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Summary: The air-stable phosphine sulfide [(tBu)2P-
(S)H] serves as a ligand precursor for the efficient nickel-
catalyzed cross-coupling reactions of a variety of unac-
tivated aryl chlorides with aryl Grignard reagents
(Kumada-Tamao-Corriu reaction) at room tempera-
ture to yield the corresponding biaryls with isolated
product yields ranging from 79 to 97%.

Carbon-carbon bond-forming processes are of fun-
damental importance in organic synthesis, and the
efficient cross-coupling reactions of aryl halides and
arylmagnesium halides are extremely versatile and
powerful approaches for the construction of a variety
of biaryl compounds.1 Recently, a number of promising
catalytic systems spurred innovation in new and ef-
ficient catalysts for using both more readily available
and less expensive aryl chlorides as starting materi-
als.2,3 As part of our ongoing efforts to apply combina-
torial approaches for the discovery of new materials and
catalysts,4,5 we reported the discovery of air-stable
phosphine oxide [R2P(O)H] ligand precursors, for a
variety of transition-metal-catalyzed cross-coupling re-
actions of unactivated aryl chlorides.6 All these reactions

proceeded via novel metal-phosphinous acid com-
pounds,7 which can be deprotonated in the presence of
base to generate anionic species as catalysts for Cl-C
bond activation of aryl chlorides (eq 1).

These results pose an interesting situation for the
analogous phosphine sulfides [R2P(S)H]: that the tau-
tomerization results in phosphinothious acid (R2P-SH).
Herein, we report our preliminary results on the first
phosphine sulfide that replacement of the phosphine
oxides with air-stable phosphine sulfides provides a
new-type ligand precursor for the C-C bond-forming
reactions of aryl chlorides with aryl Grignard reagents
in high yields at ambient temperature.

The ligand precursor used for cross-coupling reactions
was straightforwardly synthesized by reaction of (t-
Bu)2PH with S8 in benzene8 and characterized by X-ray
crystallography (see the Supporting Information for full
details), and an ORTEP view is shown in Figure 1.9

The precatalysts were generated in situ by treating
Ni(COD)2 with phosphine sulfides [(t-Bu)2PS(H)] in THF
at room temperature. The catalytic cross-coupling reac-
tions were carried out in organic solvents (e.g. THF,
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Et2O, dioxane) under anhydrous/anaerobic conditions
(catalyst loading 3 mol %). Isolated yields in Table 1
refer to products isolated by column chromatography.
Known products were identified by comparison with
literature data and/or with those of authentic samples.
New compounds were characterized by 1-D and 2-D 1H/
13C NMR, HRMS, or elemental analysis.10

It can be seen that Ni(COD)2/RR′P(S)H precatalysts
were capable of catalyzing the cross-coupling reactions
of a variety of aryl chlorides and aryl Grignard reagents
at room temperature to yield the desired biaryls in high
isolated yields. Entries 1-4 illustrate that a variety of
electron-rich chloroanisoles could be coupled with aryl
Grignard reagents quantitatively. Entries 2 and 3
demonstrate that the more sterically demanding and

electron-rich substrates 2-chloroanisole and 3-chloro-
anisole were both coupled with phenyl Grignard re-
agents to yield 2-phenylanisole (entry 2) and 3-phenyl-
anisole (entry 3). Entries 4 and 5 illustrate that bulky
Grignard reagents are effective coupling groups with
aryl chlorides, yielding 4-(2-tolyl)anisole and 2-phenyl-
toluene.

A number of aspects of the present phosphine sulfide
ligand precursors are noteworthy and offer both infor-
mative parallels and contrasts to the corresponding
phosphine ligands2a and phosphinous acid ligands5,6 in
the cross-coupling reactions of aryl chlorides. The
present process is capable of using air-stable phosphine
sulfides [RR′P(S)H] as ligand precursors for Ni-cata-
lyzed cross-coupling reactions of aryl chlorides and
Grignard reagents (Kumada-Tamao-Corriu coupling
reaction) at room temperature, and all the cross-
coupling results are comparable with those from the
corresponding phosphinous acid ligands under the same
reaction conditions (entries 7 and 8). It was well-known
in many cases that organic sulfur compounds strongly
bind to the transition metals through M-S bonds, thus
poisoning them and making catalytic reactions ineffec-
tive.11 However, the phosphinothious acid (R2P-SH)
derived from tautomerization of phosphine sulfides can
be tolerated in the present catalytic processes.

In conclusion, we have shown for the first time that
air-stable phosphine sulfides (RR′P(S)H) are ideal ligand
precursors for the activation of C-Cl bonds of unacti-
vated aryl chlorides in the presence of bases and that
such processes can be incorporated into efficient cata-
lytic cycles for C-C bond-forming processes. Of note are
the efficiency for unactivated aryl chlorides and the
simplicity, low cost, air stability, and ready accessibility
for these ligand precursors. Additional applications of
these air-stable phosphine sulfide ligand precursors for
catalysis are currently under investigation.
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185.0966; found, 185.0968. Anal. Calcd for C13H12O: C, 84.75; H, 6.57;
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Figure 1. ORTEP view (50% probability) of di-tert-
butylphosphine sulfide. Selected interatomic distances (Å)
and angles (deg) are as follows: P(1)-C(1) ) 1.8599(15),
P(1)-C(5) ) 1.8601(15), P(1)-S(1) ) 1.9666(6); C(1)-P(1)-
C(5) ) 116.21(7), C(1)-P(1)-S(1) ) 113.12(5), C(5)-P(1)-
S(1) ) 112.03(5), C(4)-C(1)-P(1) ) 112.25(10), C(3)-C(1)-
P(1) ) 111.23(10), C(2)-C(1)-P(1) ) 105.17(11), C(6)-
C(5)-P(1) ) 112.11(10), C(7)-C(5)-P(1) ) 110.77(11),
C(8)-C(5)-P(1) ) 104.63(11).

Table 1. Nickel/Phosphine SulfIde Catalyzed
Cross-Coupling Results of Aryl Chlorides with

RMgXa

a General reaction conditions (not optimized): 1.0 equiv of aryl
chloride, 1.5 equiv of RMgX, THF, room temperature. Grignard
reagents and aryl chlorides were used as received.
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