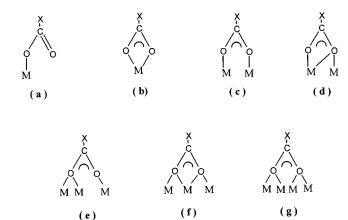
Notes

Synthesis and Structural Studies on $[Mg_3(O_2CC \equiv CSiMe_3)_6(HMPA)_4]$: Mechanistic Implications for the Formation of the μ_4 - η^4 Bonding Type in Carbamato-Bridged Mg₆ Cage Compounds

Kuo-Ching Yang,^{†,§} Chung-Cheng Chang,*,[‡] Charng-Sheng Yeh,[§]


Department of Chemical Engineering, Chengshiu Institute of Technology, Kaohsiung, Taiwan, Republic of China, Department of Applied Chemistry, National University of Kaohsiung, Kaohsiung, Taiwan, Republic of China, Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan, Republic of China, and Department of Chemistry, National Taiwan University, Taipei, Taiwan, Republic of China

Received July 10, 2001

Summary: The insertion reaction of CO_2 with $Mg(C \equiv$ CSiMe₃)₂ was characterized by NMR spectroscopic studies to give a cage compound $[Mg_n(O_2CC \equiv CSiMe_3)_{2n}]$. (THF)_m], **1a**, and the addition of HMPA/THF (HMPA = hexamethylphosphoramide) to solutions of 1a produces a trimeric compound, $[Mg_3(O_2CC \equiv CSiMe_3)_6]$ (HMPA)₄], **1b**. X-ray diffraction studies of this showed 1b to contain a completely centrosymmetric linear array of magnesium atoms linked with μ_2 - η^2 - and μ_2 - η^3 - O_2CC CSiMe₃. It was found to be a key compound in the mechanism leading to the formation of μ_4 - η^4 bonding in carbamato-bridged Mg6 cage compounds.

Introduction

Carbon dioxide has a Lewis basic oxygen atom, which binds to a metal center, generally leading to the activation of the carbon dioxide molecule, and several bonding modes have been described. Studies on metal-carbon dioxide compounds may provide both structural and functional models for surface-bound intermediates in catalytic conversion processes.2 Previously, we have reported that the insertion of carbon dioxide into the Mg-C and Mg-N bonds of magnesium compounds yields linear trimeric and cage compounds, both involving various bonding modes between the carboxylato or carbamato ligands and the magnesium atom, including types **c** $(\mu_2 - \eta^2)$, **d** $(\mu_2 - \eta^3)$, **e** $(\mu_3 - \eta^3)$, and **g** $(\mu_4 - \eta^4)$, as shown

Figure 1. Possible bonding types of carboxylato (X = C)and carbamato (X = N) ligands: (a) η^1 ; (b) η^2 ; (c) μ_2 - η^2 ; (d) μ_2 - η^3 ; (**e**) μ_3 - η^3 ; (**f**) μ_3 - η^4 ; (**g**) μ_4 - η^4 .

in Figure 1.3 Crystallographic studies have shown than steric repulsion of ligands causes bending linear trimers, to give a cage compound. Because the tetradendate μ_4 - η^4 -carbamato ligand can only be observed in a cage compound,3 it is important to understand the detailed bonding modes. In this study, after we obtained the structural data for the new compound [Mg₃(O₂CC= $CSiMe_3)_6(HMPA)_4$, **1b** (HMPA = hexamethylphosphoramide), we then could make comparisons between it and the known $[Mg_3(O_2C^iPr)_6(HMPA)_2]$, 2, and $[Mg_3(O_2-Pr)_6(HMPA)_2]$ CNMe₂)₆(HMPA)₂], **3**.³ By comparing these compounds, we could understand which bonding path is involved in the recombination of type **c** $(\mu_2 - \eta^2)$ into type **g** $(\mu_4 - \eta^4)$.

Results and Discussion

On bubbling an excess of gaseous CO2 into an Mg-(C≡SiMe₃)₂ solution in THF for 20 min, an intermediate exothermic reaction occurred. After adding hexane to

[†] Chengshiu Institute of Technology.

[†] National University of Kaohsiung. § National Sun Yat-Sen University.

¹ National Taiwan University.

¹ National Taiwan University.
(1) (a) Leitner, W. Coord. Chem. Rev. 1996, 153, 257. (b) Costamagna, J.; Ferraudi, G.; Canales, J.; Vargas, J. Coord. Chem. Rev. 1996, 148, 221. (c) Darensbourg, D. J.; Holtcamp, M. W. Coord. Chem. Rev. 1996, 153, 155. (d) Leitner, W. Angew. Chem., Int. Ed. Engl. 1995, 34, 2207. (e) Jessop, P. G.; Ikariya, T.; Noyori, R. Chem. Rev. 1995, 95, 259. (f) Behr, A. Angew. Chem., Int. Ed. Engl. 1988, 27, 661. (g) Braunstein, P.; Matt, D.; Nobel, D. Chem. Rev. 1988, 88, 747. (h) Palmer, D. A.; van Eldik, R. Chem. Rev. 1983, 83, 651. (i) Ruben, M.; Walther, D.; Knake, R.; Görls, H.; Beckert, R. Eur. J. Inorg. Chem. 2000, 1055. **2000**, 1055.

⁽²⁾ Gibson, D. H. Coord. Chem. Rev. 1999, 185, 335.

⁽³⁾ Yang, K.-C.; Chang, C.-C.; Yeh, C.-S.; Lee, G.-H.; Peng, S.-M *Organometallics* **2001**, *20*, 126.

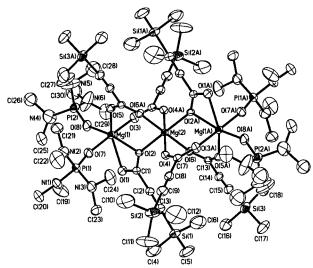


Figure 2. ORTEP view of the molecule 1b using 30% probability ellipsoids. Important bond lengths (Å) and bond angles (deg): Mg(1)-O(8) 1.998(2), Mg(1)-O(7) 2.013(3), Mg(1)-O(5) 2.028(2), Mg(1)-O(3) 2.063(2), Mg(1)-O(2)2.138(2), Mg(1)-O(1) 2.291(2), Mg(1)···Mg(2) 3.6013(9), Mg-(2)-O(6) 2.068(2), Mg(2)-O(4) 2.072(2), Mg(2)-O(2) 2.072-(2), O(1)-C(1) 1.244(4), O(2)-C(1) 1.274(3), O(3)-C(7A)1.252(4), O(4)-C(7) 1.242(2), O(5)-C(13A) 1.257(4), O(6)-C(13) 1.242(4), O(8)-Mg(1)-O(7) 91.0(1), O(8)-Mg(1)-O(5)101.7(1), O(7)-Mg(1)-O(5) 91.0(1), O(8)-Mg(1)-O(7) 88.2-(1), O(7)-Mg(1)-O(3) 177.8(1), O(5)-Mg(1)-O(3) 91.2(1), O(8)-Mg(1)-O(2) 163.0(1), O(7)-Mg(1)-O(2) 91.5(1), O(5)-O(8)-O(8)Mg(1) - O(2) 95.12(9), O(3) - Mg(1) - O(2) 88.71(9), O(8) - Mg-100(1) - O(1) 88.71(9), O(1) - O(1) 88.71(9)(1) -O(1) 104.2(1), O(7) -Mg(1) -O(1) 84.7(1), O(5) -Mg(1) -O(1)O(1) 153.9(1), O(3)-Mg(1)-O(1) 93.5(1), O(2)-Mg(1)-O(1)59.32(8), O(8)-Mg(1)-O(7), O(6)-Mg(2)-O(6A) 180.0, O(6)-Mg(2)Mg(2)-O(4) 91.76(9), O(6)-Mg(2)-O(4A) 88.24(9), O(4)-O(4A)Mg(2)-O(4A) 180.0, O(6)-Mg(2)-O(2) 90.66(8), O(4)-O(4)Mg(2)-O(2) 89.60(8) O(6)-Mg(2)-O(2A) 89.34(8), O(4)-O(2A)Mg(2)-O(2A) 90.40(8), O(2)-Mg(2)-O(2A) 180.0.

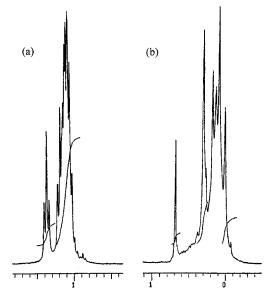
the resulting solution and storing it at 0 °C, a cage compound $[Mg_n(O_2CC \equiv CSiMe_3)_{2n}\cdot (THF)_m]$ (1a) was produced. Then, by recrystallizing from HMPA/THF (2:1), we obtained colorless crystals of 1b.

Single-crystal X-ray analysis was carried out on compound **1b** (Figure 2). This new structure consists of discrete trinuclear molecules with a centrosymmetric

linear array of magnesium atoms linked by two sets of three $O_2CC \equiv CSiMe_3$ ligands, via type **c** and type **d** bonding. About the central magnesium Mg(2) atom there is an almost regular octahedral configuration of the bridging oxygen atoms of the O₂CC≡CSiMe₃ ligands. The outer magnesium atoms Mg(1) and Mg(1A) are additionally coordinated to two HMPA molecules, forming a distorted octahedron. When comparing the linear trinuclear compounds 1b, 2, and 3, several interesting structural differences could be recognized. One difference was that the terminal magnesium atoms in 2 and **3** are pentacoordinate with one additional HMPA molecule. Another difference was that the Mg···Mg distance of 3.601(1) Å in **1b** is longer than that of 3.496(1) Å in 2 and 3.459(1) Å in 3. Still another difference is that larger OCO angles were observed in 1b (Table 1). Finally, another important difference is that the distances $Mg_t - O_b$ and $Mg_t - O_t$ in the four-membered ring, $Mg_tO_tCO_b$, are different. In **1b**, the distance between terminal magnesium and the bridging oxygen, Mg(1)-O(2), 2.138(2) Å, is shorter than the distance Mg(1)O(1), 2.291(2) Å, making the Mg_t-O_b stronger. In striking contrast, 2 and 3 exhibit a weak interaction between the terminal magnesium and the bridging oxygen atoms (Table 1). Therefore, we divided type d into two modes: type **d-1** and **d-2** (Table 1). Additionally, the C(1)-O(1) bond length of 1.244(4) Å in **1b** exhibits a stronger double-bond character than does the other C(1)-O(2) bond $[1.274(3) \text{ Å}].^4$ This is shown also by the IR absorption band at 1645 cm⁻¹.^{5,6} In fact, Parkin has reported finding an η^1 -coordination mode of the acetato ligand in his magnesium compound $\{\mu_3$ - $HB(3-^{t}BuPz)_{3}Mg(\eta^{1}-O_{2}CCH_{3})$, **4**, which also has a C= O bond. A **d-2** mode after the cleavage of Mg_t and O_t becomes the **d-3** mode, which involves η^1 -coordination similar to that in 4.

In summary at this point, we propose the reaction path shown in Scheme 1, which could be supported in part by the variable-temperature NMR spectra discussed in the next section. First, a trimer with type ${\bf c}$ bonding forms an intramolecular dative bond between the bridging oxygen atom O_b and the terminal magnesium atom Mg_t, producing a type ${\bf d}$ - ${\bf 1}$ bond. Second, the stronger bond Mg_t $-O_b$ forms and generates the type ${\bf d}$ - ${\bf 2}$

Table 1. Bond Lengths (Å) and Bond Angles (deg) for the Compounds 1b, 2, and 3


 Mg_c : terminal magnesium, Mg_c : central magnesium, * : the O-C-O angle of type b

---: weak bond, ---: strong bond

	1 b	2	3
Mg _t -Mg _c	3.601(1) (Mg ₁ -Mg ₂)	3.496(1) (Mg ₁ -Mg ₂)	3.459(1) (Mg ₁ -Mg ₂)
O_t-C-O_b	$121.4(3) (O_1 - C_1 - O_2)$	$118.5(2) (O_5 - C_9 - O_6)$	$119.2(2) (O_2 - C_7 - O_3)$
O-C-O*	$128.8(3) (O_{3A}-C_7-O_4)$	$125.9(3) (O_1-C_1-O_2)$	$125.8(2) (O_4 - C_{10} - O_5)$
O-C-O*	$127.9(3) (O_{5A}-C_{13}-O_{6})$	$124.3(3) (O_3 - C_5 - O_4)$	$123.5(2) (O_6 - C_{13} - O_7)$
Mg_c-O_b	$2.072(2) (Mg_2-O_2)$	$2.075(2) (Mg_1-O_5)$	$2.094(2) (Mg_1-O_2)$
Mg_t-O_b	$2.138(2) (Mg_1-O_2)$	$2.181(2) (Mg_2-O_5)$	$2.179(2) (Mg_2-O_2)$
Mg_t-O_t	$2.291(2) (Mg_1-O_1)$	$2.091(2) (Mg_2-O_6)$	$2.079(2) (Mg_2-O_3)$
$C-O_b$	$1.274(3) (C_1 - O_2)$	$1.266(3) (C_9 - O_5)$	$1.271(3) (C_7 - O_2)$
$C-O_t$	$1.244(4) (C_1 - O_1)$	$1.257(3) (C_9 - O_6)$	$1.267(3) (C_7 - O_3)$

mode. Third, Mgt-Ot bond cleavage results in an intermediate type **d-3** mode. Finally, the other trimer attacks, forming types **e** and **g**. If **d-2** is formed first, followed by **d-1**, no bond cleavage could occur to generate free oxygen Ot, and, thus, there would be no recombination with the other trimer.

In an ¹H NMR spectroscopic study of **1a** (in benzene d_6), the methyl proton resonance of the C=CSiMe₃ group appeared as a complicated overlapping multiplet in the region of 0.18-0.69 ppm, and the ¹³C NMR spectrum of the methyl carbon atoms of the C≡CSiMe₃ group appeared as many distinct signals in the region 0.10-1.86 ppm. Such spectral complexity is similar to that observed in one of our previous cage compounds, [Mg₆(O₂- $CNEt_2)_{12}$ (Figure 3), which can be considered as favored by a recombination step to get the final product. The ¹³C NMR spectrum of **1a** showed a signal at 160.26 ppm, assignable to the quaternary carbon atoms of the CO_2 groups. In the ¹H NMR spectrum (benzene- d_6) of **1b**, the singlet at δ 0.16 ppm and the doublet at 2.54 ppm were assigned to the methyl protons of the trimethylsilyl group and HMPA, respectively. In the ¹³C NMR spectrum, the quaternary carbon atom of the CO₂ group appeared at δ 159.69 ppm.9 A ¹H NMR and ³¹P NMR variable-temperature study was carried out on 1b between −60 and 50 °C in THF-d₈ solution. At 30 °C,

Figure 3. ¹H NMR spectra (benzene- d_6) of [Mg₆(O₂- $CNEt_2)_{12}$ (a) and **1a** (b) in the CH_3 region.

the ¹H NMR spectrum showed one singlet at 0.15 ppm and one doublet at 2.65 ppm for the methyl protons of the trimethylsilyl group and HMPA, respectively. At −60 °C, two sets of singlets were observed at 0.13 and 0.14 ppm and two sets of doublets at 2.56 and 2.68 ppm. Because two bulky and stronger HMPA donor bases on the terminal magnesium atoms stabilized 1b and prevented recombination in THF-d₈ solution, we did not observe the complicated overlapping appearance due to cage formation in the methyl region. Similarly, at 50 and 30 °C, the ³¹P NMR spectrum of **1b** showed one signal at 24.51 and 24.38 ppm, corresponding to the phosphorus atom of HMPA. At −60 °C, the HMPA signal split into two distinct signals, one at 23.53 and the other at 24.00 ppm. These signals arose from two different phosphorus species, which was consistent with the solid structures, which have two types of HMPA donor ligands.

Experimental Section

General Data. All experiments were carried out in an N₂flushed glovebag, in a drybox, or in a vacuum line using standard Schlenk techniques. Magnesium metal and trimethylsilylacetylene were purchased from Aldrich and used as received. Mg(C≡CSiMe₃)₂ was prepared by following previous reports. 10 All solvents were distilled and degassed prior to use. All ¹H, ¹³C, and ³¹P spectra were measured on a Varian-200, 300, or 500 spectrometer. Chemical shifts are referenced to either TMS or deuterated solvent as an internal standard. 31P NMR spectra were referenced to external 85% H₃PO₄. IR spectral data were obtained on an FT-IR spectrometer. Elemental analyses (C, H, and N) were performed by the Analytsche Laboratorien of H. Malissa and G. Reuter, GmbH, Germany.

The crystal was mounted on a glass fiber using expoxy resin, transferred to a goniostat, and cooled to 220 K under liquid nitrogen vapor. Data were collected on a Bruker SMART CCD diffractometer using graphite-monochromatized Mo Kα radiation ($\lambda = 0.71073$ Å). Structural determinations were made using the SHELXTL program package. All refinements were carried out by full-matrix least squares using anisotropic

^{(4) (}a) Huheey, J. E. *Inorganic Chemistry*; Harper & Row Publishers: New York, 1974. (b) Ye, B. H.; Mak, T.; Williams, I. D.; Li, X. Y. J. Chem. Soc., Dalton Trans. 1998, 1935.

^{(5) (}a) Aresta, M.; Dibenedetto, A.; Quaranta, E. J. Chem. Soc., Dalton Trans. 1995, 3359. (b) Arduini, A. L.; Jamerson, J. D.; Takats, J. Inorg. Chem. 1981, 20, 2474. (c) Deacon, G. B.; Phillips, R. J. Coord. Chem. Rev. 1980, 33, 227. (d) Calderazzo, F.; Dell'Amico, G.; Netti, (8) Caudle, M. T.; Kampf, J. W. Inorg. Chem. 1998, 17, 471.

(8) Randhawa, H. S. Vib. Spectrosc. 1994, 7, 79.

(7) Han, R.; Parkin, G. J. Am. Chem. Soc. 1992, 114, 748.

(8) Caudle, M. T.; Kampf, J. W. Inorg. Chem. 1999, 38, 5474.

⁽⁹⁾ Gibson, D. H. Chem. Rev. 1996, 96, 2063.

^{(10) (}a) Schubert, B.; Behrens, U.; Weiss, E. Chem. Ber. 1981, 114, 260. (b) Geissler, M.; Kopf, J. Chem. Ber. 1981, 122, 1395.

Table 2. Crystal and Intensity Collection Data for **Compound 1b**

formula	$C_{60}H_{126}Mg_3N_{12}O_{16}P_4Si_6\\$	
fw	1637.08	
cryst syst	tr <u>i</u> clinic	
space group	<i>P</i> 1	
a, Å	12.2761(2)	
b, Å	13.9829(1)	
c, Å	16.4374(1)	
α, deg	111.313(1)	
	104.555(1)	
	102.939(1)	
V, Å ³	2383.67(4)	
\overline{Z}	1	
$D_{\rm calc}$, g/cm ³	1.140	
μ , mm ⁻¹	0.232	
F(000)	878	
cryst size	$0.42\times0.40\times0.40$	
θ range, deg	1.43 to 26.37	
no. of reflns collected	26 665	
no. of indpdt reflns	9509 ($R_{\text{int}} = 0.0257$)	
transm factor (max, min)	0.9280, 0.8433	
<i>T</i> , K	220(1)	
GOF	1.081	
final R indices $[I > 2\sigma(I)]$	R1 = 0.0696, $wR2 = 0.1878$	
R indices (all data)	R1 = 0.0887, $wR2 = 0.2026$	
extinction coeff	0.0098(15)	
largest diff peak and hole, e Å ⁻³	1.070 and -0.553	
	fw cryst syst space group a, \mathring{A} b, \mathring{A} c, \mathring{A} a, \mathring{A} b, \mathring{A} c, \mathring{A}	

displacement parameters for all non-hydrogen atoms. All hydrogen atoms were calculated. In compound 1b, one methyl group of each HMPA ligand is disordered. The carbon atoms of C(26), C(28), C(30) and C(26'), C(28'), C(30') have a 63%/ 37% occupancy ratio. The crystal data are summarized in Table 2.

Reaction of Carbon Dioxide with Mg(C=CSiMe₃)₂. An excess of carbon dioxide was bubbled into a solution of Mg-

(C≡CSiMe₃)₂ (37.8 mmol) in THF (100 mL) for 20 min, causing an exothermic reaction. After centrifugation, hexane (10 mL) was added, and a microcrystalline solid 1a was obtained on cooling at 0 °C. Subsequently, the solid was washed with hexane and dried in a vacuum. Then, a 2:1 mixture of HMPA and THF (15 mL) was added to 1a. The resolution was kept room temperature as the solvent slowly evaporated. Large block crystals of 1b formed.

 $[Mg_n(O_2CC \equiv CSiMe_3)_{2n} \cdot (THF)_m]$, 1a: ¹H NMR (benzene d_6) δ 0.02 – 0.30, 0.69 [m, Me_3Si], 1.53 (br, 3, 4 –thf–H), 3.96 (br, 2, 5 -thf-H); ¹³C NMR (benzene- d_6) δ 0.10, 0.30, 0.36, 0.59, 0.64, 0.84, 1.86 (Me₃Si), 26.00 (3, 4 -thf - C), 69.24 (2, 5 -thf-C), 160.26 (CO_2); IR (KBr, cm⁻¹) 1605 s (asm $-CO_2$).

 $[Mg_3(O_2CC \equiv CSiMe_3)_6(HMPA)_4]$, 1b: yield 78%, mp_{dec} > 168 °C; ¹H NMR (benzene- d_6) δ 0.16 [s, 54H, Me_3 Si], 2.54 [d, 72H, (Me₂N)₃PO]; ¹H NMR (THF-d₈) 0.15 [s, 54H, Me₃Si], 2.65 [d, 72H, $(Me_2N)_3PO$]; ¹³C NMR (benzene- d_6) δ 0.15, 0.17 (Me_3 -Si), 37.24, 37.28 [(Me_2N)₃PO], 83.90 ($Me_3SiC \equiv C$), 104.31 (Me_3 -SiC=C), 159.89 (CO_2); ¹³C NMR (THF- d_8) δ 0.04 (Me_3 Si), 37.35, 37.39 [$(Me_2N)_3PO$], 82.91 ($Me_3SiC \equiv C$), 104.20 ($Me_3SiC \equiv C$), 159.69 (CO_2); ³¹P NMR (THF- d_8) δ 24.38 [(Me₂N)₃PO]; IR (KBr, cm⁻¹) 1599 s (asm $-CO_2$). Anal. Calcd for **1b** ($C_{60}H_{126}$ -Mg₃N₁₂O₁₆P₄Si₆): C, 44.04; H, 7.71; N, 10.28. Found: C, 44.23; H, 7.67; N, 10.60.

Acknowledgment. We thank the National Science Council, Taiwan, ROC, for financial support.

Supporting Information Available: Table of crystal data, atomic coordinates and temperature factors, and intramolecular bond distances and angles of 1b and the complete spectroscopic and analytical data for 1a and 1b. This material is available free of charge via the Internet at http://pubs.acs.org.

OM010615K