Iridium Complexes Containing Four and Five Ir–C Bonds: Alkyl-Bis(alkenyl)-Alkynyl and Carbonyl-Alkyl-Bis(alkenyl)-Alkynyl Iridium

Chong Shik Chin,* Mieock Kim, and Hyungeui Lee

Department of Chemistry, Sogang University, Seoul 121-742, Korea

Received November 19, 2001

Iridium complexes containing four Ir–C σ -bonds, *cis*,*cis*-[Ir(CH₃)(–CH=CHPPh₃)₂(–C= $(CR)(PPh_3)_2]^+$ (**2**, $R = p - C_6H_4CH_3$ (**a**), cyclohex-1-enyl (**b**), $C(CH_3) = CH_2$ (**c**)), are obtained from the reactions of cis, trans- $[Ir(CH_3)(-CH=CHPPh_3)_2(CO)(PPh_3)_2]^{2+}$ (1) with HC=CR in the presence of Me₃NO. One of the two PPh₃ in 2 is readily replaced to give complexes containing five Ir-C σ -bonds, cis-[Ir(CO)(CH₃)(-CH=CHPPh₃)₂(-C=CR)(PPh₃)]⁺ (**3**, R = p-C₆H₄CH₃) (a), cyclohex-1-enyl (b), $C(CH_3) = CH_2$ (c)). Complexes 3 are also obtained from the reactions of **2** with CHCl₃ in the presence of OH⁻ in H₂O. The reaction of *trans*-[IrBr(CH₃)(-CH= $CHPPh_{3}(CO)(PPh_{3})$ ⁺ (4) with Ag⁺ and 4-ethynyltoluene in the presence of NEt₃ gives a mixture of geometric isomers, **3a** (where the CH₃ group is *cis* to $-C \equiv C - p - C_6 H_4 CH_3$ ligand) and **3'a** (where the CH₃ group is *trans* to $-C \equiv C - p - C_6 H_4 CH_3$ ligand). Addition of aqueous HCl to **2a** or **3a** causes a new carbon–carbon bond formation between the methyl and alkynyl groups to produce cis-CH₃CH=CH-p-C₆H₄CH₃ (5) exclusively and [IrCl₂(-CH=CHPPh₃)₂- $(PPh_3)(L)]^+$ (L = PPh₃, CO).

Introduction

Metal-hydrocarbyls such as metal-alkyls, metalalkenyls, and metal-alkynyls are useful precursors and key intermediates in C-C bond forming reactions.¹ Organometallic compounds with more than two hydrocarbyl ligands undergo C-C bond forming reactions between the hydrocarbyl ligands under appropriate reaction conditions.²

We recently reported several iridium complexes containing various hydrocarbyl ligands, some of which undergo C-C bond forming reactions between the hydrocarbyl ligands to produce interesting conjugated olefins.3,4

In this paper, we wish to report the synthesis of alkylbis(alkenyl)-alkynyl-iridium(III) compounds containing four and five Ir–C σ -bonds and their reactions with HCl to produce *cis*-olefin selectively.

Results and Discussion

Iridium(III) complexes containing four Ir–C σ -bonds, alkyl-bis(alkenyl)-alkynyl-iridium cis, cis-[Ir(CH₃)(-CH= $CHPPh_{3}_{2}(-C \equiv CR)(PPh_{3}_{2})^{+}$ (2), have been prepared from the reactions of cis, trans-[Ir(CH₃)(-CH=CHPPh₃)₂- $(CO)(PPh_3)_2]^{2+}$ (1)⁵ with HC=CR in the presence of Me₃-NO (eq 1).6,7

 $R = \rho - C_6 H_4 C H_3$ (a), cyclohex-1-enyl (b), C(CH₃)=CH₂ (c)

It is somewhat surprising to obtain the *cis*-(PPh₃)₂ complexes 2 in eq 1. cis-Ir(PPh₃)₂ complexes are formed

^{(1) (}a) Guérin, F.; McConville, D. H.; Vittal, J. J.; Yap, G. A. P. Organometallics **1998**, *17*, 1290. (b) Haskel, A.; Straub, T.; Dash, A. K.; Eisen, M. S. J. Am. Chem. Soc. 1999, 121, 3014. (c) Kishimoto, Y.; Eckerle, P.; Miyatake, T.; Kainosho, M.; Ono, A.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1999, 121, 12035. (d) Trost, B. M.; Sorum, M. T.; Chan, C.; Harms, A. E.; Rühter, G. J. Am. Chem. Soc. 1997, 119, 698.
 (e) Clair, M. S.; Schaefer, W. P.; Bercaw, J. E. Organometallics 1991, (c) Gair, M. S., Scharter, W. L., Bertaw, S. E. Organometallics 1991, 10, 525. (f) Esteruelas, M. A.; Herrero, J.; López, A. M.; Oliván, M. Organometallics 2001, 20, 3202. (g) Dumond, Y.; Negishi, E. J. Am. Chem. Soc. 1999, 121, 11223. (h) Xi, Z.; Fischer, R.; Hara, R.; Sun, W.-H.; Obora, Y.; Suzuki, N.; Nakajima, K.; Takahashi, T. J. Am. Chem. Soc. 1997, 119, 12842.

^{(2) (}a) Bohanna, C.; Buil, M. L.; Esteruelas, M. A.; Oñate, E.; Valero, C. Organometallics 1999, 18, 5176. (b) Werner, H.; Schäfer, M.; Wolf, C. Organometallics **1999**, *18*, 5176. (b) Werner, H.; Schäfer, M.; Wolf, J.; Peters, K.; Schnering, H. G. Angew. Chem., Int. Ed. Engl. **1995**, *34*, 191. (c) Esteruelas, M. A.; Liu, F.; Oñate, E.; Sola, E.; Zeier, B. Organometallics **1997**, *16*, 2919. (d) Bohanna, C.; Esteruelas, M. A.; Lahoz, F. J.; Oñate, E.; Oro, L. A.; Sola, E. Organometallics **1995**, *14*, 4825. (e) Esteruelas, M. A.; García-Yebra, C.; Oliván, M.; Oñate, E.; Tajada, M. A. Organometallics **2000**, *19*, 5098. (f) Werner, H.; Ilg, K.; Weberndörfer, B. Organometallics **2000**, *19*, 3145. (g) Torkelson, J. R.; Mcdonald, R.; Cowie, M. Organometallics **1999**, *18*, 4134. (h) Inaktechti Mcdonald, R.; Cowie, M. *Organometallics* **1999**, *18*, 4134. (h) Ipaktschi, J.; Mirzaei, F.; Demut-Eberle, G. J.; Beck, J.; Serafin, M. *Organo*metallics **1997**, *16*, 3965. (i) Bianchini, C.; Innocenti, P.; Peruzini, M.; Romerosa, A.; Zanobini, F. *Organometallics* **1996**, *15*, 272.

⁽³⁾ Chin, C. S.; Maeng, W.; Chong, D.; Won, G.; Lee, B.; Park, Y. J.;
Shin, J. M. *Organometallics* 1999, *18*, 2210.
(4) Chin, C. S.; Cho, H.; Won, G.; Oh, M.; Ok, K. M. *Organometallics* 1999.

¹⁹⁹⁹, *18*, 4810.

⁽⁵⁾ Chin, C. S.; Lee, M.; Oh, M.; Won, G.; Kim, M.; Park, Y. J. Organometallics 2000, 19, 1572.

⁽⁶⁾ For example, see: (a) Chin, C. S.; Oh, M.; Won, G.; Cho, H.; Shin, D. Bull. Korean Chem. Soc. **1999**, 20, 85. (b) Yang, K.; Bott, S. G.; Richmond, M. G. Organometallics **1994**, 13, 3788. (c) Yeh, W. Y.; Liu, L. K. J. Am. Chem. Soc. **1992**, 114, 2267. (d) Albers, M. O.; Coville, N. J. Coord. Chem. Rev. 1984, 53, 227, and references therein. (e) Shapley, J. R.; Sievert, A. G.; Churchill, M. R.; Wasserman, H. J. J. Am. Chem. Soc. 1981. 103. 6975.

⁽⁷⁾ For example, see: (a) Ara, I.; Berenguer, J. R.; Eguizábal, E.; Forniés, J.; Gómez, J.; Lalinde, E.; Sáez-Rocher, J. M. *Organometallics* **2000**, *19*, 4385. (b) Touchard, D.; Haquette, P.; Guesmi, S.; Pichon, L. L.; Daridor, A.; Toupet, L.; Dixneuf, P. H. Organometallics **1997**, *16*, 3640. (c) Chin, C. S.; Lee, H.; Oh, M. Organometallics **1997**, *16*, 816.

when RH (R = H, Cl) is oxidatively added to the *trans*-Ir(A)(CO)(PPh₃)₂ (A = halogen, RCN, OClO₃, carborane, $-C \equiv CR$) as the kinetic products.⁸ The PPh₃ groups in Vaska's complex bend back to give the *cis*-Ir(PPh₃)₂ complex in the reaction with a bulky ligand such as a C_{70} group.⁹ Complexes **2** may not be the kinetic products since no isomerization reaction of **2** (to the *trans*-(PPh₃)₂ complex) has been observed even at 70 °C. The abstraction of the CO ligand from **1** by Me₃NO (eq 1) would give a five-coordinate intermediate ([Ir(CH₃)(-CH= CHPPh₃)₂(PPh₃)₂]²⁺) initially in a square pyramidal geometry that may undergo an intramolecular rearrangement probably to trigonal bipyramidal geometry before the alkynyl group (-C≡CR) then coordinates to the metal to give the *cis*-(PPh₃)₂ complexes **2**.

Spectral (¹H and ³¹P NMR) data strongly support the cis-configuration between the two PPh3 ligands and between the two CH=CHPPh₃ groups, respectively. Assignments of ¹H NMR signals due to Ir-CH=CHPPh₃ of **2** are rather straightforward by comparing the data with those for the related and well-characterized complexes containing Ir-CH=CHPPh₃,¹⁰ cis-Ir(-CH= CHPPh₃)₂,⁵ and *cis*-Re(-CH=CHPPh₃)₂.¹¹ The ¹H NMR spectra clearly show two sets of signals at δ 10.67–10.71 (dddd) and 10.00–10.06 (dddd) due to the α protons of the two $Ir-CH=CHPPh_3$ in 2a-c (see Experimental Section for detailed coupling data). One of the β protons in the two alkenyl groups ($Ir-CH_{\alpha'}=CH_{\beta'}PPh_3$, *trans* to $P_{a'}Ph_{3}$) is seen at δ 5.96–6.00 (dd), while the other β proton (Ir–CH_a=CH_bPPh₃, *trans* to –C=CR) seems to be obscured by large signals due to the phenyl protons in the region δ 6.7–8.0. The two PPh₃ groups in **2a**–**c** do not seem to be *trans* to each other since the $Ir-CH_3$ is seen as a doublet of doublets at δ 0.56–0.63 due to the two nonequivalent PPh_3 ligands. (The Ir- CH_3 in **1** is seen as a triplet.⁵)

The ³¹P NMR spectra of 2a-c show four signals, two for the nonequivalent CH=CHPPh₃ groups (at δ 11.52-11.59 (dd) and 9.36-9.59 (t)) and two for the nonequivalent *P*Ph₃ ligands (at δ -8.67 to -9.34 (ddd) and -11.36 to -11.87 (ddd)) with coupling constants ca. 39 Hz between the *trans* CH=CHPPh₃ and PPh₃ and ca. 16 Hz between the two *cis* PPh₃ ligands, respectively (see Experimental Section for detailed spectral data). The trans relationship between CH₃ and P_aPh₃ and between the alkenyl group ($CH_{\alpha'}=CH_{\beta'}PPh_3$) and $P_{a'}Ph_3$ is apparent according to the ¹³C NMR spectra of 2a-c that show a doublet at δ -0.13-0.14 for Ir-*C*H₃ with the large coupling (79-85 Hz due to the trans P_aPh₃) and another doublet at δ 193.9–194.1 for Ir–*C*H_{$\alpha'}=CH_{<math>\beta'}-$ </sub></sub> PPh₃ with the large coupling (97–115 Hz due to the *trans* $P_{a'}$ Ph₃) (see Experimental Section). The presence of the alkynyl ligands in $2\mathbf{a} - \mathbf{c}$ is also unambiguously confirmed by the signals due to R groups of Ir–C≡CR in the ¹H NMR spectra and the absorption due to ν (C≡C) in the range 2080–2090 cm⁻¹ in the IR spectra.

The PPh₃ *cis* to the CH₃ ligand of **2** is readily replaced by CO to give the metal complexes containing five Ir–C σ -bonds, *cis*-[Ir(CO)(CH₃)(–CH=CHPPh₃)₂(–C≡CR)-(PPh₃)]⁺ (**3**), at room temperature under ambient pressure of CO (eq 2), while such replacement does not occur for the *trans*-bis(PPh₃)₂ complex **1** even under high pressure of CO. This facile replacement of PPh₃ by CO may be due to the two bulky PPh₃ being *cis* in **2**. These iridium complexes **3** containing five Ir–C σ -bonds are stable in the solid state and in solution for several days. To the best of our knowledge, no example has been reported thus far for an iridium complex with five Ir–C σ -bonds.

 $R = p - C_6 H_4 C H_3$ (a), cyclohex-1-enyl (b), C(CH₃)=CH₂ (c)

i) CO/-PPh₃

ii) CHCl₃, NaOH in H₂O/-PPh₃, -NaCl

Complexes **3** are also obtained in high yields from the reactions of **2** in CHCl₃ and OH⁻ in H₂O at 50 °C (eq 2) (see Experimental Section). It is well-known that metal carbonyls are obtained by the hydrolysis of metal carbenes (M = CCl₂) generated by reactions of metals with CHCl₃ in the presence of OH⁻ in H₂O.¹²

The ³¹P NMR spectra of **3a**-**c** show two doublets for the two nonequivalent CH=CH*P*Ph₃ (at δ 14.49–14.67 and 13.54–13.69) and one doublet of doublets for the *P*Ph₃ (at δ –7.98 to –8.18). The ¹H NMR spectra of **3a**-**c** show two sets of signals (ddd) due to the α protons of the two Ir-C*H*=CHPPh₃ groups (as those observed for **2a**-**c**), suggesting that the two CH=CHPPh₃ groups are *cis* to each other. The doublets at δ –10.8 to –11.3 due to Ir-*C*H₃ with large *J*(*C*H₃–*P*Ph₃) = ca. 73 Hz indicate that the CH₃ and PPh₃ groups are *trans* to each other in **3a**-**c**.

Complex **3a** can be also prepared from the reaction of trans-[IrBr(CH₃)(-CH=CHPPh₃)₂(CO)(PPh₃)]⁺ (4)⁵

^{(8) (}a) Chin, C. S.; Oh, M.; Won, G.; Cho, H.; Shin, D. *Polyhedron* **1999**, *18*, 811. (b) Thompson, J. S.; Bernard, K. A.; Rappol, J. P.; Atwood, J. D. *Organometallics* **1990**, *9*, 2727. (c) Drouin, M.; Harrod, J. F. *Inorg. Chem.* **1983**, *22*, 999. (d) Harrod, J. F.; Hamer, G.; Yorke, W. J. Am. Chem. Soc. **1979**, *101*, 3987. (e) Fawcett, J. P.; Harrod, J. F. J. Organomet. Chem. **1976**, *113*, 245. (f) Longato, B.; Morandini, F.; Bresadola, S. *Inorg. Chem.* **1976**, *15*, 650.

^{(9) (}a) Crabtree, R. H. *The Organometallic Chemistry of the Transition Metals*, 3rd ed.; Wiley: New York, 2001; pp 139–140. (b) Usatov, A. V.; Kudin, K. N.; Vorontsov, E.; Vinogradova, L. E.; Novikov, Y. N. *J. Organomet. Chem.* **1996**, *522*, 147.

⁽¹⁰⁾ Chin, C. S.; Park, Y.; Kim, J.; Lee, B. J. Chem. Soc., Chem. Commun. 1995, 1495.

⁽¹¹⁾ Hoffman, D. M.; Huffman, J. C.; Lappas, D.; Wierda, D. A. Organometallics 1993, 12, 4312.

^{(12) (}a) Grushin, V. V.; Alper, H. *Organometallics* **1993**, *12*, 3846, and references therein. (b) Park, J. H.; Koh, J. H.; Park, J. *Organometallics* **2001**, *20*, 1892.

with Ag^+ and 4-ethynyltoluene in the presence of NEt_3 according to eq 3. The isomer **3'a** is simultaneously produced. A mixture of many geometric isomers seems to be produced from the reaction of intermediates **I** (mixture of geometric isomers) with 1-ethynylcyclohexene and 2-methyl-1-buten-3-yne, respectively, in the presence of NEt_3 , while only two isomers (**3a** and **3'a**) are obtained from the reaction of **I** with 4-ethynyltoluene in the presence of NEt_3 . The two geometric isomers **3a** and **3'a** have been successfully separated by column chromatography on alumina.

Detailed spectral data (¹H, ¹³C, and ³¹P NMR) clearly suggest the structure of 3'a having the CH₃ ligand trans to the alkynyl ligand as shown in eq 3. The trans relationship between PPh₃ and CH_{α} = $CH_{\beta}PPh_3$ groups (see Experimental Section) is apparent according to ³¹P NMR of 3'a, which shows two doublets for the two nonequivalent CH=CHPPh₃ groups, one of which shows a relatively large coupling (39.1 Hz) due to the trans *P*Ph₃ at δ 14.48, while the other shows a small coupling (3.9 Hz) due to the *cis* PPh_3 at δ 14.02. The ¹³C NMR spectrum of **3'a** shows a doublet at δ -17.4 due to Ir-CH₃ with a small coupling (4.0 Hz due to cis PPh₃) and a doublet at δ 187.0 due to Ir–*C*H_a=CH_bPPh₃ with a large coupling (100.7 Hz due to trans PPh₃), which strongly indicates that the CH₃ ligand is not *trans* to PPh₃ any more and the alkenyl group ($CH_{\alpha} = CH_{\beta}PPh_3$) is trans to PPh₃ in complex 3'a. The signal due to Ir-CO of **3'a** is a doublet of doublets due to *cis* PPh₃ and *trans* $CH_{\alpha'} = CH_{\beta'}PPh_3$ as observed for **3a**. The signal due to $Ir - C \equiv CR$ of **3'a** is a doublet due to the *cis P*Ph₃, while that of **3a** is a triplet due to the *cis* PPh_3 and *trans* CH_{α} = $CH_{\beta}PPh_3$. These observations show the CO ligand *trans* to the $CH_{\alpha'}=CH_{\beta'}PPh_3$ group and the alkynyl group *trans* to the CH₃ ligand. Addition of aqueous HCl to **2a** or **3a** results in a new carbon-carbon bond formation between the methyl and alkynyl groups to produce cis-CH₃CH=CH(-p-C₆H₄CH₃) (5) exclusively and $[Ir(Cl)_2(-CH=CHPPh_3)_2(PPh_3)(L)]^+$ (L = PPh₃, CO) (see Scheme 1). Formation of 5 may be understood by the electrophilic attack of H^+ on the β carbon of the alkynyl ligand of 2a or 3a since it is well known that the proton attacks the electron-rich β carbon of an alkynyl ligand.^{2a,13} The intermediate A then undergoes CH₃ group migration to the α carbon of the vinyl group to give another intermediate, **B**, which exclusively yields the *cis*-olefin, *cis*-CH₃CH=CH(*p*-C₆H₄CH₃) (5). The C-C bond forming reaction between CH_3 and $-C \equiv C(p-C_6H_4-$ CH₃) ligands has not been observed in the reaction of **3'a** initiated by H⁺ probably because those two ligands are trans to each other in 3'a. Reactions of complexes **2b/3b** and **2c/3c** containing nonaromatic alkynyl ligands with H⁺ give organic mixtures containing small amounts of expected *cis*-olefin and mixtures of unknown iridium complexes.

It is somewhat surprising not to observe C–C bond forming reactions involving the alkenyl ligand, Ir–*CH*= *CHPPh*₃, of **2a**, **3a**, and **3'a** in the reactions with H⁺ since the ammonium ylide, Ir–*CH*=*CHNEt*₃, is involved in the C–C bond forming reactions between the hydrocarbyl ligands of [(CO)(PPh₃)₂Ir(CH₃)(–C=CR)(–CH= CHNEt₃)]⁺ initiated by H⁺ to give 1,3-diene [Et₃N–CH= CH–C(CH₃)=CHR]⁺.⁴ This inertness of the Ir–C bond of Ir–CH=CHPPh₃ may be understood by previous studies that predict the M–C bonds such as $M^+=CH$ – CH=PR₃ and M–CH=CH–⁺PR₃ would be very much stabilized by the neighboring phosphonium ylides through various resonance forms.^{11,14}

Complexes **6** and **7** have been unambiguously characterized by spectral data (¹H, ¹³C, and ³¹P NMR) by comparing the data with those for $[Ir(Br)_2(-CH=CHPPh_3)_2(CO)(PPh_3)]^{+.5}$

We have demonstrated ways of introducing alkynyl ligands to a metal and initiating carbon–carbon bond formation between the alkynyl and other hydrocarbyl ligands to produce *cis*-alkenes selectively. We hope these results to be useful information that may be further utilized in synthetic organic chemistry.

Experimental Section

General Information. A standard vacuum system and Schlenk type glassware were used in most of the experimental procedures in handling metal compounds, although most of the compounds seem to be stable enough to be handled without much precautions in air.

NMR spectra were recorded on either a Varian Gemini 300 or 500 spectrometer (¹H, 300 or 500 MHz; ¹³C, 75.5 or 125.7 MHz; ³¹P, 81.0 or 121.7 MHz). IR spectra were obtained on a Nicolet 205 spectrophotometer. Gas chromatography/mass spectra were determined by Hewlett-Packard HP5890A and VG-trio 2000 instruments. Elemental analyses were carried out by a Carlo Erba EA 1108 CHNS-O analyzer at the Organic Chemistry Research Center, Sogang University.

cis,*cis*·[**I**r(CH₃)(−CH=CHPPh₃)₂(−C=CR)(PPh₃)₂]OTf (2, **R** = *p*-C₆H₄CH₃ (a), cyclohex-1-enyl (b), C(CH₃)=CH₂ (c)). Complexes **2a**−c were prepared in the same manner as described below for **2a**. The reaction mixture of *cis*,*trans*-[**I**r-(CH₃)(−CH=CHPPh₃)₂(CO)(PPh₃)₂](OTf)₂ (1)⁵ (0.2 g, 0.13 mmol) and HC≡C(*p*-C₆H₄CH₃) (0.023 mL, 0.18 mmol) in CHCl₃ (15 mL) was stirred in the presence of Me₃NO (0.02 g, 0.27 mmol) at 25 °C for 3 h under nitrogen before the colorless solution turned reddish brown. Excess Me₃NO and [HNMe₃]OTf were removed by extraction with H₂O (3 × 10 mL). Addition of *n*-pentane (10 mL) to the CHCl₃ solution resulted in precipitation of beige microcrystals of **2a**, which were collected by filtration, washed with *n*-pentane (3 × 10 mL), and dried under vacuum. The yield was 0.18 g and 93% based on **2a**.

^{(13) (}a) de los Ríos, I.; Tenorio, M. J.; Puerta, M. C.; Valerga, P. J. Am. Chem. Soc. **1997**, 119, 6529. (b) Lichtenberger, D. L.; Renshaw, S. K.; Bullock, R. M. J. Am. Chem. Soc. **1993**, 115, 3276. (c) Kelly, C.; Lugan, N.; Terry, M. R.; Geoffroy G. L.; Haggerty. B. S.; Rheingold, A. L. J. Am. Chem. Soc. **1992**, 114, 6735. (d) Yang, S.-M.; Chan, M. C.-W.; Cheung, K.-K.; Che, C.-M.; Peng, S.-M. Organometallics **1997**, 16, 2819. (e) Buil, M. L.; Esteruelas, M. A.; López, A. M.; Oñate, E. Organometallics **1997**, 16, 3169. (f) Bruce, M. I. Chem. Rev. **1991**, 91, 197.

^{(14) (}a) Schmidbaur, H. Angew. Chem., Int. Ed. Engl. 1983, 22, 907.
(b) Viau, L.; Lepetit, C.; Commenges, G.; Chauvin, R. Organometallics 2001, 20, 808.

 $R = \rho - C_6 H_4 C H_3$ (a), cyclohex-1-enyl (b), C(CH₃)=CH₂ (c)

cis, cis-[Ir(CH₃)(-CH=CHPPh₃)₂(-C=C(p-C₆H₄CH₃))-(**PPh₃)₂]OTf (2a).** ¹H NMR (500 MHz, CDCl₃): δ 10.70 (dddd, $J(H_{\alpha}-P_{b}) = 33.3 \text{ Hz}, J(H_{\alpha}-H_{\beta}) = 18.0 \text{ Hz}, J(H_{\alpha}-P_{a}) = 8.7 \text{ Hz},$ $J(H_{\alpha}-P_{a'}) = 7.0$ Hz, H_{α}), δ 10.00 (dddd, $J(H_{\alpha'}-P_{b'}) = 29.4$ Hz, $J(H_{\alpha'}-H_{\beta'}) = 17.0$ Hz, $J(H_{\alpha'}-P_{a'}) = 4.0$ Hz, $J(H_{\alpha'}-P_{a}) = 2.0$ Hz, H_{α}), δ 6.00 (dd, $J(H_{\beta}-P_{b}) = 38.5$ Hz, $J(H_{\alpha}-H_{\beta}) = 18.0$ Hz, H_{β}), δ 2.31 (s, *p*-C₆H₄CH₃), δ 0.62 (dd, J(H–P_a) = 8.3 Hz, $J(H-P_{a'}) = 5.0$ Hz, Ir-CH₃), δ 6.7-8.0 (H_{β'} and the phenyl protons of PPh₃). The pair of signals for $H_{\alpha}-H_{\beta}$ and $H_{\alpha'}-H_{\beta'}$ was assigned by decoupling experiments. ^{13}C NMR (125.7 MHz, CDCl₃): δ 204.5 (br s, C_{α}), δ 193.9 (dm, $J(C_{\alpha'}-P_{a'}) = 97.0$ Hz, $C_{\alpha'}$), δ 109.3 (br s, Ir–C=C), δ 103.6 (d, $J(C_{\beta'}-P_{b'}) = 69.4$ Hz, C_{β}), δ 97.1 (d, $J(C_{\beta}-P_{b}) = 73.8$ Hz, C_{β}), δ 77.5 (m, Ir– $C \equiv$ C), δ 21.1 (s, p-C₆H₄CH₃), δ 0.14 (d, J(C-P_a) = 79.1 Hz, Ir-*C*H₃). HETCOR (¹H (500 MHz) → ¹³C (125.7 MHz)): δ 10.70 → 204.5; δ 10.00 → 193.9; δ 6.00 → 97.1; δ 2.31 → 21.1; δ 0.62 \rightarrow 0.14. ³¹P NMR (81.0 MHz, CDCl₃): δ 11.59 (dd, $J(P_{a'}-P_{b'})$ = 39.0 Hz, $J(P_a-P_{b'}) = 5.5$ Hz, $P_{b'}$, δ 9.59 (t, $J(P_a-P_b)$ and $J(P_{a'}-P_{b}) = 2.5$ Hz, P_{b}), $\delta - 8.71$ (ddd, $J(P_{a'}-P_{b'}) = 39.0$ Hz, $J(P_a-P_{a'}) = 16.6$ Hz, $J(P_{a'}-P_b) = 2.5$ Hz, $P_{a'}$), $\delta -11.37$ (ddd, $J(P_a-P_{a'}) = 16.6$ Hz, $J(P_a-P_{b'}) = 5.5$ Hz, $J(P_a-P_b) = 2.5$ Hz, $P_{\rm a}$). IR (KBr, cm⁻¹): 2088 (s, $\nu_{\rm C=C}$), 1271, 1150, and 1035 (br s, due to uncoordinated triflate¹⁵). Anal. Calcd for IrP₄O₃S₁F₃C₈₇H₇₄: C, 66.44; H, 4.74. Found: C, 66.72; H, 4.77.

cis, cis-[Ir(CH₃)(-CH=CHPPh₃)₂(-C=CC=CH(CH₂)₃C-H₂)(PPh₃)₂]OTf (2b). ¹H NMR (500 MHz, CDCl₃): δ 10.71 (ddd, J = 33.3, 18.0, 8.7, 7.0 Hz, H_{α}), δ 10.06 (dddd, J = 30.0, 17.0, 4.0, 2.0 Hz, H_{α}), δ 6.00 (dd, J = 38.3, 18.0 Hz, H_{β}), δ 5.57, 2.12, 1.96, 1.57 (Ir-C=CC=CH(CH₂)₃CH₂), δ 0.63 (dd, Ir-CH₃, J = 8.0, 5.0 Hz). ¹³C NMR (75.5 MHz, CDCl₃): δ 205.2 (br s, C_{α}), δ 194.1 (dm, J = 100.5 Hz, C_{α}), δ 111.6 (br s, Ir-C=C, δ 103.5 (d, J = 72.0 Hz, C_{β}), δ 96.8 (d, J = 74.4 Hz, C_{β}), δ 77.5 (m, Ir-C=C), δ 126.1, 124.3, 30.9, 25.5, 20.0, 22.3 (Ir-C=CH(CH₂)₃CH₂), δ 0.01 (d, J = 81.2 Hz, Ir-CH₃). ³¹P NMR (81.0 MHz, CDCl₃): δ 11.52 (dd, J = 39.1, 5.5 Hz, P_{b}),

 δ 9.36 (t, J = 2.4 Hz, P_b), δ –9.34 (ddd, J = 39.1, 16.5, 2.4 Hz, P_a), δ –11.87 (ddd, J = 16.5, 5.5, 2.4 Hz, P_a). IR (KBr, cm⁻¹): 2080 (s, $\nu_{C=C}$), 1269, 1149, and 1031.¹⁵ Anal. Calcd for IrP₄O₃S₁F₃C₈₆H₇₆: C, 66.10; H, 4.90. Found: C, 66.15; H, 4.89.

cis,*cis*-[Ir(CH₃)(-CH=CHPPh₃)₂(-C=C-C(CH₃)=CH₂)-(PPh₃)₂]OTf (2c). ¹H NMR (500 MHz, CDCl₃): δ 10.67 (dddd, $J = 33.1, 18.0, 8.5, 6.5 Hz, H_{\alpha}$), δ 10.00 (dddd, J = 29.6, 16.9,4.2, 2.0 Hz, $H_{\alpha'}$), δ 5.96 (dd, J = 38.3, 18.0 Hz, H_{β}), δ 4.68, 1.66 (Ir-C=C-C(CH₃)=CH₂), δ 0.56 (dd, J = 8.3, 5.0 Hz, Ir-CH₃). ¹³C NMR (75.5 MHz, CDCl₃): δ 204.7 (br s, C_{α}), δ 194.0 (dm, J = 115.5 Hz, $C_{\alpha'}$), δ 111.3 (br s, Ir-C=C), δ 103.6 (d, J =71.4 Hz, $C_{\beta'}$), δ 97.0 (d, J = 71.4 Hz, C_{β}), δ 77.6 (m, Ir-C= C), δ 113.3, 25.2 (s, Ir-C=C-C(CH₃)=CH₂), δ -0.13 (d, J =84.9 Hz, Ir-CH₃). ³¹P NMR (81.0 MHz, CDCl₃): δ 11.58 (dd, J =84.9 Hz, Is -CH₃). ³¹P NMR (81.0 MHz, CDCl₃): δ 11.58 (dd, J =39.1, 5.5 Hz, $P_{b'}$), δ 9.49 (t, J = 2.5 Hz, P_{b}), δ -8.67 (ddd, J =39.1, 16.5, 2.5 Hz, $P_{a'}$), δ -11.36 (ddd, J = 16.5, 5.5, 2.5 Hz, P_{a}). IR (KBr, cm⁻¹): 2088 (s, $\nu_{C=C}$), 1272, 1154, and 1031.¹⁵ Anal. Calcd for IrP₄O₃S₁F₃C₈₃H₇₂: C, 65.47; H, 4.77. Found: C, 65.35; H, 4.64.

cis-[Ir(CO)(CH₃)(-CH=CHPPh₃)₂(-C≡CR)(PPh₃)]-OTf (3, R = p-C₆H₄CH₃ (a), cyclohex-1-enyl (b), C(CH₃)= CH₂ (c)). Method I. Complexes 3a-c were prepared in the same manner as described below for **3a**. A solution of **2a** (0.2 g, 0.13 mmol) in CHCl₃ (10 mL) was stirred at room temperature for 6 h under CO (1 atm). Beige microcrystals of **3a** were precipitated by addition of diethyl ether (20 mL) to the solution, collected by filtration, washed with *n*-pentane (2 × 20 mL), and dried under vacuum. The yield was 0.16 g and 94% based on **3a**.

Method II. Complexes **3a**-**c** were also obtained in the same manner as described below for **3a**. An aqueous solution of NaOH (1.0 g, 25 mmol) in H₂O (5 mL) was added to a solution of **2a** (0.2 g, 0.13 mmol) in CHCl₃ (10 mL). After being stirred at 50 °C for 12 h, the CHCl₃ layer of the reaction mixture was separated. Addition of diethyl ether to the CHCl₃ solution resulted in beige microcrystals of **3a**, which were collected by filtration, washed with *n*-pentane (2 × 20 mL), and dried under vacuum. The yield was 0.15 g and 88% based on **3a**.

 $R = p - C_6 H_4 C H_3$ (a), cyclohex-1-enyl (b), C(CH₃)=CH₂ (c)

cis-[Ir(CO)(CH₃)(-CH=CHPPh₃)₂(-C=C(p-C₆H₄CH₃))-(**PPh₃**)]**OTf (3a).** ¹H NMR (500 MHz, CDCl₃): δ 9.12 (ddd, $J(H_{\alpha}-P_{b}) = 33.0 \text{ Hz}, J(H_{\alpha}-H_{\beta}) = 18.5 \text{ Hz}, J(H_{\alpha}-P_{a}) = 3.0 \text{ Hz},$ H_{α}), δ 9.07 (ddd, $J(H_{\alpha'}-P_{b'}) = 32.4$ Hz, $J(H_{\alpha'}-H_{\beta'}) = 18.0$ Hz, $J(H_{\alpha'}-P_a) = 6.5$ Hz, $H_{\alpha'}$), δ 6.19 (ddd, $J(H_{\beta}-P_b) = 37.5$ Hz, $J(H_{\alpha}-H_{\beta}) = 18.5$ Hz, $J(H_{\beta}-P_{a}) = 1.0$ Hz, H_{β}), δ 2.30 (s, $p-C_6H_4CH_3$), δ 0.61 (d, $J(H-P_a) = 5.5$ Hz, Ir-CH₃), δ 7.0-8.0 $(H_{\beta'})$ and the phenyl protons of PPh₃). The pair of signals for $H_{\alpha}-H_{\beta}$ and $H_{\alpha'}-H_{\beta'}$ was assigned by decoupling experiments. ¹³C NMR (125.7 MHz, CDCl₃): δ 192.7 (t, J(C–P) = 10.0 Hz, $J(C-P_a) = 10.0 \text{ Hz}$ and 192.5 (t, J(C-P) = 6.0 Hz, $J(C-P_a) =$ 6.0 Hz) (C_{α} and $C_{\alpha'}$), 176.6 (dd, $J(C-P_{b'}) = 12.6$ Hz, $J(C-P_a)$ = 5.0 Hz, Ir–*C*O), δ 107.1 (dd, $J(C_{\beta'}-P_{b'}) = 70.0$ Hz, $J(C_{\beta'}-P_{a})$ = 5.0 Hz, C_{β}), δ 106.4 (s, Ir-C=C), δ 104.8 (dd, $J(C_{\beta}-P_{b})$ = 70.5 Hz, $J(C_{\beta}-P_{a}) = 2.5$ Hz, C_{β}), δ 95.20 (td, $J(C-P_{a}) = 12.0$ Hz, $J(C-P_{b'}) = 12.0$ Hz, $J(C-P_b) = 2.5$ Hz, $Ir-C \equiv C$), $\delta 21.0$ (s, $p-C_6H_4CH_3$), $\delta -11.3$ (d, $J(C-P_a) = 73.0$ Hz, $Ir-CH_3$). HETCOR (¹H (500 MHz) \rightarrow ¹³C (125.7 MHz)): δ 9.12, 9.07 \rightarrow 192.7, 192.5; δ 6.19 → 104.8; δ 2.30 → 21.0; δ 0.61 → -11.3. ³¹P NMR (81.0 MHz, CDCl₃): δ 14.67 (d, $J(P-P_a) = 4.0$ Hz) and 13.64 (d, $J(P_a - P_b) = 5.8$ Hz) (P_b and P_{b}), $\delta - 8.18$ (dd, $J(P_a-P_{b'}) = 5.8$ Hz, $J(P_a-P_b) = 4.0$ Hz, P_a). IR (KBr, cm⁻¹): 2106 (s, $\nu_{C=C}$), 2007 (s, ν_{CO}), 1271, 1151, and 1037 (br s, due to uncoordinated triflate¹⁵). Anal. Calcd for IrP₃O₄S₁F₃C₇₀H₅₉: C, 62.82; H, 4.44. Found: C, 63.08; H, 4.30.

cis·[**Ir**(**CO**)(**CH**₃)(-**CH**=**CHPPh**₃)₂(-**C**=**CC**=**CH**(**CH**₂)₃**C**-**H**₂)(**PPh**₃)₂]**OTf** (**3b**). ¹H NMR (500 MHz, CDCl₃): δ 9.09 (ddd, J = 33.0, 18.5, 3.0 Hz, H_{α}), δ 9.04 (ddd, J = 32.5, 18.0, 6.5 Hz, H_{α}), δ 6.19 (ddd, J = 37.5, 18.5, 1.0 Hz, H_{β} ,), δ 5.68, 2.04, 1.99, 1.53 (Ir-C=**CC**=**C**H(**C**H₂)₃**C**H₂), δ 0.53 (d, J = 5.5 Hz, Ir-*C*H₃). ¹³C NMR (75.5 MHz, CDCl₃): δ 193.8 (m, C_{α} and $C_{\alpha'}$), 177.2 (dd, J = 12.8, 5.0 Hz, Ir-*C*O), δ 109.0 (s, Ir-C=*C*), δ 107.4 (dd, J = 68.3, 5.0 Hz, $C_{\beta'}$), δ 105.0 (dd, J = 70.6, 2.5 Hz, C_{β}), δ 95.20 (t, J = 12.1 Hz, Ir-*C*=**C**), δ 125.0, 122.2, 31.7, 25.8, 23.3, 22.5 (Ir-C=**C**C=*C*(H(*C*H₂)₃*C*H₂), δ -10.8 (d, J = 73.0 Hz, Ir-*C*H₃). ³¹P NMR (81.0 MHz, CDCl₃): δ 14.49 (d, J = 3.0 Hz) and 13.54 (d, J = 5.5 Hz) (P_{b} and P_{b}), δ -8.18 (dd, J = 5.5, 3.0 Hz, P_{a}). IR (KBr, cm⁻¹): 2106 (s, $v_{C=C}$), 2007 (s, v_{CO}), 1272, 1151, and 1032.¹⁵ Anal. Calcd for

IrP₃O₄S₁F₃C₆₉H₆₁: C, 62.39; H, 4.63. Found: C, 62.47; H, 4.63. *cis*·[Ir(CO)(CH₃)(-CH=CHPPh₃)₂(-C=C-C(CH₃)=CH₂)-(PPh₃)]OTf (3c). ¹H NMR (500 MHz, CDCl₃): δ 9.08 (ddd, J = 33.0, 18.5, 2.5 Hz, H_{α}), δ 9.02 (ddd, J = 32.3, 18.0, 6.0 Hz, H_{α}), δ 6.15 (ddd, J = 37.3, 18.5, 1.0 Hz, H_{β}), δ 4.84, 4.75 (Ir-C=C-C(CH₃)=CH₂), δ 0.53 (d, J(H-P_a) = 5.5 Hz, Ir-CH₃). ¹³C NMR (75.5 MHz, CDCl₃): δ 193. 4 (m, C_{α} and C_{α}), 176.5 (dd, J = 13.0, 5.0 Hz, Ir-CO), δ 108.7 (s, Ir-C=C), δ 108.2 (dd, J = 64.9, 3.0 Hz, C_{β}), δ 105.7 (dd, J = 68.1, 2.0 Hz, C_{β}), δ 95.2 (t, J = 12.0, Ir-C=C), δ 114.0, 25.8 (Ir-C=C-C(CH₃)= CH₂), δ -11.1 (d, J = 73.4 Hz, Ir-CH₃). ³¹P NMR (81.0 MHz, CDCl₃): δ 14.55 (d, J = 3.6 Hz) and 13.69 (d, J = 5.4 Hz) (P_b and P_b), δ -7.98 (dd, J = 5.2, 3.6 Hz, P_a). IR (KBr, cm⁻¹): 2102 (s, $\nu_{C=C}$), 2007 (s, ν_{CO}), 1270, 1150, and 1032.¹⁵ Anal. Calcd for IrP₃O₄S₁F₃C₆₆H₅₇: C, 61.53; H, 4.46. Found: C, 61.50; H, 4.32.

cis-[Ir(CO)(CH₃)(-CH=CHPPh₃)₂(-C=C(p-C₆H₄CH₃))-(PPh₃)]OTf (3'a). The reaction mixture of AgOTf (0.12 g, 0.47 mmol) and trans-[IrBr(CH₃)(-CH=CHPPh₃)₂(CO)(PPh₃)]OTf (4)⁵ (0.5 g, 0.38 mmol) in CHCl₃ (15 mL) was stirred at 25 °C for 1 h. After AgBr was removed by filtration from the reaction mixture, NEt₃ (0.08 mL, 0.57 mmol) and HC= $C(p-C_6H_4CH_3)$ (0.07 mL, 0.55 mmol) were added, and the resulting solution was stirred for 1 h before 10 mL of water was added to the reaction mixture. Excess NEt₃ and [HNEt₃]OTf in the aqueous layer were separated from 3a and 3'a in the CHCl₃ layer. The CHCl₃ solution of 3a and 3'a was chromatographed over neutral alumina with CH_2Cl_2 to separate **3'a** (late yellow elution band) from 3a (early yellow elution band). The first and the second yellow solutions were collected, and removal of solvent afforded beige microcrystals of 3a (0.28 g, 55%) and 3a' (0.07 g, 14%) based on 3a and 3'a, respectively.

¹H NMR (500 MHz, CDCl₃): δ 9.36 (ddd, $J(H_{\alpha}-P_{b}) = 30.5$ Hz, $J(H_{\alpha}-H_{\beta}) = 18.0$ Hz, $J(H_{\alpha}-P_{a}) = 2.5$ Hz, H_{α}), δ 9.04 (ddd, $J(H_{\alpha'}-P_{b'}) = 32.0$ Hz, $J(H_{\alpha'}-H_{\beta'}) = 18.0$ Hz, $J(H_{\alpha'}-P_{a}) = 7.5$ Hz, $H_{\alpha'}$), δ 6.90 (ddd, $J(H_{\beta'}-P_b) = 38.6$ Hz, $J(H_{\alpha'}-H_{\beta'}) = 18.0$ Hz, $J(H_{\beta'}-P_a) = 1.0$ Hz, $H_{\beta'}$), $\delta 2.35$ (s, p-C₆H₄CH₃), $\delta -0.55$ (d, $J(H-P_a) = 5.0$ Hz, Ir–CH₃), δ 7.0–8.0 (H_{β} and the phenyl protons of PPh₃). ¹³C NMR (125.7 MHz, CDCl₃): δ 193.3 (t, $J(C_{\alpha'}-P_b) = 10.2$ Hz, $J(C_{\alpha'}-P_a) = 10.2$ Hz, $C_{\alpha'}$, δ 187.0 (dd, $J(C_{\alpha}-P_{a}) = 100.7$ Hz, $J(C_{\alpha}-P_{b'}) = 10.7$ Hz, C_{α}), δ 176.8 (dd, $J(C-P_{b'}) = 12.9$ Hz, $J(C-P_{a}) = 7.2$ Hz, Ir-CO), δ 107.0 (dd, $J(C_{\beta}-P_{b}) = 70.3$ Hz, $J(C_{\beta}-P_{a}) = 3.1$ Hz, C_{β}), δ 106.8 (dd, $J(C_{\beta}-P_{a}) = 3.1$ Hz, C_{β}), δ 106.8 (dd, $J(C_{\beta}-P_{a}) = 3.1$ Hz, C_{β}), δ 106.8 (dd, $J(C_{\beta}-P_{a}) = 3.1$ Hz, C_{β}), δ 106.8 (dd, $J(C_{\beta}-P_{a}) = 3.1$ Hz, C_{β}), δ 106.8 (dd, $J(C_{\beta}-P_{a}) = 3.1$ Hz, C_{β}), δ 106.8 (dd, $J(C_{\beta}-P_{a}) = 3.1$ Hz, C_{β}), δ 106.8 (dd, $J(C_{\beta}-P_{a}) = 3.1$ Hz, C_{β}), δ 106.8 (dd, $J(C_{\beta}-P_{a}) = 3.1$ Hz, C_{β}), δ 106.8 (dd, $J(C_{\beta}-P_{a}) = 3.1$ Hz, C_{β}), δ 106.8 (dd, $J(C_{\beta}-P_{a}) = 3.1$ Hz, C_{β}), δ 106.8 (dd, $J(C_{\beta}-P_{a}) = 3.1$ Hz, C_{β}), δ 106.8 (dd, $J(C_{\beta}-P_{a}) = 3.1$ Hz, C_{β}), δ P_b) = 70.3 Hz, $J(C_{\beta'}-P_a) = 4.5$ Hz, $C_{\beta'}$), δ 105.6 (s, Ir-C=C), δ 99.2 (d, $J(C-P_a) = 10.4$ Hz, $Ir-C \equiv C$), δ 21.5 (s, $Ir-C \equiv C C_6H_4 - CH_3$), $\delta - 17.4$ (d, $J(C - P_a) = 4.0$ Hz, Ir $- CH_3$). HETCOR (¹H (500 MHz) \rightarrow ¹³C (125.7 MHz)): δ 9.36 \rightarrow 187.0; δ 9.04 \rightarrow 193.4; δ 7.3 \rightarrow 107.0; δ 6.90 \rightarrow 106.8; δ 2.35 \rightarrow 21.5; δ -0.55 \rightarrow -17.4. ³¹P NMR (81.0 MHz, CDCl₃): δ 14.48 (d, P_b, J(P_a-P_b) = 39.1 Hz), δ 14.02 (d, $P_{b'}$, $J(P_a-P_{b'})$ = 3.9 Hz), δ -8.71 (dd, P_{a} , $J(P_{a}-P_{b}) = 39.1$ Hz, $J(P_{a}-P_{b'}) = 3.9$ Hz). IR (KBr, cm⁻¹): 2100 (s, $\nu_{C=C}$), 2003 (s, ν_{CO}), 1272, 1151, and 1031 (br s, due to uncoordinated triflate¹⁵). Anal. Calcd for IrP₃O₄S₁F₃-C₇₀H₅₉: C, 62.81; H, 4.44. Found: C, 63.01; H, 4.38.

Reactions of cis, cis-[Ir(CH₃)(-CH=CHPPh₃)₂(-C=C-(p-C₆H₄CH₃))(PPh₃)₂]OTf (2a) and cis-[Ir(CO)(CH₃)(-CH= $CHPPh_3)_2(-C \equiv C(p-C_6H_4CH_3))(PPh_3)]OTf (3a)$ with HCl: Formation of cis-CH₃CH=CH(p-C₆H₄CH₃) (5) and [Ir(Cl)₂- $(-CH=CHPPh_3)_2(PPh_3)(L)]OTf (L = PPh_3 for 6, CO for$ 7). Reactions of 2a and 3a with HCl were carried out by the same manner. Aqueous HCl (0.024 mL, 0.25 mmol of H₂O containing 32 wt % HCl) was added to a solution of 2a (0.2 g, 0.13 mmol) in CHCl₃ (15 mL) at 25 °C, and the reaction mixture was stirred for 6 h. Excess HCl was removed by washing with H₂O. Addition of *n*-pentane (10 mL) to the CHCl₃ solution resulted in white microcrystals of 6, which were collected by filtration, washed with *n*-pentane (2×20 mL), and dried under vacuum. The yields of 6 and 7 were 0.14 g (72%) and 0.15 g (92%), respectively. The filtrate was distilled at 25 °C under vacuum to less than 1.0 mL, and the residue was eluted with *n*-pentane on a column packed with silica gel to obtain 5. The yield of 5 was ca. 70% in the reaction of 2 with HCl and ca. 87% in the reaction of 3 with HCl, respectively, based on ¹H NMR measurements in CDCl₃.

cis-CH₃CH=CH(*p*-C₆H₄CH₃) (5). ¹H NMR (500 MHz, CDCl₃): δ 7.20 and 7.14 (both d, J = 8.1 Hz, $C_6H_4CH_3$), δ 6.40 (dd, J = 11.4 Hz, J = 1.5 Hz, CH₃CH=CH), δ 5.74 (dq, J = 11.4, 7.2 Hz, CH₃CH=CH), δ 2.36 (s, *p*-C₆H₄CH₃), δ 1.89 (dd, J = 7.2, 1.5 Hz, CH₃CH=CH). ¹³C NMR (125.7 MHz, CDCl₃): δ 14.6 (s, *C*H₃CH=CH), δ 21.1 (s, *p*-C₆H₄CH₃), δ 136.1, 134.8, 129.7, 128.8, 128.7, 126.0 (olefinic carbons and *p*-C₆H₄CH₃). Mass: M⁺ = 132.

[Ir(Cl)₂(-CH_α=CH_βP_bPh₃)₂(P_aPh₃)₂]OTf (6). ¹H NMR (300 MHz, CDCl₃): δ 10.23 (dd, $J(H_α-P_b) = 28.5$ Hz, $J(H_α-H_β) = 16.0$ Hz, $H_α$), δ 8.22 (dd, $J(H_β-P_b) = 32.3$ Hz, $J(H_α-H_β) = 16.0$ Hz, $H_β$). ³¹P NMR (CDCl₃): δ 11.60 (t, $J(P_a-P_b) = 2.0$ Hz, P_b), δ -9.75 (t, (P_a-P_b) = 2.0 Hz, P_a). IR (KBr, cm⁻¹): 1270, 1150, and 1032.¹⁵ Anal. Calcd for IrP₄O₃S₁F₃Cl₂C₇₇H₆₄: C, 61.11; H, 4.26. Found: C, 61.48; H, 4.30.

cis, cis-[Ir(Cl)₂(-CH=CHPPh₃)₂(CO)(PPh₃)]OTf (7). ¹H NMR (300 MHz, CDCl₃): δ 8.73 (ddd, $J(H_{\alpha}-P_{b}) = 30.7$ Hz, $J(H_{\alpha}-H_{\beta}) = 17.5 \text{ Hz}, J(H_{\alpha}-P_{a}) = 6.5 \text{ Hz}, \text{ Ir}-CH_{\alpha}=CHPPh_{3}),$ δ 8.22 (ddd, $J(H_{\alpha'}-P_{b'}) = 26.5$ Hz, $J(H_{\alpha'}-H_{\beta'}) = 17.0$ Hz, $J(H_{\alpha'}-P_{b'}) =$ P_a) = 3.0 Hz, Ir- $CH_{\alpha'}$ =CHPPh₃). δ 6.43 (dd, $J(H_{\beta'}-P_{b'})$ = 30.0 Hz, $J(H_{\alpha'}-H_{\beta'}) = 17.0$ Hz, Ir-CH=C $H_{\beta'}$ PPh₃). ¹³C NMR (CDCl₃): δ 185.2 (t, $J(C_{\alpha}-P_{a})$ and $J(C_{\alpha}-P_{b}) = 10.3$ Hz, Ir- C_{α} H=CHPPh₃), δ 172.9 (dd, J(C-P_a) = 14.3 Hz, J(C-P_b) = 5.0 Hz, Ir–CO), δ 166.3 (t, J(C_{\alpha}–P_a) and J(C_{\alpha}–P_b) = 5.7 Hz, Ir- C_{α} 'H=CHPPh₃), δ 110.5 (d, $J(C_{\beta}-P_{b}) = 71.0$ Hz, Ir-CH= C_{β} HPPh₃), δ 109.1 (d, $J(C_{\beta'}-P_{b'}) = 76.8$ Hz, Ir-CH= $C_{\beta'}$ HPPh₃). ³¹P NMR (CDCl₃): δ 14.70 (d, $J(P_a-P_b) = 2.7$ Hz, Ir-CH= CHP_bPh_3), δ 13.76 (d, $J(P_a-P_{b'}) = 3.0$ Hz, $Ir-CH=CHP_bPh_3$), δ -5.69 (br t, $J(P_a - P_{b'})$ and $J(P_a - P_b) = 3.0$ Hz, Ir- P_aPh_3). IR (KBr, cm⁻¹): 2052 (s, v_{CO}), 1266, 1152, and 1032.¹⁵ Anal. Calcd for IrP₃O₄S₁F₃Cl₂C₆₀H₄₉: C, 56.34; H, 3.86. Found: C, 55.94; H, 3.95.

Acknowledgment. The authors wish to thank the Korea Research Foundation (KRF) for supporting this work through the Basic Science Research Institute program (Grant No. 2000-015-DP0224) for their financial support of this study.

Supporting Information Available: ¹H, ¹³C, ³¹P NMR and HETCOR (¹H-¹³C) spectra of complexes **2a**, **3a**, and **3'a**. ¹H and ³¹P NMR spectra of complexes **6** and **7**. ¹H NMR and mass spectra of **5**. This material is available free of charge via the Internet at http://pubs.acs.org.

OM010999E