72
cryst syst	monoclinic
space group	$P2_1/n$ (#14)
a, Å	16.065(4)
b, Å	10.998(4)
<i>c</i> , Å	19.730(5)
α, deg	
β , deg.	112.61(2)
γ, deg	0010(1)
V, A ³	3218(1)
	4
no. of refins for cell determ (20 range) $D_{\rm ref} = g/{\rm cm}^{-3}$	25(20-30)
$D_{\text{calcd}}, g/cm^2$	1.450
$\mu [M_0 K_{\alpha}] cm^{-1}$	34 37
diffractometer	AFC-7R
T. K	296(1)
cryst size, mm	$0.20 \times 0.17 \times 0.13$
scan type	$\omega - 2\theta$
scan speed, deg/min	16
scan width, deg	$1.10 \pm 0.30 \tan \theta$
$2\theta_{\min}, 2\theta_{\max}, \deg$	5.0, 55.0
unique data (R_{int})	6580 (0.127)
no. of obsns	4218
no. of variables	370
R1, wR2 (all data)	0.140, 0.107
R, R_{W}	$0.040, 0.043 (I > 3.0\sigma(I))$
GOF on F^{\sim}	1.01
Δ, e A	2.07, -3.95
	11.
	10
formula	C ₄₀ H ₄₄ NTa
formula fw	тв С ₄₀ Н ₄₄ NTa 719.74
formula fw cryst syst	C ₄₀ H ₄₄ NTa 719.74 monoclinic
formula fw cryst syst space group	10 C ₄₀ H ₄₄ NTa 719.74 monoclinic <i>P</i> 2,1/c (#14)
formula fw cryst syst space group <i>a</i> , Å	10 C ₄₀ H ₄₄ NTa 719.74 monoclinic <i>P</i> 2 ₁ / <i>c</i> (#14) 9.504(3) 17.511(4)
formula fw cryst syst space group <i>a</i> , Å <i>b</i> , Å	10 C ₄₀ H ₄₄ NTa 719.74 monoclinic <i>P</i> 2 ₁ / <i>c</i> (#14) 9.504(3) 17.511(4) 20.262(9)
formula fw cryst syst space group <i>a</i> , Å <i>b</i> , Å <i>c</i> , Å	IB C ₄₀ H ₄₄ NTa 719.74 monoclinic <i>P</i> 2 ₁ /c (#14) 9.504(3) 17.511(4) 20.263(8)
formula fw cryst syst space group <i>a</i> , Å <i>b</i> , Å <i>c</i> , Å α, deg β deg	10 C ₄₀ H ₄₄ NTa 719.74 monoclinic <i>P</i> 2 ₁ / <i>c</i> (#14) 9.504(3) 17.511(4) 20.263(8) 100 58(4)
formula fw cryst syst space group a, Å b, Å c, Å α, deg $\beta, deg.$ ν, deg	IB C ₄₀ H ₄₄ NTa 719.74 monoclinic <i>P</i> 2 ₁ /c (#14) 9.504(3) 17.511(4) 20.263(8) 100.58(4)
formula fw cryst syst space group a, Å b, Å c, Å α, deg $\beta, deg.$ γ, deg $V. Å^3$	$\begin{array}{c} \textbf{15} \\ \hline \textbf{C}_{40}\textbf{H}_{44}\textbf{NTa} \\ 719.74 \\ \textbf{monoclinic} \\ P2_1/c \ (\#14) \\ 9.504(3) \\ 17.511(4) \\ 20.263(8) \\ 100.58(4) \\ 3315(1) \end{array}$
formula fw cryst syst space group a, Å b, Å c, Å α, deg $\beta, deg.$ γ, deg $V, Å^3$ Z	IB C ₄₀ H ₄₄ NTa 719.74 monoclinic <i>P</i> 2 ₁ /c (#14) 9.504(3) 17.511(4) 20.263(8) 100.58(4) 3315(1) 4
formula fw cryst syst space group a, Å b, Å c, Å α, deg $\beta, deg.$ γ, deg $V, Å^3$ Z no. of reflns for cell determ (2 θ range)	$\begin{array}{c} \textbf{15} \\ \hline \textbf{C}_{40}\textbf{H}_{44}\textbf{NTa} \\ 719.74 \\ \textbf{monoclinic} \\ P2_1/c \ (\#14) \\ 9.504(3) \\ 17.511(4) \\ 20.263(8) \\ 100.58(4) \\ 3315(1) \\ 4 \\ 25 \ (20-30^\circ) \end{array}$
formula fw cryst syst space group a, Å b, Å c, Å α, \deg β, \deg β, \deg γ, \deg γ, \deg $V, Å^3$ Z no. of reflns for cell determ (2θ range) $D_{\text{caled}}, \text{g/cm}^{-3}$	$\begin{array}{c} \textbf{10} \\ \hline C_{40}H_{44}NTa \\ 719.74 \\ monoclinic \\ P2_{1/c} (\#14) \\ 9.504(3) \\ 17.511(4) \\ 20.263(8) \\ 100.58(4) \\ 3315(1) \\ 4 \\ 25 (20-30^{\circ}) \\ 1.442 \\ \end{array}$
formula fw cryst syst space group a, Å b, Å c, Å α, \deg β, \deg β, \deg γ, \deg $V, Å^3$ Z no. of reflns for cell determ (2θ range) $D_{calcd}, g/cm^{-3}$ F(000)	$\begin{array}{c} \textbf{10} \\ \hline C_{40}H_{44}\text{NTa} \\ 719.74 \\ \text{monoclinic} \\ P2_1/c \ (\#14) \\ 9.504(3) \\ 17.511(4) \\ 20.263(8) \\ 100.58(4) \\ 3315(1) \\ 4 \\ 25 \ (20-30^\circ) \\ 1.442 \\ 1456.00 \\ \end{array}$
formula fw cryst syst space group $a, \text{\AA}$ $b, \text{\AA}$ $c, \text{\AA}$ α, deg $\beta, \text{deg.}$ γ, deg $V, \text{\AA}^3$ Z no. of reflns for cell determ (2θ range) $D_{\text{calcd. g/cm}^{-3}}$ F(000) μ [Mo K α], cm ⁻¹	$\begin{array}{c} \textbf{15} \\ \hline C_{40}H_{44}NTa \\ 719.74 \\ monoclinic \\ P2_1/c (\#14) \\ 9.504(3) \\ 17.511(4) \\ 20.263(8) \\ 100.58(4) \\ 3315(1) \\ 4 \\ 25 (20-30^\circ) \\ 1.442 \\ 1456.00 \\ 33.38 \\ \end{array}$
formula fw cryst syst space group <i>a</i> , Å <i>b</i> , Å <i>b</i> , Å <i>c</i> , Å α , deg β , deg. γ , deg <i>V</i> , Å ³ <i>Z</i> no. of reflns for cell determ (2θ range) D_{calcd} , g/cm ⁻³ <i>F</i> (000) μ [Mo K α], cm ⁻¹ diffractometer	$\begin{array}{c} \textbf{15} \\ \hline C_{40}H_{44}NTa \\ 719.74 \\ monoclinic \\ P2_1/c (\#14) \\ 9.504(3) \\ 17.511(4) \\ 20.263(8) \\ 100.58(4) \\ 3315(1) \\ 4 \\ 25 (20-30^\circ) \\ 1.442 \\ 1456.00 \\ 33.38 \\ AFC-7R \\ 2000(1) \end{array}$
formula fw cryst syst space group $a, \text{\AA}$ $b, \text{\AA}$ $c, \text{\AA}$ α, deg $\beta, \text{deg.}$ γ, deg $V, \text{\AA}^3$ Z no. of reflns for cell determ (2θ range) $D_{\text{calcd.}} g/\text{cm}^{-3}$ F(000) μ [Mo K α], cm ⁻¹ diffractometer T, K	$\begin{array}{c} \textbf{ID} \\ \hline C_{40}H_{44}NTa \\ 719.74 \\ monoclinic \\ P2_1/c (\#14) \\ 9.504(3) \\ 17.511(4) \\ 20.263(8) \\ 100.58(4) \\ 3315(1) \\ 4 \\ 25 (20-30^\circ) \\ 1.442 \\ 1456.00 \\ 33.38 \\ AFC-7R \\ 296(1) \\ 0.58 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.10 \\$
formula fw cryst syst space group <i>a</i> , Å <i>b</i> , Å <i>b</i> , Å <i>c</i> , Å α , deg β , deg. γ , deg <i>V</i> , Å ³ <i>Z</i> no. of reflns for cell determ (2θ range) D_{calcd} . g/cm ⁻³ <i>F</i> (000) μ [Mo K α], cm ⁻¹ diffractometer <i>T</i> , K cryst size, mm grant type	IB $C_{40}H_{44}NTa$ 719.74 monoclinic $P2_1/c$ (#14) 9.504(3) 17.511(4) 20.263(8) 100.58(4) 3315(1) 4 25 (20-30°) 1.442 1442 1456.00 33.38 AFC-7R 296(1) 0.58 × 0.25 × 0.12 $(2.26)^{-10}$
formula fw cryst syst space group <i>a</i> , Å <i>b</i> , Å <i>b</i> , Å <i>c</i> , Å α , deg β , deg. γ , deg <i>V</i> , Å ³ <i>Z</i> no. of reflns for cell determ (2θ range) D_{calcd} , g/cm ⁻³ <i>F</i> (000) μ [Mo K α], cm ⁻¹ diffractometer <i>T</i> , K cryst size, mm scan type scan speed_deg/min	IB C ₄₀ H ₄₄ NTa 719.74 monoclinic $P2_1/c$ (#14) 9.504(3) 17.511(4) 20.263(8) 100.58(4) 3315(1) 4 25 (20-30°) 1.442 1456.00 33.38 AFC-7R 296(1) 0.58 × 0.25 × 0.12 $\omega - 2\theta$ 32
formula fw cryst syst space group <i>a</i> , Å <i>b</i> , Å <i>c</i> , Å α , deg β , deg. γ , deg V, Å ³ <i>Z</i> no. of reflns for cell determ (2θ range) D_{calcd} , g/cm ⁻³ <i>F</i> (000) μ [Mo K α], cm ⁻¹ diffractometer <i>T</i> , K cryst size, mm scan type scan speed, deg/min scan width deg	ID C ₄₀ H ₄₄ NTa 719.74 monoclinic $P2_1/c$ (#14) 9.504(3) 17.511(4) 20.263(8) 100.58(4) 3315(1) 4 25 (20-30°) 1.442 1456.00 33.38 AFC-7R 296(1) 0.58 × 0.25 × 0.12 $\omega - 2\theta$ 32 1.57 + 0.30 tang
formula fw cryst syst space group <i>a</i> , Å <i>b</i> , Å <i>c</i> , Å α , deg β , deg. γ , deg V, Å ³ <i>Z</i> no. of refins for cell determ (2θ range) D_{calcd} , g/cm ⁻³ F(000) μ [Mo K α], cm ⁻¹ diffractometer <i>T</i> , K cryst size, mm scan type scan speed, deg/min scan width, deg $2\theta_{min}$, $2\theta_{mm}$, deg	$\begin{array}{c} \textbf{10} \\ \hline \textbf{C}_{40}\textbf{H}_{44}\textbf{NTa} \\ 719.74 \\ \textbf{monoclinic} \\ P2_1/c (\#14) \\ 9.504(3) \\ 17.511(4) \\ 20.263(8) \\ 100.58(4) \\ \hline \textbf{3315(1)} \\ 4 \\ 25 (20-30^\circ) \\ 1.442 \\ 1456.00 \\ 33.38 \\ \textbf{AFC-7R} \\ 296(1) \\ 0.58 \times 0.25 \times 0.12 \\ \omega-2\theta \\ 32 \\ 1.57 + 0.30 \\ tanq \\ 50 \\ 55 0 \\ \end{array}$
formula fw cryst syst space group <i>a</i> , Å <i>b</i> , Å <i>c</i> , Å α , deg β , deg. γ , deg <i>V</i> , Å ³ <i>Z</i> no. of reflns for cell determ (2θ range) D_{calcd} , g/cm ⁻³ F(000) μ [Mo K α], cm ⁻¹ diffractometer <i>T</i> , K cryst size, mm scan type scan speed, deg/min scan width, deg $2\theta_{min}$, $2\theta_{max}$, deg unique data (R_{cr})	IB $C_{40}H_{44}NTa$ 719.74 monoclinic $P2_1/c$ (#14) 9.504(3) 17.511(4) 20.263(8) 100.58(4) 3315(1) 4 25 (20-30°) 1.442 1456.00 33.38 AFC-7R 296(1) 0.58 × 0.25 × 0.12 $\omega - 2\theta$ 32 1.57 + 0.30 tanq 5.0, 55.0 7977 (0.083)
formula fw cryst syst space group <i>a</i> , Å <i>b</i> , Å <i>c</i> , Å α , deg β , deg. γ , deg <i>V</i> , Å ³ <i>Z</i> no. of reflns for cell determ (2θ range) D_{calcd} , g/cm ⁻³ F(000) μ [Mo K α], cm ⁻¹ diffractometer <i>T</i> , K cryst size, mm scan type scan speed, deg/min scan width, deg $2\theta_{min}$, $2\theta_{max}$, deg unique data (R_{int}) no. of obsns	IB $C_{40}H_{44}NTa$ 719.74 monoclinic $P2_1/c$ (#14) 9.504(3) 17.511(4) 20.263(8) 100.58(4) 3315(1) 4 25 (20-30°) 1.442 1456.00 33.38 AFC-7R 296(1) 0.58 × 0.25 × 0.12 $\omega - 2\theta$ 32 1.57 + 0.30 tanq 5.0, 55.0 7977 (0.083) 7718
formula fw cryst syst space group <i>a</i> , Å <i>b</i> , Å <i>c</i> , Å α , deg β , deg. γ , deg <i>V</i> , Å ³ <i>Z</i> no. of reflns for cell determ (2θ range) D_{calcd} , g/cm ⁻³ F(000) μ [Mo K α], cm ⁻¹ diffractometer <i>T</i> , K cryst size, mm scan type scan speed, deg/min scan width, deg $2\theta_{min}$, $2\theta_{max}$, deg unique data (R_{int}) no. of variables	$\begin{array}{c} \textbf{15} \\ \hline \textbf{C}_{40}\textbf{H}_{44}\textbf{NTa} \\ 719.74 \\ \textbf{monoclinic} \\ P2_1/c (\#14) \\ 9.504(3) \\ 17.511(4) \\ 20.263(8) \\ \hline 100.58(4) \\ \hline 3315(1) \\ 4 \\ 25 (20-30^{\circ}) \\ 1.442 \\ 1456.00 \\ 33.38 \\ \textbf{AFC-7R} \\ 296(1) \\ 0.58 \times 0.25 \times 0.12 \\ \hline \omega - 2\theta \\ 32 \\ 1.57 + 0.30 \\ tanq \\ 5.0, 55.0 \\ 7977 (0.083) \\ 7718 \\ 379 \\ \end{array}$
formula fw cryst syst space group <i>a</i> , Å <i>b</i> , Å <i>c</i> , Å <i>a</i> , deg β , deg. γ , deg <i>V</i> , Å ³ <i>Z</i> no. of reflns for cell determ (2θ range) D_{calcd} , g/cm ⁻³ <i>F</i> (000) μ [Mo K α], cm ⁻¹ diffractometer <i>T</i> , K cryst size, mm scan type scan speed, deg/min scan vidth, deg $2\theta_{min}$, $2\theta_{max}$, deg unique data (R_{int}) no. of obsns no. of variables R1, wR2 (all data)	$\begin{array}{c} \textbf{15} \\ \hline \textbf{C}_{40}\textbf{H}_{44}\textbf{NTa} \\ 719.74 \\ \textbf{monoclinic} \\ P2_1/c (\#14) \\ 9.504(3) \\ 17.511(4) \\ 20.263(8) \\ \hline 100.58(4) \\ \hline 3315(1) \\ 4 \\ 25 (20-30^{\circ}) \\ 1.442 \\ 1456.00 \\ 33.38 \\ \textbf{AFC-7R} \\ 296(1) \\ 0.58 \times 0.25 \times 0.12 \\ \hline \omega - 2\theta \\ 32 \\ 1.57 + 0.30 \\ tanq \\ 5.0, 55.0 \\ 7977 (0.083) \\ 7718 \\ 379 \\ 0.126, 0.080 \\ \end{array}$
formula fw cryst syst space group a, \hat{A} b, \hat{A} c, \hat{A} $\alpha, \deg \beta$ $\beta, \deg.$ γ, \deg $\beta, \deg.$ γ, \deg γ, \deg r $\beta, \deg.$ γ, \deg $\beta, \deg.$ γ, \deg r $\beta, \deg.$ γ, \deg r r r r r r r r	$\begin{array}{c} \textbf{10} \\ \hline \textbf{C}_{40}\textbf{H}_{44}\textbf{NTa} \\ 719.74 \\ \textbf{monoclinic} \\ P2_1/c (\#14) \\ 9.504(3) \\ 17.511(4) \\ 20.263(8) \\ \hline \textbf{100.58(4)} \\ 3315(1) \\ 4 \\ 25 (20-30^{\circ}) \\ 1.442 \\ 1456.00 \\ 33.38 \\ \textbf{AFC-7R} \\ 296(1) \\ 0.58 \times 0.25 \times 0.12 \\ \omega-2\theta \\ 32 \\ 1.57 + 0.30 \\ tanq \\ 5.0, 55.0 \\ 7977 (0.083) \\ 7718 \\ 379 \\ 0.126, 0.080 \\ 0.037, 0.037 (I > 3.0\sigma(I)) \end{array}$
formula fw cryst syst space group a, \hat{A} b, \hat{A} c, \hat{A} $\alpha, \deg \beta$ $\beta, \deg.$ γ, \deg $\beta, \deg.$ γ, \deg $\beta, \deg.$ γ, \deg $\beta, \deg.$ γ, \deg $\beta, \deg.$ γ, \deg P_{α} α, Θ^{α} β, Θ^{α} γ, Θ^{α} Z no. of reflns for cell determ (2θ range) $D_{calcd}, g/cm^{-3}$ F(000) μ [Mo K α], cm ⁻¹ diffractometer T, K cryst size, mm scan type scan speed, deg/min scan width, deg $2\theta_{min}, 2\theta_{max}, \deg$ unique data (R_{int}) no. of obsns no. of variables R1, wR2 (all data) R, R_w GOF on F^2	$\begin{array}{c} \textbf{10} \\ \hline \textbf{C}_{40}\textbf{H}_{44}\textbf{NTa} \\ 719.74 \\ \textbf{monoclinic} \\ P2_1/c (\#14) \\ 9.504(3) \\ 17.511(4) \\ 20.263(8) \\ \hline \textbf{100.58(4)} \\ 3315(1) \\ 4 \\ 25 (20-30^{\circ}) \\ 1.442 \\ 1456.00 \\ 33.38 \\ \textbf{AFC-7R} \\ 296(1) \\ 0.58 \times 0.25 \times 0.12 \\ \omega - 2\theta \\ 32 \\ 1.57 + 0.30 \\ tanq \\ 5.0, 55.0 \\ 7977 (0.083) \\ 7718 \\ 379 \\ 0.126, 0.080 \\ 0.037, 0.037 (I > 3.0\sigma(l)) \\ 1.22 \\ \dots \end{array}$

¹ $J_{C-H} = 148$ Hz, C³), 127.0 (d, ¹ $J_{C-H} = 155$ Hz, 5-C₆H₄), 127.3 (d, ¹ $J_{C-H} = 156$ Hz, 6-C₆H₄), 127.9 (d, ¹ $J_{C-H} = 157$ Hz, *m*-xyl), 127.9 (d, ¹ $J_{C-H} = 158$ Hz, *m*-Ph), 128.1 (d, ¹ $J_{C-H} = 158$ Hz, *m*-Ph), 128.2 (d, ¹ $J_{C-H} = 156$ Hz, *o*-Ph), 129.0 (d, ¹ $J_{C-H} = 158$ Hz, *m*-Ph), 129.2 (d, ¹ $J_{C-H} = 157$ Hz, *m*-xyl), 130.0 (d, ¹ $J_{C-H} = 156$ Hz, 3-C₆H₄), 130.1 (d, ¹ $J_{C-H} = 152$ Hz, C⁴), 130.7 (d, ¹ $J_{C-H} = 155$ Hz, *o*-Ph), 132.6(s, *o*-xyl), 133.5 (s, 2-C₆H₄), 136.2 (s, *o*-xyl), 138.2 (s, *ipso*-Ph on C⁴), 138.7 (s, NC(CH₂Ph)=), 148.4 (s, ipso-Ph of Ta-CH₂Ph), 152.0 (s, ipso-Ph of CH₂Ph), 152.0 (s, *ipso*-xyl), 154.3 (s, *ipso*-Ph on N). IR (KBr): 1614, 1591, 1475, 1448, 1330, 1264, 1181, 1121, 1096, 1029, 967, 747, 693

Table 4.	Crystal Data and Data Collection		
Parameters of 5b			

i urumeters or ob	•
formula	$C_{98}H_{106}N_4Ta_2$
fw	1701.84
cryst syst	triclinic
space group	P1 (No. 2)
a, Å	21.211(1)
b, Å	21.695(1)
<i>c</i> , Å	10.7573(5)
α, deg	95.316(2)
β , deg	94.598(2)
γ , deg	118.338(1)
V, Å ³	4055.0(4)
Ζ	2
no. of reflns for cell determ (2θ range)	36105(3.8-55.0°)
D_{calcd} , g/cm ⁻³	1.394
F(000)	1736.00
μ [Mo K α], cm ⁻¹	27.42
diffractometer	R-AXIS-RAPID
Т, К	213(1)
cryst size, mm	$0.10 \times 0.10 \times 0.08$
no. of images	101
total oscillation angles (deg)	300.0
exposure time (min per deg)	7.50
$2\theta_{\min}, 2\theta_{\max}, \deg$	3.8, 55.0
no. of reflns measured (total)	47396
no. of reflns measured (unique)	$18354 \ (R_{\rm int} = 0.054)$
no. of variables	1018
R1, wR2 (all data)	0.112, 0.147
$R(I > 2.0\sigma(I))$	0.063
GOF on F^2	1.22
Δ . e Å ⁻³	7.457.74
,	

cm⁻¹. FAB-MS: m/z 851 (M⁺), 760 (M – CH₂Ph)⁺. Anal. Calcd for C₄₉H₅₃N₂Ta: C, 69.16; H, 6.28; N, 3.29. Found: C, 69.00; H, 6.20; N, 3.29.

Crystallographic Data Collections and Structure Determination of 1a, 1b, and 5b. The X-ray diffraction studies was sealed in glass capillaries under an argon atmosphere The crystals of complexes 1a and 1b were mounted on a Rigaku AFC-7R four-circle diffractometer for data collection using Mo K α (graphite monochromated, $\lambda = 0.71069$) radiation, and the crystals of complex 5b were mounted on a Rigaku R-AXIS Rapid imaging plate diffractometer for data collection using Mo K α (graphite monochromated, $\lambda = 0.71069$) radiation. Relevant crystal and data statistics are summarized in Table 3 (1a and 1b) and Table 4 (5b). The unit cell parameters and the orientation matrix at 23 °C were determined by a leastsquares fit to 2θ values of 25 strong higher reflections for complexes **1a** and **1b**. In the case of the AFC-7R four-circle diffractometer, an empirical absorption correction was applied on the basis of azimuthal scans and the data were corrected for Lorentz and polarization effects. In the case of the R-AXIS Rapid imaging plate diffractometer, a symmetry-related absorption correction using the program ABSCOR⁴¹ was applied. The data were corrected for Lorentz and polarization effects.

The structures of complex **1a** and **1b** were solved by a direct method (SHELXS 86)⁴² and refined by the full-matrix least-squares method. The structure of complex **5b** was solved by a direct method (SHELXS-97)⁴³ and expanded using Fourier techniques (DIRDIF94).⁴⁴ Two independent molecules of **5b** crystallized in the asymmetric unit. Measured nonequivalent reflections were used for the structure determination. In the subsequent refinement, the function $\sum w(|F_o| - |F_c|)^2$ was

⁽⁴¹⁾ Higashi, T. *Program for Absorption Correction*; Rigaku Corporation: Tokyo, Japan, 1995.

⁽⁴²⁾ Sheldrick, G. M. Crystallographic Computing 3; Sheldrick, G. M., Krüger, C., Goddard, R., Eds.; Oxford University Press: 1985; pp 179–189.

⁽⁴³⁾ Sheldrick, G. M. *Program for the Solution of Crystal Structures*; University of Göttingen: Germany, 1997.

⁽⁴⁴⁾ Beurskens, P. T.; Admiraal, G.; Beurskens, G.; Boeman, W. P.; de Gelder, R.; Israel, R.; Smits, J. M. M. *The DIRDIF program system*, Technical Report of the Crystallography Laboratory; University of Nijmegen: The Netherlands, 1994.

minimized, where $|F_{\rm o}|$ and $|F_{\rm c}|$ are the observed and calculated structure factor amplitudes, respectively. The agreement indices are defined as R1 = $\Sigma(||F_{\rm o}| - |F_{\rm c}|)/\Sigma|F_{\rm o}|$ and wR2 = $[\Sigma w(F_{\rm o}^2 - F_{\rm c}^2)^2/\Sigma (wF_{\rm o}^4)]^{1/2}$. The positions of all non-hydrogen atoms for all complexes were found from a difference Fourier electron density map and refined anisotropically. All hydrogen atoms were placed in calculated positions (C–H = 0.95 Å) and kept fixed. All calculations were performed using the teXsan crystallographic software package, and illustrations were drawn with ORTEP.

Acknowledgment. This research was supported by a Grant-in-Aid for Scientific Research on Priority Areas

(A) "Exploitation of Multi-Element Cyclic Molecules" from the Ministry of Education, Culture, Sports, Science and Technology, Japan. Y.M. is a research fellow of the Japan Society for the Promotion of Science, 1998–2000.

Supporting Information Available: Tables giving crystallographic data for complexes **1a**, **1b**, and **5b**. This material is available free of charge via the Internet at http://pubs.acs.org.

OM010724Z