1167

Cationic Indium Alkyl Complexes Incorporating Aminotroponiminate Ligands

Fabien Delpech,[†] Ilia A. Guzei,[‡] and Richard F. Jordan^{*,†}

Department of Chemistry, The University of Chicago, 5735 S. Ellis Avenue, Chicago, Illinois 60637, and Department of Chemistry, Iowa State University,

Ames, Iowa 50011

Received June 28, 2001

The synthesis and structures of indium complexes incorporating the bidentate monoanionic ligand N,N-diisopropylaminotroponiminate (Pr₂-ATI) are described. The reaction of InCl₃ with Li['Pr₂-ATI] yields ('Pr₂-ATI)InCl₂ (3), which is converted to ('Pr₂-ATI)InMe₂ (4) by reaction with MeLi; 4 is also formed by the reaction of InMe₃ with (Pr₂-ATI)H. The reaction of **4** with $[Ph_3C][B(C_6F_5)_4]$ at 23 °C yields the diimine complex $[\{1,2-(N/Pr)_2-5-CPh_3-cyclohepta-cyc$ 3,6-diene}InMe₂][B(C₆F₅)₄] (5) via addition of Ph₃C⁺ to the C5 carbon of **4**. Thermolysis of **5** $(75 \,^{\circ}\text{C})$ yields $[(^{2}\text{Pr}_{2}\text{-ATI})\text{InMe}][B(C_{6}\text{F}_{5})_{4}]$ (6) and Ph₃CMe. 6 was isolated as the chlorobenzene solvate 6. PhCl. An X-ray diffraction study shows that there are two independent cations in the asymmetric unit of **6**·PhCl. One cation (In(1)) is ion-paired with two $B(C_6F_5)_4^-$ anions, while the second cation is complexed with two PhCl molecules and is disordered between two equally occupied positions (In(2) and In(3)). Dative In-ClPh bonding and PhCl/ATI π -stacking interactions contribute to the PhCl coordination in **6**·PhCl. The reaction of **4** with $B(C_6F_5)_3$ yields [(Pr_2 -ATI)InMe][MeB($C_6F_5)_3$] (7), which decomposes slowly at 23 °C by $C_6F_5^{-1}$ transfer reactions. The reaction of **4** with $[HNMe_2Ph][B(C_6F_5)_4]$ yields the labile amine adduct $[(^{i}Pr_{2}-ATI)In(Me)(NMe_{2}Ph)][B(C_{6}F_{5})_{4}]$ (10).

Introduction

Neutral group 13 EX₃ and ER₃ complexes are widely used as Lewis acids, alkylating agents and reducing agents.^{1–3} Cationic group 13 complexes are of interest for these and other applications because the charge may enhance the Lewis acidity of the metal center and influence the reactivity of the E-X or E-R groups.⁴⁻⁷ Low-coordinate cations are particularly attractive for applications in catalysis.^{8,9} We have described the chemistry of cationic aluminum complexes (ⁱPr₂-ATI)-AlR⁺ which are stabilized by the N,N-diisopropylaminotroponiminate ligand (ⁱPr₂-ATI) and can be isolated as the $B(C_6F_5)_4^-$ salts.¹⁰ These formally threecoordinate species are potent Lewis acids and form complexes with amines, phosphines, acetone, CH₃CN, neutral Al alkyls (via Me bridging), and chlorobenzene,

(3) (a) Loh, T. P.; Pei, J.; Cao, G. Q. *Chem. Commun.* **1996**, 1819. (b) Loh, T. P.; Pei, J.; Lin, M. *Chem. Commun.* **1996**, 2315. (c) Chan, T. H.; Yang, Y. J. Am. Chem. Soc. 1999, 121, 3228.

which undergo associative ligand exchange. The (Pr_2 -ATI)AlR⁺ cations catalyze the dimerization of terminal alkynes by an insertion/ σ -bond metathesis mechanism and initiate the polymerization of isobutylene and propylene oxide. The dinuclear hydride cation $\{(^{1}Pr_{2}-$

[†] University of Chicago.

[‡] Iowa State University.

^{(1) (}a) Paquette, L. A. In Encyclopedia of Reagents for Organic Synthesis; Wiley & Sons: New York, 1995; p 153 and p 645. (b) Eisch, J. J. In *Comprehensive Organometallic Chemistry II*; Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.; Elsevier: Oxford, UK, 1995; Vol 11, Chapter 6. (c) Kennedy, J. P.; Marechal, E. *Carbocationic Polymeri*zation; Wiley-Interscience: New York, 1982. (d) Olah, G. A. In Friedel-Crafts Chemistry, Wiley & Sons: New York, 1972; p 215. (2) Miller, J. A. In Chemistry of Aluminium, Gallium, Indium and

Thallium; Downs, A. J., Ed.; Chapman & Hall: London, UK, 1993; p 372

 ⁽⁴⁾ Atwood, D. A. *Coord. Chem. Rev.* **1998**, *176*, 407.
 (5) (a) Bochmann, M.; Sarsfield, M. J. *Organometallics* **1998**, *17*, 5908. (b) Dohmeier, C.; Schnöckel, H.; Robl, C.; Schneider, U.; Ahlrichs, R. Angew. Chem., Int. Ed. Engl. 1993, 32, 1655. (c) Bochmann, M.;
 Dawson, D. M. Angew. Chem., Int. Ed. Engl. 1996, 35, 2226. (d) Burns,
 C. T.; Stelck, D. S.; Shapiro, P. J.; Vij, A.; Kunz, K.; Kehr, G.; Concolino,
 T.; Rheingold, A. L. Organometallics 1999, 18, 5432.

^{(6) (}a) Coslédan, F.; Hitchcock, P. B.; Lappert, M. F. Chem. Commun. **1999**, 705. (b) Atwood, D. A.; Jegier, J. *Inorg. Chem.* **1996**, *35*, 4277. (c) Atwood, D.; Jegier, J. *Chem. Commun.* **1996**, 1507. (d) Uhl, W.; Wagner, J.; Fenske, D.; Baum, G. Z. Anorg. Allg. Chem. 1992, 612, 25. (e) Self, M. F.; Pennington, W. T.; Laske, J. A.; Robinson, G. H. Organometallics 1991, 10, 36. (f) Kynast, U.; Kelton, B. W.; White, A. H.; Henderson, M. J.; Raston, C. L. J. Organomet. Chem. 1990, 384, C1. (g) Engelhardt, L. M.; Kynast, U.; Raston, C. L.; White, A. H. Angew. Chem., Int. Ed. Engl. 1987, 26, 681. (h) Bourget, L.; Hitchcock, P. B.; Lappert, M. F. *J. Chem. Soc., Dalton Trans.* **1999**, 2645. (i) Emig, N.; Nguyen, H.; Krautscheid, H.; Réau, R.; Cazaux, J.-B.; Bertrand, G. Organometallics 1998, 17, 3599. (j) Emig, N.; Réau, R.; Krautscheid, H.; Fenske, D.; Bertrand, G. *J. Am. Chem. Soc.* **1996**, *118*, 5822. (k) Bruce, M.; Gibson, V. C.; Redshaw, C.; Solan, G. A.; White, A. J. P.; Williams, D. J. Chem. Commun. 1998, 2523. (I) Cameron, P. A.; Gibson, V. C.; Redshaw, C.; Segal, J. A.; Bruce, M. D.; White, A. J. P.; Williams, D. J. Chem. Commun. 1999, 1883. (m) Hayashi, Y.; Rohde, J. J.; Corey, E. J. J. Am. Chem. Soc. 1996, 118, 5502.

^{(7) (}a) Atwood, D. A.; Jegier, J. A.; Rutherford, D. J. Am. Chem. Soc. **1995**, *117*, 6779. (b) Jegier, J. A.; Atwood, D. A. Inorg. Chem. **1997**, 36, 2034. (c) Munoz-Hernandez, M.-A.; Sannigrahi, B.; Atwood, D. A. J. Am. Chem. Soc. 1999, 121, 6747. (d) Jegier, J. A.; Munoz-Hernandez, (8) (a) Coles, M. P.; Jordan, R. F. J. Am. Chem. Soc. 1997, 119, 8125.

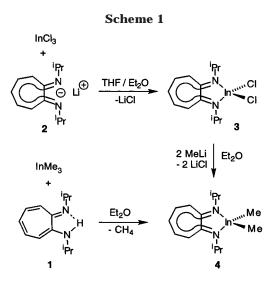
⁽b) Radzewich, C. E.; Coles, M. P.; Jordan, R. F. J. Am. Chem. Soc. 1998, 120, 9384. (c) Radzewich, C. E.; Guzei, I. A.; Jordan, R. F. J. Am. Chem. Soc. 1999, 121, 8673. (d) Dagorne, S.; Guzei, I. A.; Coles, M. P.; Jordan, R. F. J. Am. Chem. Soc. 2000, 122, 274. (e) Jordan, R. F.; Aeilts, S. L.; Coles, M. P.; Dagorne, S. G.; Ihara, E. Polym. Mater. Sci. Eng. 1999, 80, 418.

⁽⁹⁾ Krossing, I.; Nöth, H.; Schwenk-Kircher, H. Eur. J. Inorg. Chem. 1998. 927.

^{(10) (}a) Ihara, E.; Young, V. G.; Jordan, R. F. *J. Am. Chem. Soc.* **1998**, *120*, 8277. (b) Korolev, A. V.; Guzei, I. A.; Jordan, R. F. *J. Am. Chem. Soc.* **1999**, *121*, 11605. (c) Korolev, A. V.; Guzel, I. A.; Jordan, K. F. *J. Am. Chem. Soc.* **1999**, *121*, 11605. (c) Korolev, A. V.; Delpech, F.; Dagorne, S.; Guzei, I. A.; Jordan, R. F. *Organometallics* **2001**, *20*, 3367. (d) Korolev, A. V.; Ihara, E.; Guzei, I. A.; Young, V. G.; Jordan, R. F. *J. Am. Chem. Soc.* **2001**, *123*, 8291.

ATI)Al}₂H₃⁺ polymerizes methyl methacrylate. The most prominent reaction of ($^{7}Pr_{2}$ -ATI)AlCH₂CH₂R⁺ species with unsaturated substrates is β -H transfer to the coordinated substrate.

Here we describe initial studies of the analogous cationic indium aminotroponiminate species (Pr2-ATI)InMe⁺.^{10c} Indium and Al differ in several key respects: In is significantly larger than Al (covalent radii 1.50 vs 1.25 Å), In–C bonds are significantly weaker (38 vs 66 kcal/mol) and less polar than Al-C bonds (Pauling χ values: In 1.78; Al 1.61), and In Lewis acids are generally weaker than the corresponding Al Lewis acids.¹¹ Indium alkyls are generally less reactive than Al alkyls but do undergo alkane elimination and insertion reactions. For example, InR_3 (R = Me, Et) complexes react with phenylacetylene to yield $R_2In(C \equiv$ CPh) products, and In(CH₂CH₂CH₂CH₂CH₂CH=CH₂)₃ undergoes slow cyclization to In(cyclopentylmethyl)₃.^{12,13} The long-term objective of the present work is to probe how these differences in elemental properties influence the structures and reactivity of Al and In (Pr2-ATI)-ER⁺ species. Dias has pioneered the use of the ⁱPr₂-ATI ligand in main group chemistry and has prepared the bis-aminotroponiminate complex (Me₂-ATI)₂InCl.¹⁴ The tropolonate complex {C7H5O2}InMe2 has also been prepared.15


Several classes of indium cations are known, including $In(H_2O)_6^{3+}$ and related aquo species,¹⁶ four-, five-, and six-coordinate $InX_2L_n^+$ complexes (X = halide; n = 2-4; L = O, N, or P donor),¹⁷ and higher coordinate $InX_2L_n^+$ complexes incorporating crown ether or other multidentate ligands.¹⁸ Additionally, and most relevant to the present work, several "InR₂+" species have been characterized. The $InMe_2^+$ cation is stable in aqueous solution,¹⁹ and in the solid state InR_2^+ cations typically exhibit tetragonal bipyramidal structures with a nearly linear InR_2^+ core and four weakly coordinated equatorial ligands.^{20,21}

Results and Discussion

Neutral Indium Aminotroponiminate Complexes. The reaction of *N*-isopropyl-2-(isopropylamino)tropon-

(16) (a) Tuck, D. G. In Comprehensive Coordination Chemistry;
Gillard, R. D., McCleverty, J. A., Eds.; Pergamon: Oxford, UK, 1987;
Vol. 3, p 153. (b) Taylor, M. J.; Brothers, P. J. In Chemistry of Aluminium, Gallium, Indium and Thallium; Downs, A. J., Ed.;
Chapman & Hall: London, UK, 1993; p 142. (c) Brown, P. L.; Ellis, J.;
Sylva, R. N. J. Chem. Soc., Dalton Trans. 1982, 1911.
(17) (a) Sigl, M.; Schier, A.; Schmidbaur, H. Eur. J. Chem. 1998,

(17) (a) Sigl, M.; Schier, A.; Schmidbaur, H. *Eur. J. Chem.* **1998**, 203. (b) Robinson, W. T.; Wilkins, C. J.; Zeying, Z. *J. Chem. Soc., Dalton Trans.* **1990**, 219. (c) Canty, A. J.; Titcombe, L. A.; Skelton, B. W.; White, A. H. *J. Chem. Soc., Dalton Trans.* **1988**, 35. (18) Kloo, L. A.; Taylor, M. J. *J. Chem. Soc., Dalton Trans.* **1997**,

imine (($^{1}Pr_{2}$ -ATI)H, **1**) with BuLi (Et₂O, -78 °C) yields Li[$^{1}Pr_{2}$ -ATI] (**2**), which can be isolated in high yield as an orange powder and is a convenient source of the $^{1}Pr_{2}$ -ATI⁻ ligand. The reaction of **2** with 1 equiv of InCl₃ yields ($^{1}Pr_{2}$ -ATI)InCl₂ (**3**) as a pale yellow solid in 64% yield (Scheme 1). Alkylation of **3** with 2 equiv of MeLi (Et₂O, -78 °C) affords ($^{1}Pr_{2}$ -ATI)InMe₂ (**4**). Compound **4** is also formed by the reaction of InMe₃ with 1 equiv of **1**. Compound **4** is isolated as a yellow crystalline solid by crystallization from cold pentane. Compounds **3** and **4** are stable in air and in wet NMR solvents for several days. The 1 H and 13 C NMR spectra of **3** and **4** are consistent with C_{2v} -symmetric structures and symmetrical bidentate coordination of the aminotroponiminate ligand.

Molecular Structures of 3 and 4. The molecular structures of **3** and **4** were determined by X-ray crystallography (Figures 1, 2 and Tables 1, 2). In both cases, there are two independent molecules in the asymmetric unit which have very similar structures; average metrical parameters for the two molecules are referred to in the following discussion. Both 3 and 4 adopt monomeric structures with distorted tetrahedral geometry at In. The ^{*i*}Pr₂-ATI ligands in both species are coordinated in a symmetrical fashion, and the ATI π -systems are delocalized. The major structural difference between 3 and **4** is that the Me–In–Me angle in **4** (128.2° av) is ca. 22° larger than the Cl–In–Cl angle in 3 (106.3° av). This difference reflects the higher p character in the In orbitals used in In-Cl bonding compared to In-Me bonding due to the higher electronegativity of Cl compared to Me (Bent's rule).^{22,23} The N-In-N bite angle

⁽¹¹⁾ Downs, A. J. In *Chemistry of Aluminium, Gallium, Indium and Thallium*; Downs, A. J., Ed.; Chapman & Hall: London, UK, 1993; p 1.

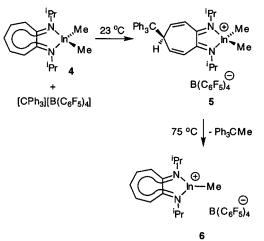
 ^{(12) (}a) Alcock, N. W.; Degnan, I. A.; Roe, S. M.; Wallbridge, M. G.
 H. J. Organomet. Chem. 1991, 414, 285. (b) Jeffery, E. A.; Mole, T. J.
 Organomet. Chem. 1968, 11, 393.

 ⁽¹³⁾ Dolzine, T. W.; Oliver, J. P. J. Organomet. Chem. 1974, 78, 165.
 (14) (a) Dias, H. V. R.; Jin, W. Inorg. Chem. 1996, 35, 6546. (b) Dias,

H. V. R.; Jin, W.; Ratcliff, R. E. Inorg. Chem. 1995, 34, 6100. (15) Waller, I.; Halder, T.; Schwarz, W.; Weidlein, J. J. Organomet. Chem. 1982, 232, 99.

⁽¹⁸⁾ Kloo, L. A.; Taylor, M. J. *J. Chem. Soc., Dalton Trans.* 1997, 2693. (b) Taylor, M. J.; Tuck, D. G. *J. Chem. Soc., Dalton Trans.* 1981, 928. (c) Abram, S.; Maichle-Mössmer, C.; Abram, U. *Polyhedron* 1998, *17*, 131.

^{(19) (}a) Hobbs, C. W.; Tobias, R. S. Inorg. Chem. 1970, 9, 1998. (b)
Olapinski, H.; Weidlein, J.; Hausen, H. D. J. Organomet. Chem. 1974, 64, 193. (c)
Hausen, H. D.; Schwering, H. U. Z. Anorg. Allg. Chem. 1973, 398, 119. (d)
Olapinski, H.; Weidlein, J. J. Organomet. Chem. 1973, 54, 87.


^{(20) (}a) Me₂InBr: Hausen, H. D.; Mertz, K.; Weidlein, J.; Schwarz, W. J. Organomet. Chem. **1975**, 93, 291. (b) [Pr₂In(THF)₂][BF₄]: Neumuller, B.; Gahlmann, Y. T. J. Organomet. Chem. **1991**, 414, 271. (c) [(mesityl)₂In][BF₄]: Gahlmann, Y. T.; Neumuller, B. Z. Anorg. Allg. Chem. **1994**, 620, 847. (d) Me₂In(OAc): Einstein, F. W. B.; Gilbert, M. M.; Tuck, D. G. J. Chem. Soc., Dalton Trans. **1973**, 248.

⁽²¹⁾ See also: (a) Greenwood, N. N.; Thomas, B. S.; Waite, D. W. J. Chem. Soc., Dalton Trans. **1975**, 299. (b) Poland, J. S.; Tuck, D. G. J. Organomet. Chem. **1972**, 42, 315. (c) Gynane, M. J. S.; Waterworth, L. G.; Worrall, J. J. Organomet. Chem. **1972**, 43, 257. (d) Brill, T. B. Inorg. Chem. **1976**, 15, 2558. (e) Schbaurmid, H.; Koth, D. Naturwissenschaften **1976**, 63, 482. (f) Wilder, H. J.; Hausen, H. D.; Weidlein, J. Z. Naturforsh. **1975**, 30, 645.

^{(22) (}a) Bent, H. A. *J. Chem. Educ.* **1960**, *37*, 616. (b) Bent, H. A. *Chem. Rev.* **1961**, *61*, 275. (23) The In–Cl and In–Me cone angles are estimated to be 96° and

⁽²³⁾ The In–Cl and In–Me cone angles are estimated to be 96° and 97°, respectively, so steric effects do not contribute to the difference in X–In–X angles in **3** and **4**.

(74.10° av) and N-In-C angles (110.4° av) in 4 are correspondingly smaller than the N-In-N (78.46° av) and N-In-Cl (117.70° av) angles in 3. The core structure of 4 is similar to that in the oxamidinate complex $Me_2In\{(MeN)_2CC(NMe)_2\}InMe_2$, in which the $InMe_2$ units are incorporated into five-membered chelate rings which are directly analogous to that in 4.24 The In-Cl distances in 3 (2.350 Å av) are similar to those in $InCl_3(NMe_3)_2$ (2.359 Å av)²⁵ and are in the range normally observed for terminal In-Cl bonds (2.31-2.43 Å).²⁶ The In–Me distances in **4** (2.157 Å av) are similar to those in Me₂In{ $(MeN)_2CC(NMe)_2$ }InMe₂ (2.175 Å av)²⁴ and {Me₂In(μ -NMePh)}₂ (2.153 Å av).²⁷ The ^{*i*}Pr₂-ATI ligand in 4 is slightly twisted such that the angle between the InN₂C₂ plane and the seven-membered ring plane is 6.3° and 13.4° in the two independent molecules. The twist angle is smaller in **3** $(2.7^{\circ} \text{ and } 1.4^{\circ})$. Similar twist distortions were observed in Li, Zr, Hf, and Y aminotroponiminate compounds.²⁸

Electrophilic Addition of CPh₃⁺ to 4. The reaction of **4** with 1 equiv of $[Ph_3C][B(C_6F_5)_4]$ in pentane (23 °C, 20 h) yields the diimine complex [{1,2-(NⁱPr)₂-5-CPh₃cyclohepta-3,6-diene $InMe_2$ [B(C₆F₅)₄] (5, Scheme 2), which is isolated as a pale yellow solid in 90% yield. Compound 5 forms by electrophilic addition of CPh₃⁺ to C5 of the Pr₂-ATI ligand of 4. The ¹H and ¹³C NMR spectra for 5 each contain two In-Me resonances, one ¹Pr-CH resonance, and two ¹Pr-Me₂ resonances, consistent with C_s symmetry at In. The ¹³C NMR resonance for C5 of **5** appears at δ 47.5 with ${}^{1}J_{CH} = 120$ Hz, characteristic of sp³ hybridization and indicative of addition of CPh₃⁺ at this position. For comparison, the C5 resonance for **4** appears at δ 112.7 (¹ $J_{CH} = 151$), characteristic of sp² hybridization. Similarly, the ¹H NMR H5 resonance of **5** (δ 5.35; t, ${}^{3}J_{\text{HH}} = 6.1$) is shifted upfield from the corresponding resonance of **4** (δ 6.13;

(28) (a) Dias, H. V. R.; Jin, W.; Ratcliff, R. E. *Inorg. Chem.* 1996, 35, 6074. (b) Roesky, P. W. *Chem. Ber.* 1997, 130, 859. (c) Roesky, P. W. *Eur. J. Inorg. Chem.* 1998, 593.

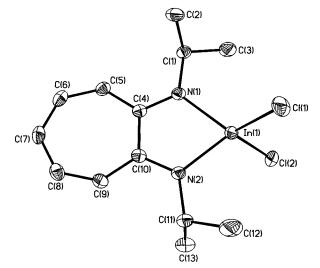


Figure 1. Molecular structure of $(Pr_2-ATI)InCl_2$ (3). Hydrogen atoms are omitted.

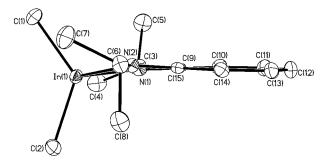
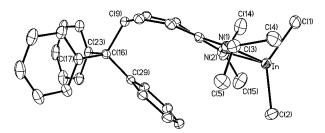



Figure 2. Molecular structure of $(^{P}r_{2}-ATI)InMe_{2}$ (4). Hydrogen atoms are omitted.

Figure 3. Molecular structure of the $\{1,2-(N/Pr)_2-5-CPh_3-cyclohepta-3,6-diene\}InMe_2^+$ cation in **5**. Hydrogen atoms are omitted.

t, ${}^{3}J_{HH}$ = 9.2 Hz). Analogous {1,2-(N'Pr)_{2}-5-CPh_{3}-cyclohepta-3,6-diene}AlMe_{2}^{+} addition products were observed as intermediates in the reaction of ('Pr_2-ATI)AlR_2 (R = Me, Et) with [Ph_{3}C][B(C_{6}F_{5})_{4}] at low temperature, but these adducts convert to ('Pr_2-ATI)AlR^+ species at ca. -40 °C.^{29}

Molecular Structure of 5. The molecular structure of **5** was confirmed by X-ray crystallography (Figure 3 and Table 3). Addition of the CPh₃ group to the C5 position results in disruption of the π -delocalization and pronounced bond length alternation within the ATI ring. The C=N/Pr distances (1.286 Å av) are characteristic of C(sp²)=N double bonds.³⁰ The In–C bond distances (2.130 Å av) are ca. 0.03 Å shorter than those in **4**, while the In–N distances (2.255 Å av) are ca. 0.07 Å longer than those in **4** (2.185 Å av), as expected due to

⁽²⁴⁾ Gerstner, F.; Schwarz, W.; Hausen, H. D.; Weidlein, J. J. Organomet. Chem. 1979, 175, 33.

⁽²⁵⁾ Karia, R.; Willey, G. R.; Drew, M. G. B. Acta Crystallogr. C. 1986, 42, 558.

⁽²⁶⁾ Starowieyski, K. B. In *Chemistry of Aluminium, Gallium, Indium and Thallium*; Downs, A. J., Ed.; Chapman & Hall: London, UK, 1993; p 335.

 ⁽²⁷⁾ Beachley, O. T.; Bueno, C.; Churchill, M. R.; Hallock, R. B.;
 Simmons, R. G. *Inorg. Chem.* **1981**, *20*, 2423.
 (28) (a) Dias, H. V. R.; Jin, W.; Ratcliff, R. E. *Inorg. Chem.* **1996**,

⁽²⁹⁾ Ihara, E.; Korolev, A. V.; Jordan, R. F. Unpublished results. (30) Levine, I. R. *J. Chem. Phys.* **1963**, *38*, 2326.

Table 1. Selected Bond Lengths (Å) and Angles (deg) for 3

	. 0		
In(1)-Cl(1)	2.3447(7)	In(2)-Cl(1')	2.3466(8)
In(1)-Cl(2)	2.3515(9)	In(2)-Cl(2')	2.3557(7)
In(1)-N(1)	2.093(2)	In(2) - N(1')	2.103(2)
In(1) - N(2)	2.098(2)	In(2)-N(2')	2.107(2)
N(1) - C(4)	1.346(3)	N(1') - C(4')	1.344(3)
N(2)-C(10)	1.342(3)	N(2')-C(10')	1.342(3)
Cl(1) - In(1) - Cl(2)	108.99(3)	Cl(1') - In(2) - Cl(2')	103.56(3)
N(1)-In(1)-N(2)	78.52(8)	N(1')-In(2)-N(2')	78.39(8)
N(1)-In(1)-Cl(1)	112.81(6)	N(1')-In(2)-Cl(1')	114.50(6)
N(2)-In(1)-Cl(1)	115.45(6)	N(2')-In(2)-Cl(1')	120.14(6)
N(1)-In(1)-Cl(2)	123.06(6)	N(1')-In(2)-Cl(2')	121.75(6)
N(2)-In(1)-Cl(2)	115.45(6)	N(2')-In(2)-Cl(2')	118.27(6)
		0 .	
Table 2. Sele	cted Bond	Lengths (Å) and	Angles
		for 1	0

(deg) for 4						
In(1)-C(1)	2.161(2)	In(2)-C(1')	2.156(2)			
In(1)-C(2)	2.153(2)	In(2) - C(2')	2.157(2)			
In(1)-N(1)	2.187(2)	In(2)-N(1')	2.184(2)			
In(1)-N(2)	2.187(2)	In(2)-N(2')	2.184(2)			
N(1) - C(9)	1.328(3)	N(1')-C(9')	1.331(3)			
N(2)-C(15)	1.334(3)	N(2')-C(15')	1.332(3)			
C(1) - In(1) - C(2)	127.2(1)	C(1')-In(2)-C(2')	129.2(1)			
N(1) - In(1) - N(2)	73.78(6)	N(1') - In(2) - N(2')	74.42(6)			
N(1)-In(1)-C(1)	109.59(9)	N(1')-In(2)-C(1')	107.84(8)			
N(2)-In(1)-C(1)	113.15(9)	N(2')-In(2)-C(1')	111.70(8)			
N(1)-In(1)-C(2)	112.16(8)	N(1')-In(2)-C(2')	111.78(9)			
N(2)-In(1)-C(2)	108.43(8)	N(2')-In(2)-C(2')	108.58(8)			

Table 3. Selected Bond Lengths (Å) and Angles (deg) for 5

	(=-8/	101 0	
In-C(1)	2.128(2)	In-C(2)	2.131(2)
In-N(1)	2.251(2)	In-N(2)	2.260(2)
N(1) - C(6)	1.287(3)	N(2)-C(12)	1.285(3)
C(6)-C(7)	1.462(3)	C(11)-C(12)	1.462(3)
C(7)-C(8)	1.334(3)	C(10)-C(11)	1.333(3)
C(8)-C(9)	1.483(3)	C(9)-C(10)	1.493(3)
C(9)-C(16)	1.609(2)		
C(1)-In-C(2) N(1)-In-C(1) N(1)-In-C(2)	139.0(1) 103.40(9) 109.51(9)	N(1)-In-N(2) N(2)-In-C(1) N(2)-In-C(2)	71.84(6) 102.57(9) 110.34(9)

conversion of the formally anionic ${}^{1}Pr_{2}$ -ATI⁻ ligand in **4** to a neutral diimine ligand in **5**. The In center in **5** has a highly distorted tetrahedral geometry, with a large C-In-C angle (139.0(1)°) and small N-In-N angle (71.84(6)°), reflecting the tendency of the InMe₂+ unit to adopt a more linear geometry as the donor ability of the additional ligands becomes weaker.^{20,21}

Synthesis of [(⁷Pr₂-ATI)InMe][B(C₆F₅)₄]·C₆H₅Cl (6·PhCl). Thermolysis of 5 at 75 °C (12 h, C₆H₅Cl) yields a 1:1 mixture of $[(Pr_2-ATI)InMe][B(C_6F_5)_4]$ (6) and Ph₃CMe (Scheme 2), presumably by dissociation of CPh_3^+ to regenerate **4** and CPh_3^+ , followed by Me⁻ abstraction. The chlorobenzene solvate 6 PhCl was isolated as a yellow solid in 81% yield by generation of 6 in chlorobenzene, removal of the volatiles, and pentane washing; 6.PhCl was also isolated in crystalline form by recrystallization from chlorobenzene/pentane. The ¹H and ¹³C NMR spectra for **6** in C₆D₅Cl each contain one In-Me resonance, one 'Pr-CH resonance, and one 'Pr- Me_2 resonance indicative of $C_{2\nu}$ symmetry. The ¹³C NMR C5 resonance appears at δ 118.5 (d, ${}^{1}J_{CH} = 154$ Hz), characteristic of sp² hybridization. The ¹¹B, ¹³C, and ¹⁹F NMR data for the $B(C_6F_5)_4^-$ anion in **6** are characteristic of the free anion.³¹ Complex 6 is undoubtedly solvated in C_6D_5Cl solution, but rapid solvent exchange results in time-averaged $C_{2\nu}$ symmetry.

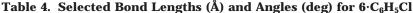
Solid-State Molecular Structure of 6-PhCl. The molecular structure of 6.PhCl in the solid state was determined by X-ray crystallography (Figures 4, 5 and Table 4). There are two independent cations in the asymmetric unit. One cation (In(1)) is ion-paired with two $B(C_6F_5)_4^-$ anions, while the second cation is complexed with two PhCl molecules and is disordered between two equally occupied positions (In(2) and In(3)). The geometry around In(1) (Figure 4) is distorted trigonal bipyramidal (tbp) with the two axial positions occupied by the $B(C_6F_5)_4^-$ anions (F(20)-In(1)-F(23A)) $= 162.3(2)^{\circ}$). The In(1)- F(20) (2.950(5) Å) and In(1)-F(23A) (2.711(5) Å) distances are intermediate between the sums of the In and F covalent (2.14 Å) and van der Waals (vdW) radii (3.37 Å).³² Similar In–F distances were observed for the intramolecular In-F contacts involving the ortho-CF₃ groups in In₂{2,4,6-tris(trifluoromethyl)phenyl) $_4$ (2.80(1)-2.96(1) Å) and In{2,4,6tris(trifluoromethyl)phenyl)}₃ (2.722(7)-2.798(5) Å).³³ Somewhat longer intermolecular In-F contacts were observed in $In(C_6F_5)_2(\kappa^2-CH_2CH_2CH_2NMe_2)$ (3.175(5) Å).³⁴

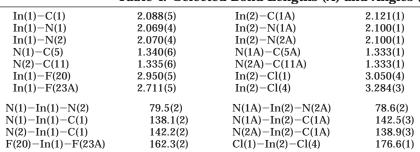
The In(2) and In(3) cations of **6** PhCl are structurally very similar and feature *tbp* geometries with PhCl ligands in the axial positions (Figure 5). The In-Cl dative bond distances (In(3)-Cl(2) 3.061(4) Å, In(3)-Cl(3) 3.272(3) Å) are intermediate between the sums of the In and Cl covalent and vdW radii (2.49 and 3.65 Å)³² and are comparable to the In- μ Cl distances in polymeric MeInCl₂ (3.20 Å) and $\{(H_2Bpz_2)InMe(\mu-Cl)\}_2$ $(H_2Bpz_2^- = dihydrobis(pyrazolyl)borate; 3.066(1) and$ 3.203(1) Å).^{35,36} The structure of the chlorobenzene ligand is not significantly perturbed by coordination. The C(200)-Cl(2) (1.702(6) Å) and C(300)-Cl(3) (1.729(5) Å) distances in 6-PhCl are close to the C-Cl bond distance in free chlorobenzene (1.737(5) Å gas phase).³⁷ As illustrated in Figure 5, the two PhCl ligands are nearly parallel to the ^{*i*}Pr₂-ATI plane (angles between planes 4.4° and 8.8°) and are shifted off-center in opposite directions, such that the electron-deficient PhCl ipso carbons are located above and below the electronrich ^{*i*}Pr₂-ATI nitrogens (C(200)–N(2B) 3.35 Å, C(300)– N(1B) 3.51 Å), and the PhCl ring centroids lie above and below the electron-deficient ^{*i*}Pr₂-ATI iminato carbons (centroid(200)-C(11B) 3.41 Å, centroid(300)-C(5B) 3.47 Å). This orientation permits an attractive π -stacking interaction between PhCl and ATI rings.³⁸ Thus it appears that both dative In–ClPh bonding and π -stacking interactions contribute to the PhCl coordination in 6.PhCl.

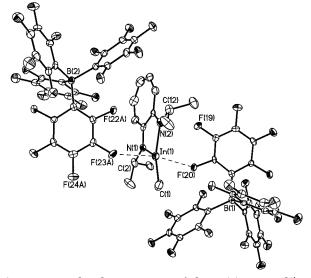
⁽³¹⁾ These data are nearly identical to those for $[CPh_3][B(C_6F_5)_4]$. See the Supporting Information.

⁽³²⁾ The covalent and van der Waals radii for In (1.50 and 1.90 Å) were taken from ref 11, and those for F (0.64 and 1.47 Å) and Cl (0.99 and 1.75 Å) were taken from: Kulawiec, R. J.; Crabtree, R. H. *Coord. Chem. Rev.* **1990**, *99*, 89.

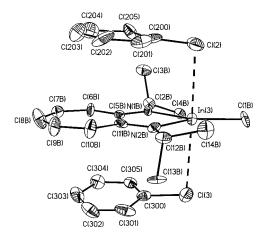
⁽³³⁾ Schluter, R. D.; Cowley, A. H.; Atwood, D. A.; Jones, R. A.; Bond, M. R.; Carrano, C. J. *J. Am. Chem. Soc.* **1993**, *115*, 2070.


⁽³⁴⁾ Schumann, H.; Just, O.; Seuss, T. D.; Gorlitz, F. H.; Weimann, R. J. Organomet. Chem. **1994**, *466*, 5.


⁽³⁵⁾ Mertz, K.; Schwarz, W.; Zettler, F.; Hausen, H. D. Z. Naturforsch. 1975, 30, 159.
(36) Reger, D. L.; Knox, S. J.; Rheingold, A. L.; Haggerty, B. S.


Organometallics 1990, 9, 2581.

⁽³⁷⁾ Penionzhkevich, N. P.; Sadova, N. I.; Vilkov, L. V. *Zh. Struct. Khim.* **1979**, *20*, 527.


⁽³⁸⁾ Hunter, C. A.; Sanders, J. K. M. J. Am. Chem. Soc. 1990, 112, 5525.

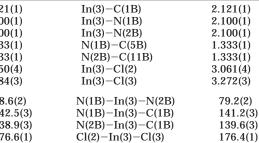


Figure 4. Molecular structure of the In(1) site in $[(^{1}Pr_{2}-ATI)InMe][B(C_{6}F_{5})_{4}]\cdot PhCl (6\cdot PhCl)$. Hydrogen atoms are omitted.

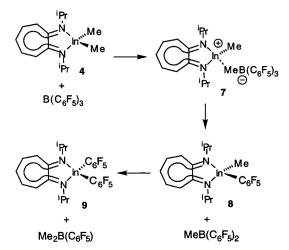
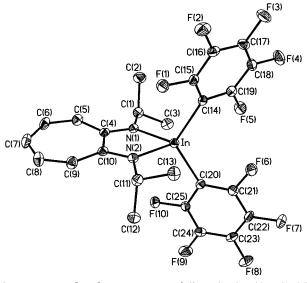


Figure 5. Molecular structure of the In(3) site in $[(Pr_2-ATI)InMe][B(C_6F_5)_4]$ ·PhCl (**6**·PhCl). Hydrogen atoms are omitted.

Reaction of 4 with B(C₆F₅)₃. The reaction of **4** with B(C₆F₅)₃ proceeds by methyl abstraction and yields [(¹Pr₂-ATI)InMe][MeB(C₆F₅)₃] (**7**, Scheme 3), which can be isolated as a yellow solid (77%) by simple filtration when the reaction is conducted in hexanes. Compound **7** does not react further with excess B(C₆F₅)₃ in C₆D₅Cl at 23 °C. The ¹H NMR spectrum of **7** (C₆D₅Cl, 23 °C) contains a singlet at δ 1.00 for the *Me*B(C₆F₅)₃⁻ group, which is slightly shifted from the free anion resonance (δ 1.11).³⁹ Additionally, the In-*Me* and ¹Pr₂-ATI resonances of **7** are shifted slightly from the corresponding resonances of **6**. This effect is most significant for the

H5 resonance, which appears at δ 6.59 for **7** versus δ 6.70 ppm for **6**. These results suggest that MeB(C₆F₅)₃⁻ anion is ion-paired with the cation in **7** in C₆D₅Cl. The ion-pairing interaction is labile however, as **7** exhibits C_{2v} symmetry on the NMR time scale even at 185 K in CD₂Cl₂.

Compound 7 undergoes ligand redistribution to form (${}^{P}P_{2}$ -ATI)In(Me)(C₆F₅) (8) and MeB(C₆F₅)₂ over the course of 5 h at 23 °C in C₆D₅Cl (Scheme 3). The 8/MeB(C₆F₅)₂ mixture undergoes further ligand redistribution to yield (${}^{P}P_{2}$ -ATI)In(C₆F₅)₂ (9) and Me₂B(C₆F₅) after 10 days at 23 °C. Analogous C₆F₅⁻ transfer processes were observed in the reaction of B(C₆F₅)₃ with Al and Ga amidinate complexes { ${}^{P}BuC(NR)_{2}$ }MMe₂ and with {HC(CMeNAr)₂}AlMe₂ and other Al diketiminate complexes.^{8d,40}


Molecular Structure of 9. The molecular structure of **9** is shown in Figure 6, and selected bond distances and angles are collected in Table 5. The $In-C_6F_5$ bond distances (2.178(2), 2.164(2) Å) are similar to those in $In(C_6F_5)_2(\kappa^2-CH_2CH_2CH_2NMe_2)$ (2.194(9), 2.196(8) Å)³⁴ and [PPN][In(C_6F_5)₄] (2.189(3)-2.206(3) Å)⁴¹ and are intermediate between the In-C distances in InPh₃ (2.11(1), 2.16(1) Å)⁴² and In{2,4,6-tris(trifluoromethyl)-phenyl}₃ (2.22 Å av). The C-In-C angle (118.94(8)°) in **9** is intermediate between the Me-In-Me angle in **4** and the Cl-In-Cl angle in **3**.⁴³

(42) Malone, J. F.; McDonald, W. S. J. Chem. Soc. A 1970, 3362.

⁽³⁹⁾ The $MeB(C_6F_5)_3^-$ anion is considered to be a free anion in $[NBu_3(CH_2Ph)][MeB(C_6F_5)_{3]}$ in C_6D_5Cl solution. See: Supporting Information.

⁽⁴⁰⁾ Baixin, Q.; Ward, D. L.; Smith, M. R. Organometallics **1998**, *17*, 3070.

⁽⁴¹⁾ Choi, Z.; Tyrra, W.; Adam, A. Z. Anorg. Allg. Chem. 1999, 625, 1287.

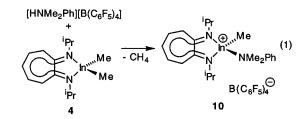
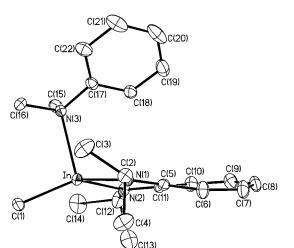


Figure 6. Molecular structure of $({}^{2}Pr_{2}-ATI)In(C_{6}F_{5})_{2}$ (9). Hydrogen atoms are omitted.


Table 5. Selected Bond Lengths (Å) and Angles (deg) for 9

In-C(14)	2.178(2)	In-C(20)	2.164(2)
In-N(1)	2.126(2)	In-N(2)	2.129(2)
N(1)-C(4)	1.330(3)	N(2)-C(10)	1.337(2)
C(14)-In-C(20)	118.94(8)	N(1)-In-N(2)	76.59(6)
N(1)-In-C(14)	110.43(7)	N(2)-In-C(14)	115.10(7)
N(1)-In-C(20)	118.09(7)	N(2)-In-C(20)	110.45(7)

Reaction of 4 with [HNMe₂Ph][B(C₆F₅)₄]. The reaction of **4** with 1 equiv of [HNMe₂Ph][B(C₆F₅)₄] in C₆D₅Cl (23 °C) generates the amine adduct [(1 Pr₂-ATI)In(Me)(NMe₂Ph)][B(C₆F₅)₄] (**10**) and methane (eq 1). The ¹H and ¹³C NMR spectra of **10** contain NMe₂Ph, resonances which are shifted from those of free NMe₂Ph, consistent with coordination of the amine to In.⁴⁴ However, **10** exhibits *C_s* symmetry on the NMR time scale at 23 °C and at low temperature (185 K in CD₂Cl₂), which indicates that intermolecular amine exchange is fast.

Molecular Structure of 10. Compound **10** crystallizes as discrete ions, and the structure of the $B(C_6F_5)_4^$ anion is normal. The structure of the cation of **10** is illustrated in Figure 7, and selected bond distances and angles are collected in Table 6. The geometry at In is distorted trigonal pyramidal, and the NMe₂Ph ligand occupies the apical site. Thus the In–Me and In– NMe₂Ph groups are displaced from the N_{ATI}–In–N_{ATI} plane by 29.2° and 69.8°, respectively. In contrast, in each of the (^{*i*}Pr₂-ATI)InX₂ compounds **3** (X = Cl), **4** (X = Me), and **9** (X = C₆F₅), the two X ligands are

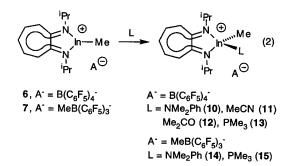
Figure 7. Molecular structure of the $(Pr_2-ATI)In(Me)-(NMe_2Ph)^+$ cation in **10**. Hydrogen atoms are omitted.

Table 6.	Selected	Bond	Lengths	(Å)	and Angles
			for 10		U

(8)					
In-C(1)	2.121(2)	In-N(3)	2.405(2)		
In-N(1)	2.112(2)	In-N(2)	2.104(2)		
N(1)-C(5)	1.333(3)	N(2)-C(11)	1.351(3)		
N(1)-In-N(2)	78.18(6)	C(1)-In-N(3)	99.79(8)		
C(1)-In-N(1)	133.62(9)	C(1)-In-N(2)	131.03(9)		
N(1)-In-N(3)	103.79(6)	N(2)-In-N(3)	107.10(7)		

symmetrically displaced from the N–In–N plane.⁴⁵ The difference in the coordination geometry of **10** versus **3**, **4**, and **9** is readily apparent from comparison of Figures 7 and 2. The trigonal distortion in **10** is due to the difference in the donor ability of the Me and NMe₂Ph ligands. As the donor ability of L in a ($^{1}Pr_{2}$ -ATI)E(R)(L)⁺ species decreases, the ($^{1}Pr_{2}$ -ATI)E(R)⁺ unit approaches the planar structure expected for the base-free species.^{8c} This trend was observed previously for ($^{1}Pr_{2}$ -ATI)Al-(R)(L)⁺ cations.¹⁰ The $^{1}Pr_{2}$ -ATI ligand in **10** is slightly twisted such that the dihedral angle between the InN₂C₂ and the seven-membered ring planes is 11.2°. The In–N(amine) bond distance (2.405(2) Å) is in the range observed for other four-coordinate In(III) amine complexes (2.29–2.50 Å).⁴⁶

Reactivity of $({}^{P}\mathbf{P}_{2}$ -**ATI)In(Me)**⁺. The addition of 1 equiv of the appropriate Lewis base to **6** in C₆D₅Cl yields the adducts [(${}^{P}\mathbf{P}_{2}$ -ATI)In(Me)(L)][B(C₆F₅)₄] (L = NMe₂Ph (**10**), CH₃CN (**11**), Me₂CO (**12**), and PMe₃ (**13**, eq 2). Similarly, **7** reacts with Lewis bases to yield [(${}^{P}\mathbf{P}_{2}$ -ATI)-In(Me)(L)][MeB(C₆F₅)₃] adducts (L = NMe₂Ph (**14**), PMe₃ (**15**), eq 2). The NMR spectra of these adducts contain resonances for the coordinated Lewis base that are shifted from the free base resonances.⁴⁴ However, in each case the NMR spectra show that the (${}^{P}\mathbf{P}_{2}$ -ATI)In(Me)(L)⁺ cation has time-averaged C_{2v} sym-


⁽⁴³⁾ The $In-C_6F_5$ cone angle (145.2°) is significantly larger than the In-Me or In-Cl cone angles.

⁽⁴⁴⁾ See Supporting Information.

⁽⁴⁵⁾ Displacements of X groups from N–In–N plane (deg) are as follows. **3**: molecule 1: 58.07, 50.48; molecule 2: 53.45, 49.74; **4**: molecule 1: 62.80, 64.12, molecule 2: 64.0.68, 64.19; **9**: 60.26, 57.87.

^{(46) (}a) Atwood, D. A.; Coley, A. H.; Jones, R. A.; Atwood, J. L.; Bott, S. G. J. Coord. Chem. 1992, 26, 293. (b) Bradley, D. C.; Dawes, H.; Frigo, D. M.; Hursthouse, M. B.; Hussain, B. J. Organomet. Chem. 1987, 325, 55. (c) Schumann, H.; Hartmann, U.; Wassermann, W.; Dietrich, A.; Gorlitz, F. H.; Pohl, L.; Hostalek, M. Chem. Ber. 1990, 123, 2093. (d) Fisher, R. A.; Nlate, S.; Hoffmann, H.; Herdtweck, E.; Blumel, J. Organometallics 1996, 15, 5746. (e) Kummel, C.; Meller, A.; Noltemeyer, M. Z. Naturforsh. 1996, 51, 209. (f) Jutzi, P.; Dalhaus, J.; Neumann, B.; Stammler, H. G. Organometallics 1996, 15, 747. (g) Atwood, D. A.; Jones, R. A.; Coley, A. H.; Bott, S. G.; Atwood, J. L. J. Organomet. Chem. 1992, 434, 143.

metry at 23 °C, consistent with fast intermolecular exchange of the Lewis base. Low-temperature NMR spectra of **14** and **15** in CD₂Cl₂ show that ligand exchange is fast down to 185 K. The MeB(C₆F₅)₃⁻ salts **14** and **15** are stable in C₆D₅Cl at 23 °C, which contrasts with the low stability of **7** under these conditions. Evidently the Lewis base prevents the reaction of the cation with the anion. Exposure of **14** to air results in hydrolysis of the anion and formation of (^{*i*}Pr₂-ATI)In-(Me)(μ -OH)B(C₆F₅)₃.⁴⁷

Compound **6** does not react with ethylene (1 atm, 70 °C), 'BuC=CH (80 °C), H₂ (1 atm, 23 °C), or CO (1 atm, 23 °C) and shows only trace activity for isobutylene polymerization.

Conclusion

The reaction of $(^{i}Pr_{2}-ATI)InMe_{2}$ (4) with $[CPh_{3}]$ - $[B(C_6F_5)_4]$ yields the cationic complex $[(^{i}Pr_2-ATI)InMe]$ - $[B(C_6F_5)_4]$ (6), which is isolated as the PhCl solvate 6.PhCl. Two independent (ⁱPr₂-ATI)InMe⁺ cations are present in the solid-state structure of 6.PhCl: one cation (In(1)) which is ion-paired with two $B(C_6F_5)_4^-$ anions via In-F contacts and a second disordered cation (In(2) and In(3)) which is complexed by two PhCl ligands by dative In-ClPh bonding and PhCl/ATI π -stacking interactions. Compound 4 reacts with $B(C_6F_5)_3$ to yield [(¹Pr₂-ATI)InMe][MeB(C₆F₅)₃], which decomposes at 23 °C by $C_6F_5^-$ transfer processes and with $[NMe_2Ph][B(C_6F_5)_4]$ to yield the labile amine complex $[(^{1}Pr_{2}-ATI)In(Me)(NMe_{2}Ph)][B(C_{6}F_{5})_{4}]$ (10). Thus $[CPh_{3}]$ - $[B(C_6F_5)_4]$ is the most useful reagent for generating (Pr2-ATI)InR⁺ species. Several observations suggest that (ⁱPr₂-ATI)InR⁺ cations will be less reactive than the corresponding (Pr2-ATI)AlR+ species studied earlier.¹⁰ Most notably (i) while the reaction of (^{*i*}Pr₂-ATI)-AlMe₂ with 1 equiv of Ph₃C⁺ yields { $(^{i}Pr_{2}-ATI)Al(Me)$ }₂- $(\mu$ -Me)⁺ (and 0.5 equiv of unreacted Ph₃C⁺) via trapping of the initial product (ⁱPr₂-ATI)Al(Me)⁺ by (ⁱPr₂-ATI)-AlMe₂, the analogous dinuclear In cation is not observed in the reaction of 4 with Ph_3C^+ , (ii) ($^{i}Pr_2$ -ATI)AlR⁺ cations catalyze the dimerization of terminal alkynes by an insertion/ σ -bond metathesis mechanism, whereas $(^{i}Pr_{2}-ATI)InMe^{+}$ does not react with $^{i}BuC \equiv CH$, and (iii) (Pr₂-ATI)AlR⁺ species initiate the polymerization of isobutylene, while (Pr2-ATI)InMe+ shows only trace activity with this substrate. These differences reflect the lower Lewis acidity and the lower E-C bond polarity in the In complexes compared to the Al complexes.

Experimental Section

General Procedures. All operations were carried out under an atmosphere of purified N₂ or under vacuum using a glovebox or a high-vacuum line. Trimethylindium was purchased from Strem and used as received. [CPh₃][B(C₆F₅)₄], [NMe₂Ph][B(C₆F₅)₄], and B(C₆F₅)₃ were obtained from Boulder Scientific and used as received. Other chemicals were purchased from Aldrich and used as received. Solvents were distilled from Na/benzophenone, except for CH₂Cl₂, which was distilled from CaH₂. Methylene chloride- d_2 , chlorobenzene- d_5 , and benzene- d_6 (Cambridge) were dried over CaH₂ for 24 h and degassed by freeze–pump–thaw cycles.

¹H, ¹³C, ¹¹B, and ³¹P NMR spectra were recorded on a Bruker AMX-360 spectrometer, and ¹⁹F NMR spectra were recorded on a Bruker AC-300 spectrometer in flamed-sealed or Teflonvalved tubes at ambient probe temperature unless otherwise indicated. ¹H and ¹³C chemical shifts are reported versus SiMe₄ and were determined by reference to the residual solvent peaks. ¹¹B chemical shifts are reported versus BF₃·Et₂O (0.1 M in C₆D₅Cl), ¹⁹F chemical shifts are reported versus CFCl₃ in CDCl₃, and ³¹P chemical shifts are reported versus H₃PO₄ (85% in THF-*d*₈). Coupling constants are reported in Hz. Elemental analyses were performed by Midwest Microlabs, Indianapolis, IN.

Li[**'Pr**₂-**ATI**] **(2).** A solution of ('**P**r₂-**ATI**)**H** (1.10 g, 5.35 mmol) in Et₂O (25 mL) was cooled to 0 °C. *"*BuLi (3.3 mL of a 1.6 M solution in hexanes, 5.35 mmol) was added dropwise. The mixture was allowed to warm to room temperature and was stirred for 2 h. The volatiles were removed under vacuum, yielding an orange solid, which was washed with pentane and dried under vacuum (1.08 g, 95%). ¹H NMR (C₆D₆): δ 1.19 (d, ${}_{3}J_{\text{HH}} = 6.1$, 12H, Me), 3.95 (sept, ${}^{3}J_{\text{HH}} = 6.1$, 2H, *CH*Me₂), 6.24 (t, ${}^{3}J_{\text{HH}} = 9.0$, 1H, H⁵), 6.57 (d, ${}^{3}J_{\text{HH}} = 11.2$, 2H, H^{3.7}), 7.05 (t, ${}_{3}J_{\text{HH}} = 9.7$, 2H, H^{4.6}).

(ⁱPr₂-ATI)InCl₂ (3). A solution of Li[ⁱPr₂-ATI] (5.10 mmol) in Et₂O (25 mL) was generated as described above and cooled to -78 °C. A solution of InCl₃ (1.13 g, 5.10 mmol) in THF (50 mL) was added dropwise at -78 °C. The mixture was allowed to warm to room temperature and was stirred overnight. The volatiles were removed under vacuum, and the crude product was extracted with toluene. The extract was filtered and concentrated, and pentane was added, resulting in the precipitation of a pale yellow solid, which was isolated by filtration (1.27 g, 64%). ¹H NMR (CD₂Cl₂): δ 1.46 (d, ³J_{HH} = 6.1, 12H, CHMe₂), 4.19 (sept, ${}^{3}J_{HH} = 6.1$, 2H, CHMe₂), 6.70 (t, ${}^{3}J_{HH} =$ 9.2, 1H, H⁵), 6.93 (d, ${}^{3}J_{HH} = 11.5$, 2H, H^{3,7}), 7.32 (dd, ${}^{3}J_{HH} =$ 9.4 and 11.5, 2H, H^{4,6}). 13 C NMR (CD₂Cl₂): δ 24.4 (q, ${}^{1}J_{CH} =$ 127, Me), 48.9 (d, ${}^{1}J_{CH} = 137$, *C*HMe₂), 116.4 (d, ${}^{1}J_{CH} = 153$, C⁵), 122.6 (d, ${}^{1}J_{CH} = 161$, C^{3,7}), 136.9 (d, ${}^{1}J_{CH} = 145$, C^{4,6}), 158.0 (s, C^{1,2}). Anal. Calcd for C₁₃H₁₉Cl₂InN₂: C, 40.13; H, 4.92; N,7.20. Found: C, 40.15; H, 4.85; N, 7.14.

(Pr2-ATI)InMe2 (4). A solution of (Pr2-ATI)H (0.758 g, 3.71 mmol) in pentane (20 mL) was added to a solution of InMe₃ (0.630 g, 3.94 mmol) in pentane (20 mL). The mixture was stirred for 30 min, concentrated to 20 mL, and cooled to -78 °C for 22 h, resulting in the formation of a yellow crystalline solid, which was isolated by filtration (1.19 g, 92%). Alternate synthesis: Excess MeLi (0.4 mL of a 1.4 M solution in Et₂O, 0.56 mmol) was added to a solution of (ⁱPr₂-ATI)InCl₂ (0.074 g, 0.19 mmol) in Et₂O at $-78\ ^\circ\text{C}.$ The mixture was warmed to room temperature and stirred overnight. The volatiles were removed under vacuum, and the product was extracted from the LiCl with pentane. The pentane extract was concentrated and cooled to -78 °C to afford (Pr2-ATI)InMe2 as yellow crystals, which were isolated by filtration (0.058 g, 88%). ¹H NMR (CD₂Cl₂): δ –0.20 (s, 6H, In*Me*), 1.25 (d, ³J_{HH} = 6.3, 12H, CH*Me*₂), 3.96 (sept, ${}^{3}J_{HH} = 6.3$, 2H, C*H*Me₂), 6.13 (t, ${}^{3}J_{HH} = 9.2$, 1H, H⁵), 6.41 (d, ${}^{3}J_{HH} = 11.9$, 2H, H^{3,7}), 6.90 (dd, ${}^{3}J_{HH} = 11.9$, 2H, H^{3,7}), 6.90 (dd, {}^{3}J_{HH} = 11.9, 2H, H^{3,7}), 6.90 (dd, {}^{3}J_{HH} 9.0 and 11.9, 2H, H^{4,6}). ¹H NMR (C₆D₅Cl): δ –0.06 (s, 6H, In*Me*), 1.09 (d, ${}^{3}J_{HH} = 6.3$, 12H, CH*Me*₂), 3.70 (sept, ${}^{3}J_{HH} =$

⁽⁴⁷⁾ Guzei, I. A.; Delpech, F.; Jordan, R. F. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2000, C56, E327.

6.3, 2H, C*H*Me₂), 6.17 (t, ${}^{3}J_{HH} = 9.2$, 1H, H⁵), 6.27 (d, ${}^{3}J_{HH} = 11.9$, 2H, H^{3.7}), 6.84 (dd, ${}^{3}J_{HH} = 9.0$ and 11.9, 2H, H^{4.6}). ${}^{13}C$ NMR (CD₂Cl₂): δ -4.1 (q, ${}^{1}J_{CH} = 126$, In*M*e₂), 23.8 (q, ${}^{1}J_{CH} = 128$, CH*M*e₂), 48.7 (d, ${}^{1}J_{CH} = 135$, *C*HMe₂), 112.7 (d, ${}^{1}J_{CH} = 151$, C⁵), 116.3 (d, ${}^{1}J_{CH} = 161$, C^{3.7}) 135.3 (d, ${}^{1}J_{CH} = 155$, C^{4.6}), 161.0 (s, C^{1.2}). ${}^{13}C$ NMR (C₆D₅Cl): δ -3.9 (In*M*e), 23.8 (CH*M*e₂), 48.7 (*C*HMe₂), 112.5 (C⁵), 116.3 (C^{3.7}), 135.3 (C^{4.6}), 160.8 (C^{1.2}). Anal. Calcd for C₁₅H₂₅InN₂: C, 51.74; H, 7.24; N, 8.05. Found: C, 51.54; H, 7.13; N, 8.15.

[{1,2-(NⁱPr)₂-5-CPh₃-cyclohepta-3,6-diene}InMe₂]- $[B(C_6F_5)_4]$ (5). A mixture of (Pr₂-ATI)InMe₂ (0.158 g, 0.453) mmol) and $[CPh_3][B(C_6F_5)_4]$ (0.418 g, 0.453 mmol) in hexanes (5 mL) was stirred at 23 °C for 3 days, resulting in the formation of a yellow solid. The mixture was filtered, and the solid was washed with hexanes (3 \times 5 mL) and dried under vacuum to afford a yellow solid (0.516 g, 90%). ¹H NMR (C₆D₅Cl): δ -0.08 (s, 3H, In*Me*), 0.00 (s, 3H, In*Me*), 0.90 (d, ${}_{3}J_{\rm HH} = 4.0, 6H, CHMe$), 0.92 (d, ${}^{3}J_{\rm HH} = 4.0, 6H, CHMe$), 3.42 (m, 2H, C*H*Me₂), 5.35 (t, ${}^{3}J_{HH} = 6.1, 1H$, H⁵), 5.81 (d, ${}^{3}J_{HH} = 13.0, 2H, H^{3.7}$), 6.72 (dd, ${}^{3}J_{HH} = 6.1$ and 12.6, 2H, H^{4.6}), 7.06 (br m, 15H, CPh₃). ¹³C NMR (C₆D₅Cl): δ -2.9 (q, ¹J_{CH} =132, In*Me*), -2.1 (q, ${}^{1}J_{CH} = 133$, In*Me*), 22.8 (q, ${}^{1}J_{CH} = 126$, CH*Me*), 23.7 (q, ${}^{1}J_{CH} = 129$, CHMe), 47.5 (d, ${}^{1}J_{CH} = 120$, C⁵) 52.8 (d, ${}^{1}J_{CH} = 141 \ CHMe_{2}$), 64.8 (s, CPh_{3}), 121.4 (d, ${}^{1}J_{CH} = 162, C^{3,7}$), 125 (br, *ipso*-C₆F₅), 136.9 (d, ${}^{1}J_{CF} = 243$, C₆F₅), 138.7 (d, ${}^{1}J_{CF}$ = 245, $C_6 F_5$), 148.5 (d, ${}^1J_{CH}$ = 160, C^{4,6}), 148.9 (d, ${}^1J_{CF}$ = 241, $C_{6}F_{5}$), 161.5 (s, C^{1,2}); the remaining Ph resonances are broad due to restricted rotation. ¹¹B NMR (C₆D₅Cl): δ –16.5 (s). ¹⁹F NMR (C₆D₅Cl): δ -132.0 (m, 8F, o-C₆F₅), -162.6 (t, ${}^{3}J_{\rm FF}$ = 20, 4F, p-C₆F₅), -166.5 (m, 8F, m-C₆F₅). Anal. Calcd for C₅₈H₄₀-BF₂₀InN₂: C, 54.83; H, 3.17; N, 2.21. Found: C, 53.84; H, 3.12; N. 2.28

[(ⁱPr₂-ATI)InMe][B(C₆F₅)₄]·C₆H₅Cl (6·C₆H₅Cl). A solution of $[\{1,2-(N^{i}Pr)_{2}-5-CPh_{3}-cyclohepta-3,6-diene\}InMe_{2}][B(C_{6}F_{5})_{4}]$ (0.148 g, 0.130 mmol) in C₆H₅Cl (10 mL) was heated to 75 °C for 12 h. The volatiles were removed under vacuum, leaving an oily dark yellow residue. Trituration with pentane afforded pure [(Pr2-ATI)InMe][B(C6F5)4]·C6H5Cl as a yellow solid (0.104 mg, 79%). ¹H NMR (C₆D₅Cl): δ 0.70 (s, 3H, InMe), 1.04 (d, ${}_{3}J_{\text{HH}} = 6.1, 12\text{H}, \text{CH}Me_2$), 3.65 (sept, ${}^{3}J_{\text{HH}} = 6.1, 2\text{H}, \text{C}Me_2$), 6.69 (d, ${}^{3}J_{\text{HH}} = 11.9$, 2H, H^{3,7}), 6.70 (t, ${}^{3}J_{\text{HH}} = 8.6$, 1H, H⁵), 7.15 (m, 2H, H^{4,6}). ¹³C NMR (C₆D₅Cl): δ 2.6 (q, ¹J_{CH} = 138, In*Me*), 24.6 (q, ${}^{1}J_{CH} = 128$, CH*Me*₂), 48.8 (d, ${}^{1}J_{CH} = 141$, *C*HMe₂), 118.5 (d, ${}^{1}J_{CH} = 154$, C⁵), 126.8 (d, ${}^{1}J_{CH} = 156$, C^{3,7}), 137.0 (d, ${}^{1}J_{CF} = 243$, $C_{6}F_{5}$), 137.3 (d, ${}^{1}J_{CH} = 157$, C^{4,6}), 138.8 (d, ${}^{1}J_{CF} = 245$, $C_{6}F_{5}$), 149.0 (d, ${}^{1}J_{CF} = 241$, $C_{6}F_{5}$), 158.3 (s, C^{1,2}); the *ipso*-C₆F₅ resonance was not observed. ¹¹B NMR (C₆D₅Cl): δ -16.5 (s). ¹⁹F NMR (C₆D₅Cl): δ -132.0 (m, 8F, o-C₆F₅), -162.6 (t, ${}^{3}J_{FF} = 21$, 4F, p-C₆ F_{5}), -166.4 (m, 8F, m-C₆ F_{5}). Anal. Calcd for C₃₈H₂₂BF₂₀InN₂·C₆H₅Cl: C, 46.99; H, 2.42; N, 2.49. Found: C, 46.61; H, 2.23; N, 2.64.

[(^{*i*}Pr₂-ATI)InMe][MeB(C₆F₅)₃] (7). A mixture of (^{*i*}Pr₂-ATI)-InMe₂ (0.199 g, 0.572 mmol) and B(C₆F₅)₃ (0.293 g, 0.572 mmol) in hexanes (5 mL) was stirred at 23 °C for 2 h, resulting in the formation of a yellow solid. The solid was collected by filtration, washed with hexanes (3 \times 5 mL), and dried under vacuum to afford pure [(Pr2-ATI)InMe][MeB(C6F5)3] as a yellow solid (0.378 g, 77%). ¹H NMR (C₆D₅Cl): δ 0.62 (s, 3H, In*Me*), 1.00 (br s, 3H, *Me*B), 1.04 (d, ${}^{3}J_{HH} = 6.1$, 12H, CH*Me*₂), 3.67 (sept, ${}^{3}J_{HH} = 6.1$, 2H, CHMe₂), 6.59 (t, ${}^{3}J_{HH} = 9.7$, 1H, H⁵), 6.64 (d, ${}^{3}J_{HH} = 11.5$, 2H, H^{3,7}), 7.10 (t, ${}^{3}J_{HH} = 10.3$, 2H, H^{4,6}). ¹H NMR (CD₂Cl₂, 195 K): δ 0.36 (br s, 3H, MeB), 1.11 (br s, 3H, InMe), 1.36 (br s, 12H, CHMe2), 4.22 (br s, 2H, $CHMe_2$), 7.00 (t, ${}^{3}J_{HH} = 9.6$, 1H, H⁵), 7.16 (d, ${}^{3}J_{HH} = 11.0$, 2H, H^{3,7}), 7.52 (t, ${}^{3}J_{HH}$ = 9.9, 2H, H^{4,6}). 13 C NMR (C₆D₅Cl): δ 3.1 (q, ${}^{1}J_{CH} = 137$, In*Me*), 12.6 (br s, *Me*B), 24.5 (q, ${}^{1}J_{CH} = 127$, CHMe₂), 48.8 (d, ${}^{1}J_{CH} = 142$, CHMe₂), 118.4 (d, ${}^{1}J_{CH} = 153$, C⁵), 126.4 (d, ${}^{1}J_{CH} = 155$, C^{3,7}), 137.1 (d, ${}^{1}J_{CF} = 246$, $C_{6}F_{5}$), 137.1 (d, ${}^{1}J_{CH} = 156$, C^{4,6}), 138.1 (d, ${}^{1}J_{CF} = 245$, C₆F₅), 149.0 (d, ${}^{1}J_{CF} = 240$, $C_{6}F_{5}$), 160.8 (s, $C^{1,2}$); the *ipso*- $C_{6}F_{5}$ resonance was not observed. ¹¹B NMR (C₆D₅Cl): δ -14.6 (s). ⁹F NMR (C₆D₅Cl): δ -132.3 (m, 6F, ρ -C₆ F_5), -163.6 (t, ${}^{3}J_{FF} = 20$, 3F, p-C₆ F_5), -166.4 (m, 6F, m-C₆ F_5). Anal. Calcd for C₃₃H₂₅BF₁₅-InN₂: C, 46.08; H, 2.93; N, 3.26. Found: C, 45.99; H, 2.99; N, 3.24.

Reaction of (ⁱPr₂-ATI)In(Me)⁺ with MeB(C₆F₅)₃⁻. An NMR tube was charged with [(^{*i*}Pr₂-ATI)In(Me)][MeB(C₆F₅)₃] (0.025 g, 0.029 mmol), and C_6D_5Cl (0.5 mL) was added by vacuum transfer at -78 °C. The tube was maintained at 23 °C and monitored by ¹H NMR. The NMR spectra showed that complete conversion of the starting material to (Pr2-ATI)In- $(C_6F_5)(Me)$ (8) and $MeB(C_6F_5)_2$ had occurred after 5 h and complete conversion to $({}^{i}Pr_{2}-ATI)In(C_{6}F_{5})_{2}$ (9) and $MeB(C_{6}F_{5})_{2}$ had occurred after 10 days. Data for (Pr2-ATI)In(C6F5)(Me) (8). ¹H NMR (C₆D₅Cl): δ 0.33 (s, 3H, In*Me*), 1.01 (d, ³J_{HH} = 6.5, 6H, CHMe), 1.09 (d, ${}^{3}J_{HH} = 6.5$, 6H, CHMe), 3.72 (sept, ${}^{3}J_{\rm HH} = 6.5, 2H, CHMe_{2}$, 6.29 (t, ${}^{3}J_{\rm HH} = 9.2, 1H, H^{5}$), 6.42 (d, ${}_{3}J_{\rm HH} = 11.9, 2H, H^{3,7}$), 6.93 (dd, ${}^{3}J_{\rm HH} = 9.4$ and 11.9, 2H, H^{4,6}). ¹³C NMR (C₆D₅Cl): δ -3.8 (q, ¹*J*_{CH} = 128, In*Me*), 23.4 (q, ¹*J*_{CH} = 127, CHMe), 24.1 (q, ${}^{1}J_{CH}$ = 128, CHMe), 48.1 (d, ${}^{1}J_{CH}$ = 135, *C*HMe₂), 114.0 (d, ${}^{1}J_{CH} = 151$, C⁵), 118.4 (d, ${}^{1}J_{CH} = 160$, C^{3,7}), 121.2 (br t, ipso- C_6F_5 , ${}^2J_{CF} = 60$), 135.8 (d, ${}^1J_{CH} = 156$, C^{4,6}), 137.0 (d, ${}^{1}J_{CF} = 254$, $o - C_{6}F_{5}$), 141.2 (d, ${}^{1}J_{CF} = 255$, $p - C_{6}F_{5}$), 149.0 (d, ${}^{1}J_{CF} = 231$, $m - C_{6}F_{5}$), 160.5 (s, $C^{1,2}$). ${}^{19}F$ NMR (C₆D₅Cl): δ -118.3 (m, 2F, o-C₆F₅), -154.3 (t, ${}^{3}J_{FF} = 20$, 1F, p-C₆F₅), -160.5 (m, 2F, m-C₆F₅). Data for MeB(C₆F₅)₂. ¹H NMR (C₆D₅Cl): δ 1.53 (quintet, ⁵*J*_{HF} = 1.8, 3H). ¹³C NMR (C₆D₅Cl): δ 15.3 (s, br, *Me*B), 137.5 (d, ¹J_{CF} = 254, *C*₆F₅), 143.8 (d, ¹J_{CF} = 247, C_6F_5), 147.8 (d, ${}^1J_{CF}$ = 249, C_6F_5); the *ipso*-C₆F₅ resonance was not observed. ¹¹B NMR (C₆D₅Cl): δ 71.5 (br s). ¹⁹F NMR (C₆D₅Cl): δ –129.3 (m, 4F, o-C₆F₅), –147.1 (m, 2F, $p-C_6F_5$), -161.1 (m, 4F, m-C_6F_5). Data for (^{*i*}Pr₂-ATI)In(C_6F_5)₂ (9). ¹H NMR (C₆D₅Cl): δ 1.11 (d, ³J_{HH} = 6.1, 12H, CHMe₂), 3.77 (sept, ${}^{3}J_{HH} = 6.1$, 2H, CHMe₂), 6.38 (t, ${}^{3}J_{HH} = 11.0$, 1H, H⁵), 6.54 (d, ${}^{3}J_{HH} = 14.4$, 2H, H^{3,7}), 6.98 (dd, ${}^{3}J_{HH} = 11.2$ and 14.4, 2H, H^{4,6}). ¹³C NMR (C₆D₅Cl): δ 23.5 (q, ¹J_{CH} = 129, CHMe₂), 48.9 (d, ${}^{1}J_{CH} = 139$, CHMe₂), 115.4 (d, ${}^{1}J_{CH} = 151$, C⁵), 117.6 (t, br, ${}^{2}J_{CF} = 55$, *ipso-C*₆F₅), 120.3 (d, ${}^{1}J_{CH} = 162$, C^{3.7}), 136.3 (d, ${}^{1}J_{CH} = 153$, C^{4.6}), 139.6 (d, ${}^{1}J_{CF} = 255$, $o - C_{6}F_{5}$), 141.9 (d, ${}^{1}J_{CF} = 252$, $p \cdot C_{6}F_{5}$), 147.6 (d, ${}^{1}J_{CF} = 234$, $m \cdot C_{6}F_{5}$), 160.2 (s, C^{1,2}). ¹⁹F NMR (C₆D₅Cl): δ -117.8 (m, 4F, o-C₆F₅), -152.1 (t, ${}^{3}J_{FF} = 20, 2F, p-C_{6}F_{5}$), -159.7 (m, 4F, m-C₆F₅). Data for Me₂B(C₆F₅). ¹H NMR (C₆D₅Cl): δ 1.09 (s, 3H, overlapped with CHMe₂ resonance of 9). ¹³C NMR (C₆D₅Cl): δ 16.7 (br s, *MeB*) 141.9 (d, ${}^{1}J_{CF} = 252$, $C_{6}F_{5}$), 148.9 (d, ${}^{1}J_{CF} = 238$, $C_{\theta}F_{5}$); the meta and ipso-C₆F₅ resonances are obscured. ¹¹B NMR (C₆D₅Cl): δ 80.6 (br s). ¹⁹F NMR (C₆D₅Cl): δ -130.3 (m, 2F, $o-C_6F_5$, -151.2 (m, 1F, $p-C_6F_5$), -162.4 (m, 2F, $m-C_6F_5$).

[(^{*i*}Pr₂-ATI)In(Me)(NMe₂Ph)][B(C₆F₅)₄] (10). An NMR tube was charged with (Pr2-ATI)InMe2 (0.029 g, 0.083 mmol) and [NMe₂Ph][B(C₆F₅)₄] (0.066 g, 0.083 mmol), and C₆D₅Cl (0.5 mL) was added by vacuum transfer at -78 °C. The tube was warmed to room temperature, and NMR spectra were recorded which showed the formation of [(Pr2-ATI)In(Me)(NMe2Ph)]- $[B(C_6F_5)_4]$ (10, 85%). ¹H NMR (C_6D_5Cl): δ 0.40 (s, 3H, In*Me*), 0.81 (d, ${}^{3}J_{HH} = 6.1$, 12H, CHMe₂), 2.35 (s, 6H, NMe₂), 3.51 (sept, ${}^{3}J_{\rm HH}$ = 6.1, 2H, CHMe₂), 6.59–6.64 (m, 5H, H^{3,7} and H⁵ overlapped with NMe₂Ph), 6.94 (t, 1H, ${}^{3}J_{HH} = 7.9$, Ph), 7.10 (m, 4H, H^{4,6} overlapped with NMe₂Ph). ¹H NMR (CD₂Cl₂): δ 0.73 (br s, 3H, InMe), 1.01 (br s, 12H, CHMe2), 2.77 (s, 6H, NMe₂), 3.89 (br s, 2H, CHMe₂), 6.83 (br s, 1H, H⁵), 6.98 (d, ${}_{3}J_{\rm HH} = 11.6, 2H, H^{3,7}$), 7.09 (d, ${}^{3}J_{\rm HH} = 7.6, 2H, Ph$), 7.26 (t, 1H, ${}^{3}J_{\rm HH}$ = 7.0, Ph), 7.39 (m, 4H, H^{4,6} overlapped with NMe₂*Ph*). ¹³C NMR (C₆D₅Cl): δ -2.9 (q, ¹*J*_{CH} = 135, In*Me*), 24.9 (q, ${}^{1}J_{CH} = 127$, CHMe₂), 44.9 (q, ${}^{1}J_{CH} = 139$, NMe₂), 48.7 (d, ${}^{1}J_{CH} = 137$, CHMe₂), 117.6 (d, ${}^{1}J_{CH} = 156$, Ph), 118.2 (d, ${}^{1}J_{CH} = 152, C^{5}$, 124.1 (d, ${}^{1}J_{CH} = 163, C^{3,7}$), 125.6 (d, ${}^{1}J_{CH} =$ 162, Ph, 130.2 (d, ${}^{1}J_{CH} = 161$, Ph), 136.9 (d, ${}^{1}J_{CF} = 243$, $C_{6}F_{5}$), 136.9 (d, ${}^{1}J_{CH} = 156$, C^{4,6}), 138.7 (d, ${}^{1}J_{CF} = 245$, C₆F₅), 147.8 (s, *ipso*-Ph), 148.9 (d, ${}^{1}J_{CF} = 241$, $C_{6}F_{5}$), 160.1 (s, $C^{1,2}$); the *ipso*- C_6F_5 resonance was not observed. ¹¹B NMR (C_6D_5Cl): $\delta - 16.5$

Table 7. Summary of Crystal Data for Compounds 3, 4, 5, 6 C₆H₅Cl, 9, and 10

	3	4	5	6 ⋅C ₆ H ₅ Cl	9	10
formula	C13H19Cl2InN2	C ₁₅ H ₂₅ InN ₂	$C_{58}H_{40}BF_{20}InN_2$	C44H27BClF20InN2	$C_{25}H_{19}F_{10}InN_2$	C46H33BF20InN3
fw	389.02	348.19	1270.55	1124.76	652.24	1133.38
cryst size (mm)	$0.45\times0.42\times0.31$	$0.46\times0.25\times0.15$	$0.40\times 0.35\times 0.35$	$0.20\times0.15\times0.10$	$0.45 \times 0.43 \times 0.27$	$0.41 \times 0.39 \times 0.39$
$d(\text{calc}), \text{Mg/m}^3$	1.617	1.429	1.625	1.745	1.745	1.683
cryst syst	monoclinic	orthorhombic	triclinic	monoclinic	orthorhombic	monoclinic
space group	$P2_{1}/c$	Pbca	$P\overline{1}$	$P2_{1}/c$	$Pna2_1$	$P2_{1}/c$
a (Å)	13.8228(1)	20.796(1)	11.3595(6)	17.4035(9)	16.330(1)	12.1883(9)
<i>b</i> (Å)	16.594(1)	9.2365(5)	14.2584(7)	10.8193(6)	17.700(1)	20.925(2)
<i>c</i> (Å)	15.534(1)	33.711(2)	17.0182(8)	45.479(2)	8.5897(5)	17.570(1)
α (deg)			89.939(1)			
β (deg)	116.231(1)		88.532(1)	90.708(1)		93.187(1)
γ (deg)			70.431(1)			
$V(Å^{3)}$	3195.9(4)	6475.1(6)	2596.3(2)	8562.7(8)	2482.7(3)	4473.9(6)
Ζ	8	16	2	8	4	4
<i>T</i> (K)	183(2)	183(2)	183(2)	183(2)	173(2)	183(2)
diffractometer	Bruker CCD-1000	Bruker CCD-1000	Bruker CCD-1000	Bruker CCD-1000	Bruker CCD-1000	Bruker CCD-1000
radiation, λ (Å)	Μο Κα, 0.710 73	Μο Κα, 0.710 73	Μο Κα, 0.710 73	Μο Κα, 0.710 73	Μο Κα, 0.710 73	Μο Κα, 0.710 73
θ range (deg)	$1.64 < \theta < 26.37$	$1.21 < \theta < 26.37$	$1.52 < \theta < 26.37$	$1.46 < \theta < 26.37$	$1.70 < \theta < 26.37$	$1.95 < \theta < 26.37$
data collected: h;k;l	-17,15; 0,20; 0,19	0,25; 0,11; 0,42	$-13,14;\pm 17;0,21$	$\pm 21; 0, 13; 0, 56$	-19,20; -13,26; ±10	$\pm 15; 0,26; 0,21$
no. of reflns collected	18 844	44 343	14 924	56 135	11 469	33 129
no. of indpt reflns	6472	6623	9641	17295	4577	9111
R _{int}	0.0230	0.0372	0.0119	0.0803	0.0176	0.0162
$\mu ({ m mm^{-1}})$	1.799	1.447	0.570	0.739	1.045	0.650
max/min transmn	0.6055 and 0.4982	0.8122 and 0.5557	0.8255 and 0.8041	0.9298 and 0.8663	0.7657 and 0.6507	0.7855 and 0.7763
structure solution	direct methods ^a	direct methods ^a	direct methods ^a	direct methods ^a	direct methods ^a	direct methods ^a
no. of data/retrains/ params	6472/0/333	6623/0/337	9641/0/745	17295/55/1194	4577/1/347	9111/24/670
GOF on F^2	1.020	1.021	1.017	0.984	0.988	1.024
	R1 = 0.0260, w $R2 = 0.0517$	R1 = 0.0224, w $R2 = 0.0436$	R1 = 0.0280, w $R2 = 0.0729$	R1 = 0.0600, w $R2 = 0.1081$	R1 = 0.0169, w $R2 = 0.0376$	R1 = 0.0253, w $R2 = 0.0622$
	R1 = 0.0412,	R1 = 0.0414,	R1 = 0.0358,	R1 = 0.1303,	R1 = 0.0199,	R1 = 0.0341,
. ,	wR2 = 0.0550	wR2 = 0.0470	wR2 = 0.0765	wR2 = 0.1275	wR2 = 0.0384	wR2 = 0.0665
max diff peak/hole (e/Å ³)		0.305	0.393	0.790	0.242	0.739
max uni peak/noie (e/A°)						

^{*a*} SHELXTL-Version 5.1; Bruker Analytical X-ray systems, Madison, WI. ^{*b*} R1 = $\sum ||F_0| - |F_c|| / \sum |F_0|$ and wR2 = $[\sum [w(F_0^2 - F_c^2)^2] / \sum [w(F_0^2)^2]]^{1/2}$, where $w = [\sigma^2(F_0^2) + (aP)^2 + bP]^{-1}$.

(s). ¹⁹F NMR (C₆D₅Cl): δ –132.0 (m, 8F, *o*-C₆F₅), –162.7 (t, ³J_{FF} = 20, 4F, *p*-C₆F₅), –166.5 (m, 8F, *m*-C₆F₅).

Reaction of [('Pr₂-ATI)InMe][B(C₆**F**₅)₄]**·**C₆**H**₅**Cl (6·PhCl) or [('Pr₂-ATI)InMe][MeB(C**₆**F**₅)₃] (7) with Lewis Bases. Solutions of **6·**PhCl or **7** and 1 equiv of the appropriate Lewis base were prepared and warmed to room temperature, and NMR spectra were recorded. In all cases reactions were complete within the time required to obtain NMR spectra (minutes). Data for **10** are given above; data for other cases are listed below.

[(^{*i*}**Pr**₂-**ATI**)**In**(**Me**)(**MeCN**)][**B**(**C**₆**F**₅)₄] (11). ¹H NMR (C₆D₅Cl): δ 0.50 (s, 3H, In*Me*), 1.10 (d, ³J_{HH} = 6.1, 12H, CH*Me*₂), 1.37 (br s, 3H, *Me*CN), 3.74 (sept, ³J_{HH} = 6.1, 2H, C*H*Me₂), 6.54 (t, ³J_{HH} = 9.0, 1H, H⁵), 6.65 (d, ³J_{HH} = 11.4, 2H, H^{3.7}), 7.09 (m, 2H, H^{4.6}). ¹³C NMR (C₆D₅Cl): δ -1.4 (q, ¹J_{CH} = 139, In*Me*), 0.4 (q, ¹J_{CH} = 138, *Me*CN), 24.2 (q, ¹J_{CH} = 127, CH*Me*₂), 48.5 (d, ¹J_{CH} = 137, *C*HMe₂), 116.8 (d, ¹J_{CH} = 152, C⁵), 118.8 (br s, Me*C*N), 123.8 (d, ¹J_{CH} = 162, C^{3.7}), 136.9 (d, ¹J_{CF} = 243, *C*₆F₅), 137.0 (d, ¹J_{CH} = 155, C^{4.6}), 138.7 (d, ¹J_{CF} = 245, *C*₆F₅), 148.9 (d, ¹J_{CF} = 241, *C*₆F₅), 158.3 (s, C^{1.2}); the *ipso*-C₆F₅ resonance was not observed. ¹¹B NMR (C₆D₅Cl): δ -16.5 (s). ¹⁹F NMR (C₆D₅Cl): δ -132.1 (m, 8F, *o*-C₆F₅), -162.4 (t, ³J_{FF} = 20, 4F, *p*-C₆F₅), -166.5 (m, 8F, *m*-C₆F₅).

[(^{*i*}**Pr₂-ATI)In(Me)(Me₂CO)][B(C₆F₅)₄] (12).** ¹H NMR (C₆D₅Cl): δ 0.73 (s, 3H, In*Me*), 1.18 (d, ³J_{HH} = 5.8, 12H, CH*Me*₂), 1.87 (br s, 6H, *Me*₂CO), 3.87 (sept, ³J_{HH} = 5.8, 2H, C*H*Me₂), 6.71 (t, ³J_{HH} = 9.4, 1H, H⁵), 6.81 (d, ³J_{HH} = 11.3, 2H, H^{3.7}), 6.87 (m, 2H, H^{4.6}). ¹³C NMR (C₆D₅Cl): δ -1.0 (q, ¹J_{CH} = 135, In*Me*), 24.3 (q, ¹J_{CH} = 127, CH*Me*₂), 31.0 (q, ¹J_{CH} = 128, *Me*₂CO), 48.4 (d, ¹J_{CH} = 137, *C*HMe₂), 117.0 (d, ¹J_{CH} = 152, C⁵), 124.4 (d, ¹J_{CH} = 161, C^{3.7}), 136.8 (d, ¹J_{CF} = 243, *C*₆F₅), 137.1 (d, ¹J_{CH} = 156, C^{4.6}), 138.7 (d, ¹J_{CF} = 245, *C*₆F₅), 148.9 (d, ¹J_{CF} = 241, *C*₆F₅), 158.7 (s, C^{1.2}), 221.1 (s, *C*=O); the *ipso*- C₆F₅ resonance was not observed. ¹¹B NMR (C₆D₅Cl): δ –16.5 (s). ¹⁹F NMR (C₆D₅Cl): δ –132.0 (m, 8F, ρ -C₆F₅), -162.7 (t, ³J_{FF} = 20, 4F, p-C₆F₅), -166.5 (m, 8F, *m*-C₆F₅).

[(${}^{P}\mathbf{r}_{2}$ -**ATI**)**In**(**Me**)(**PMe**₃)][**B**(**C**₆**F**₅)₄] (13). ¹H NMR (C₆D₅Cl): δ 0.25 (s, 3H, In*Me*), 0.89 (d, ³*J*_{HH} = 7.9, 9H, P*Me*₃), 0.94 (d, ³*J*_{HH} = 6.1, 12H, CH*Me*₂), 3.63 (sept, ³*J*_{HH} = 6.1, 2H, C*H*Me₂), 6.47 (t, ³*J*_{HH} = 9.6, 1H, H⁵), 6.51 (d, ³*J*_{HH} = 11.3, 2H, H^{3.7}), 7.03 (m, H^{4.6}). ¹³C NMR (C₆D₅Cl): δ -4.2 (q, ¹*J*_{CH} = 132, In*Me*), 10.1 (q, ¹*J*_{CH} = 125, P*Me*₃), 24.4 (q, ¹*J*_{CH} = 126, CH*Me*₂), 48.2 (d, ¹*J*_{CH} = 133, *C*HMe₂), 116.7 (d, ¹*J*_{CH} = 152, C⁵), 122.9 (d, ¹*J*_{CH} = 161, C^{3.7}), 136.9 (d, ¹*J*_{CF} = 243, *C*₆F₅), 137.0 (d, ¹*J*_{CH} = 155, C^{4.6}), 138.7 (d, ¹*J*_{CF} = 245, *C*₆F₅), 148.9 (d, ¹*J*_{CF} = 241, *C*₆F₅), 161.3 (s, C^{1.2}); the *ipso*-C₆F₅ resonance was not observed. ¹¹B NMR (C₆D₅Cl): δ -16.5 (s). ¹⁹F NMR (C₆D₅Cl): δ -132.0 (m, 8F, ρ -C₆F₅), -162.5 (t, ³*J*_{FF} = 20, 4F, p-C₆F₅), -166.4 (m, 8F, *m*-C₆F₅). ³¹P NMR (C₆D₅Cl): δ -46.3 (br s).

 $[({}^{Pr_2}-ATI)In(Me)(NMe_2Ph)][MeB(C_6F_5)_3]$ (14) and $[({}^{Pr_2}-ATI)In(Me)(PMe_3)][MeB(C_6F_5)_3]$ (15). NMR data for 14 and 15 are identical to data for 10 and 13, respectively, except for the anion resonances.

X-ray Structural Determinations. Crystal data, data collection details, and solution and refinement procedures are collected in Table 7, and full details are provided in the Supporting Information. The ORTEP diagrams were drawn with 30% probability ellipsoids. All non-hydrogen atoms were refined with anisotropic displacement coefficients unless otherwise indicated. All hydrogen atoms were included in the structure factor calculation at idealized positions and were allowed to ride on the neighboring atoms with relative anisotropic displacement coefficients. Additional comments specific to each structure follow.

(ⁱ**Pr₂-ATI**)**InCl₂** (3) and (ⁱ**Pr₂-ATI**)**InMe₂** (4). Crystals were grown from a saturated pentane solution to -78 °C.

[{1,2-(N'Pr)₂-5-CPh₃-cyclohepta-3,6-diene}InMe₂]-[B(C₆F₅)₄] (5). Crystals were grown by slow evaporation of chlorobenzene solution of at 23 °C.

[(^{*i*}**Pr**₂-**ATI**)**InMe**][**B**(**C**₆**F**₅)₄]·**C**₆**H**₅**Cl** (**6**·**C**₆**H**₅**Cl**). The complex was dissolved in chlorobenzene, and pentane was slowly layered on top (chlorobenzene/pentane = 1:2) resulting in slow crystal growth. All non-hydrogen atoms except C(104) and C(105) were refined with anisotropic displacement coefficients. There are two symmetry-independent molecules in the asymmetric unit; one molecule is equally disordered over two positions and was refined with an idealized geometry. There are also two C₆H₅Cl molecules equally disordered over two positions.

(\mathbf{Pr}_2 -ATI)In($\mathbf{C}_6\mathbf{F}_5$)₂ (9). Crystals were grown from pentane at 23 °C.

 $[({}^{P}\mathbf{r}_{2}-\mathbf{ATI})\mathbf{In}(\mathbf{Me})(\mathbf{NMe}_{2}\mathbf{Ph})][\mathbf{B}(\mathbf{C}_{6}\mathbf{F}_{5})_{4}]$ (10). The complex was dissolved in chlorobenzene and pentane was slowly layered on top (chlorobenzene/pentane = 1:2), resulting in slow crystal growth. The isopropyl group on N(2) is equally disordered over two positions and was refined with an idealized geometry.

Acknowledgment. This work was supported by DOE grant DE-FG02-88ER13935.

Supporting Information Available: NMR data for anions and Lewis bases in C_6D_5Cl and details of X-ray crystallographic analyses of **3**, **4**, **5**, **6**·PhCl, and **10**. This material is available free of charge via the Internet at http://pubs.acs.org.

OM010578X