New Water-Soluble Alkyl-Carbonyl Iridium Complexes Containing Both Cp* (C₅Me₅⁻) and PAr₃ (P(*m*-C₆H₄SO₃Na)₃): Cleavage of C≡C and C=C Bonds with Water

Chong Shik Chin^{*}, Daesung Chong, Beomjoo Maeng, Joonsung Ryu, Hyosung Kim, Mieock Kim, and Hyungeui Lee

Department of Chemistry, Sogang University, Seoul 121-742, Korea

Received November 5, 2001

Summary: Reactions of water-soluble Cp*IrCl₂(PAr₃) (1) with alkynes $HC \equiv CR$ in H_2O/C_6H_6 give new watersoluble alkyl-carbonyl complexes, [Cp*Ir(-CH₂R)(CO)- $(PAr_3)^{+}$ ($\check{\mathbf{2}}$, R = Ph ($\check{\mathbf{a}}$), CH_2Ph^{-} ($\check{\mathbf{b}}$), $C(CH_3)_3$ (c), p- $C_6H_4CH_3$ (**d**)) by cleaving the $C \equiv C$ bond of the alkynes. The C=C bond of ethylene is also cleaved in the reaction of complex **1** with ethylene in the presence of Ag^+ in water to give $[Cp*Ir(-CH_3)(CO)(PAr_3)]^+$ (3).

Introduction

Water-soluble metal complexes have been of interest because of the well-known advantages over waterinsoluble metal complexes.¹ Among water-soluble ligands, $PAr_3 (PAr_3 = P(m-C_6H_4SO_3Na)_3)$ is probably the most frequently employed as a ligand to prepare watersoluble metal complexes.^{1a-c,2} Iridium complexes of Cp* $(Cp^* = C_5Me_5)$ have drawn much attention due to their diverse and interesting reactivity,³ while there have been only a few water-soluble iridium complexes of Cp* that have been well-characterized and studied as a catalyst precursor for a variety of reactions in aqueous solutions.⁴

Water has been utilized to cleave the C=C bond in the presence of transition metal complexes.⁵ No report, however, has been made on C=C bond cleavage with H₂O, while various oxidation systems⁶ have been proved effective to cleave C=C bonds.

Here we wish to report a synthesis of new watersoluble iridium complexes of "Cp*Ir(PAr₃)" and their reactions with alkynes and alkene in water to cause a cleavage of C=C and C=C bonds to produce new watersoluble alkyl-carbonyl complexes, [Cp*Ir(R)(CO)(PAr₃)]⁺, that are stable in aqueous solutions in air.

Results and Discussion

Water-soluble complex $Cp*IrCl_2(PAr_3)$ (1) has been prepared from the reaction of $[Cp*IrCl_2]_2^7$ with 2 equiv of PAr₃ in high yield. Detailed spectral (¹H, ¹³C, ³¹P, ¹H,¹³C-2D HETCOR, ¹³C DEPT NMR, IR) data unambiguously characterized complex 1 (see Experimental Section). Complex **1** reacts with terminal alkynes in the presence of water to cleave the $C \equiv C$ bond of the alkynes (Scheme 1). Internal alkynes do not react with **1** at all. Reactions of terminal alkynes (HC \equiv CR) with **1** in H₂O, D₂O, and H₂¹⁸O produce alkyl-carbonyl complexes [Cp*Ir- $(-CH_2R)(CO)(PAr_3)]^+$ (2), $[Cp^*Ir(-CD_2R)(CO)(PAr_3)]^+$ $(2-d_2)$, and $[Cp^*Ir(-CH_2R)(C^{18}O)(PAr_3)]^+$ (2-18O), which have been unambiguously characterized by detailed spectral data. The methylene moieties, $Ir-CH_2-R$, in 2 are clearly confirmed by ¹H, ¹³C-2D HETCOR, and ¹³C DEPT spectra (see Experimental Section). The waterinsoluble analogue alkyl-carbonyl complex [CpIr(-CH₂- $(CO)(PPh_3)$]⁺ ($Cp = C_5H_5^{-}$) was previously prepared by the reaction of CpIr(CO)(PPh₃) with ClCH₂CN.⁸

The di-deutrated methylene groups $(Ir-CD_2-R)$ in $2 - d_2$ are clearly identified by the disappearance of the signals due to Ir–C H_2 –R measured at δ 1.48–3.25 for

^{*} Corresponding author. E-mail: cschin@ccs.sogang.ac.kr.

^{(1) (}a) Cornils, B.; Herrmann, W. A. *Applied Homogeneous Catalysis* with Organometallics Compounds; VCH: Weinheim, Germany, 1996. (b) Chaudhari, R. V.; Bhanage, B. M.; Deshpande, R. M.; Delmas, H. Nature 1995, 373, 501. (c) Wan, K. T.; Davis, M. E. Nature 1994, 370, 449. (d) Le, T. X.; Merola, J. S. Organometallics 1993, 12, 3798.

^{(2) (}a) Cornils, B.; Herrmann, W. A. *Aqueous-Phase Organometallics Catalysis: Concepts and Applications*, VCH: Weinheim, Germany, 1998. (b) Paterniti, D. P.; Francisco, L. W.; Atwood, J. D. *Organome* tallics 1999, 18, 123. (c) Cornils, B. Angew. Chem., Int. Ed. Engl. 1995, 34, 1575. (d) Roman, P. J., Jr.; Atwood, J. D. Organometallics 1997, 16, 5536.

<sup>16, 5536.
(3) (</sup>a) Arndtsen, B. A.; Bergman, R. G. Science 1995, 270, 1970, and references therein. (b) Bergman, R. G. Science 1984, 223, 902. (c) Chin, C. S.; Chong, D.; Lee, S.; Park, Y. J. Organometallics 2000, 19, 4043. (d) Alaimo, P. J.; Arndtsen, B. A.; Bergman, R. G. Organometallics 2000, 19, 2130. (e) Chin, C. S.; Maeng, W.; Chong, D.; Won, G.; Lee, B.; Park, Y. J.; Shin, J. M. Organometallics 1999, 18, 2210. (f) Bras, J. L.; Amouri, H. E. Organometallics 1996, 15, 5706. (4) (a) Ogo, S.; Makihara, N.; Kaneko, Y.; Watanabe, Y. Organometallics 1997.

^{(4) (}a) Ogo, S.; Makihara, N.; Kaneko, Y.; Watanabe, Y. Organome-tallics **2001**, 20, 4903. (b) Makihara, N.; Ogo, S.; Watanabe, Y. Organometallics **2001**, 20, 497. (c) Koelle, U. Cood. Chem. Rev. **1994**, 135/136, 623.

^{(5) (}a) Sullivan, B. P.; Smythe, R. S.; Kober, E. M.; Meyer, T. J. J. Am. Chem. Soc. 1982, 104, 4701. (b) Bianchini, C.; Casares, J. A.; Peruzzini, M.; Romerosa, A.; Zanobini, F. J. Am. Chem. Soc. 1996, 118, 4585. (c) Jiménez, M. V.; Sola, E.; Martínez, A. P.; Lahoz, F. J.; Oro,

^{4585. (}c) Jimenez, M. V.; Sola, E.; Martínez, A. P.; Lahoz, F. J.; Oro, L. A. Organometallics 1999, 18, 1125. (d) Buil, M. L.; Esteruelas, M. A.; López, A. M.; Oñate, E. Organometallics 1997, 16, 3169. (e) O'Connor, J. M.; Pu, L. J. Am. Chem. Soc. 1990, 112, 9013. (6) (a) Yang, D.; Zhang, C. J. Org. Chem. 2001, 66, 4814. (b) Tsui, H.-C. Paquette, L. A. J. Org. Chem. 1998, 63, 8071. (c) Antonelli, E.; D'Aloisio, R.; Gambaro, M.; Fiorani, T.; Venturello, C. J. Org. Chem. 1998, 63, 7190. (d) Baucherel, X.; Uziel, J.; Jugé, S. J. Org. Chem. 2001, 66, 4504. (e) Schröder, M. Chem. Rev. 1980, 80, 187.

2a−**c** in the ¹H NMR spectra and broadening of the signals due to Ir−*C*D₂−R measured at δ 4.11−19.1 for **2a**−**c** in the ¹³C NMR spectra (see Supporting Information). ν (C=O) shifts to lower wavenumbers from 2019 cm⁻¹ (for **2b**) and 2008 cm⁻¹ (for **2c**) to 1976 cm⁻¹ (for **2b**-¹⁸*O*) and 1965 cm⁻¹ (**2c**-¹⁸*O*), respectively, which clearly suggests that the oxygen atom of the carbonyl group (Ir−C *O*) is coming from water. Ruthenium alkyl-carbonyl complexes, [L_nRu(CH₂Ph)(CO)]⁺, [L_nRu(CD₂-Ph)(CO)]⁺, and [L_nRu(CH₂Ph)(C¹⁸*O*)]⁺ (L_n = (bpy)₂) have been isolated from the reactions of [L_nRu(H₂O)₂]²⁺ with HC=CPh in H₂O, D₂O, and H₂¹⁸O.^{5a}

Bianchini et al. recently carried out a detailed mechanistic study for the cleavage of the C=C bond of HC= CPh with H_2O , D_2O , and $H_2^{18}O$ mediated by L_3RuCl_2 - (PPh_3) (L₃ = CH₃CH₂CH₂N(CH₂CH₂PPh₂)₂) and suggested an elaborate mechanism.^{5b} A similar reaction pathway seems applicable to the formation of 2 from the reactions of **1** with HC=CR in H_2O and plausible to explain the formation of isotopomers $2 \cdot d_2$ and $2 \cdot {}^{18}O$. It appears, therefore, reasonable to propose intermediates such as Ir-alkynyl ([Ir]–C=CR, **A**), Ir- β -deutero-vinylidene ([Ir]=C=CDR, B), Ir-deutroxycarbene ([Ir]= $C(OD)CD_2R$, C), and Ir-di-deutro-acyl ([Ir]-COCD_2R, **D**). Then, the final step $(\mathbf{D} \rightarrow \mathbf{2} \cdot \mathbf{d}_2)$ would be simply the well-known CO deinsertion reaction of metal-acyls.⁹ These suggested complexes **A**–**D** are in fact very similar to those well-documented ruthenium analogues in the previous study.5b

The C=C bond of ethylene is also cleaved by water in the presence of water-soluble complex **E** (Scheme 2). While no reaction occurs between **1** and $H_2C=CH_2$ in aqueous solution, the reaction (Scheme 2) readily occurs when Ag⁺ is added into the reaction mixture of **1** and $H_2C=CH_2$ in aqueous solution. It is apparent that the two Cl⁻ ligands are removed quantitatively (2AgCl/Ir) from **1**, which most likely provides vacant sites at Ir in **E** (not characterized well yet) for the coordination of $H_2C=CH_2$. Detailed spectral data (see Experimental Section and Supporting Information) unequivocally characterize the methyl-carbonyl complexes **3**, **3**-*d*₁, and **3**-*¹⁸O*. The methyl moiety, Ir-*CH*₃, in **3** is clearly confirmed by ¹H,¹³C-2D HETCOR, and ¹³C DEPT spectra (see Experimental Section). The water-insoluble

[ir] = Cp*ir(PAr₃)

analogue of **3**, $[Cp*Ir(-CH_3)(CO)(PMe_3)]^+$, was previously reported.^{3d}

The monodeutrated methyl group $\text{Ir}-\text{C}H_2D$ in **3**- d_1 is unequivocally characterized by the decreased (by onethird) intensity of the signal due to $\text{Ir}-\text{C}H_2D$ measured at δ 0.52 and broadening of the signal due to $\text{Ir}-\text{C}H_2D$ measured at δ -22.9 in ¹H and ¹³C NMR spectra. ν (C \equiv O) shift to lower wavenumber from 2028 cm⁻¹ (for **3**) to 1989 cm⁻¹ (for **3**- ^{18}O) also clearly indicates that the oxygen atom of the carbonyl group (Ir-CO) is coming from water.

It seems reasonable, although no related suggestion has been made thus far, to propose Scheme 3 for the formation of **3** in the reaction of **E** with $H_2C=CH_2$ and H₂O by taking account of our data obtained from the isotope experiments. Scheme 3 is quite straightforward including the steps similar to those proposed for the oxidation of H₂C=CH₂ to produce CH₃CHO (the Wacker process).¹⁰ Once CH₃CHO is formed, the π -aldehyde complex ((CH_3CHO)-Ir-H, **F**) may undergo the oxidative addition of aldehydic C-H to Ir, producing the acyl complex (Ir-COCH₃, G) that gives 3 through the CO deinsertion reaction. It is well-documented that aldehyde is oxidatively added to give a metal-acyl in the reaction of metal with aldehyde.^{3d,11} The later steps, $\mathbf{F} \rightarrow \mathbf{G} \rightarrow \mathbf{3}$, are also supported by the fact that the reaction of E and CH₃CHO gives 3.

⁽⁷⁾ White, C.; Yates, A.; Maitlis, P. M.; Heinekey, D. M. *Inorg. Synth.* **1992**, *29*, 228.

⁽⁸⁾ Faraone, F.; Cusmano, F.; Piraino, P.; Pietropaolo, R. J. Organomet. Chem. **1972**, 44, 391.

^{(9) (}a) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. *Principles and Applications of Organotransition Metal Chemistry*; University Science Books: Mill Valley, CA, 1987; p 363. (b) Milstein, D. *Acc. Chem. Res.* **1984**, *17*, 221.

Experimental Section

General Information. The NMR spectra were recorded on a Varian 300 or 500 MHz spectrometer for ¹H and 75.5 or 126 MHz for ¹³C, and 81 or 121.3 MHz for ³¹P. Infrared spectra were obtained on a Nicolet 205. Gas chromatography/mass spectra were measured by Hewlett-Packard HP 5890A and VG-trio 2000 instruments. Elemental analyses were carried out with a Carlo Erba EA1108 at the Organic Chemistry Research Center, Sogang University.

 D_2O (99.9%) and $H_2^{18}O$ (95%) were purchased from Aldrich. $PAr_3 (>98\%)^{12}$ and $[Cp*IrCl_2]_2^7$ were prepared by the literature methods.

Synthesis of Cp*IrCl₂(PAr₃)·4H₂O (1). A 0.12 g (0.20 mmol) of PAr₃·3H₂O was slowly added into a MeOH (10 mL) solution of $[Cp*IrCl_2]_2$ (0.08 g, 0.10 mmol) under N₂ at -78 °C, and the reaction mixture was stirred for 5 min at -78 °C and 24 h at 25 °C before the solvent was evaporated by bubbling N₂ to less than 5 mL. Addition of 50 mL of EtOH resulted in precipitation of yellow solid of 1, which was recrystallized in MeOH/EtOH. The yield was 0.19 g and 91% based on Cp*IrCl₂(PAr₃)·4H₂O. Spectral (¹H, ¹³C, ³¹P NMR) measurements for 1 in D_2O were performed in the presence of excess Cl⁻ (NaCl). ¹H NMR (500 MHz, D₂O): δ 1.38 (d, 15H, J = 2.0 Hz, $C_5(CH_3)_5$), 7.61–8.17 (m, 12H, $P(m-C_6H_4SO_3Na)_3$). ¹³C NMR (126 MHz, D₂O): δ 8.16 (C₅(CH₃)₅), 94.9 (C₅(CH₃)₅), 128.5, 129.9 (d, J = 8.1 Hz), 131.8 (d, J = 13.6 Hz), 137.1 (d, J = 7.5 Hz), 143.1 (d, J = 11.0 Hz) (P($m - C_6 H_4 SO_3 Na)_3$). ³¹P NMR (81 MHz, D₂O): δ 7.34 (P(m-C₆H₄SO₃Na)₃). Anal. Calcd for C28H27O9S3PCl2Na3Ir·4H2O: C, 32.37; H, 3.39; S, 9.26. Found: C, 32.39; H, 3.49; S, 9.25.

Synthesis of [Cp*Ir(-CH₂R)(CO)(PAr₃)]Cl·3H₂O (2, R = Ph (a), CH₂Ph (b), C(CH₃)₃ (c), *p*-C₆H₄CH₃ (d)), [Cp*Ir- $(-CD_2R)(CO)(PAr_3)]Cl \cdot 3H_2O$ (2-d₂, R = Ph (a), CH₂Ph (b), C(CH₃)₃ (c)), and [Cp*Ir(-CH₂R)(C¹⁸O)(PAr₃)]Cl·3H₂O (2-¹⁸O, CH₂Ph (b), C(CH₃)₃ (c)). All complexes 2a-d, 2a,b,c-d₂, and **2b**,c-18O have been prepared in a manner similar to that described below for 2a.

[Cp*Ir(-CH2Ph)(CO)(PAr3)]Cl·3H2O (2a). A 0.11 mL (1.0 mmol) sample of HC=CPh was added into a solution of Cp*IrCl₂(PAr₃)·4H₂O (1) (0.10 g, 0.10 mmol) in H₂O (0.5 mL) and C_6H_6 (10.0 mL) under N_2 at 25 °C, and the reaction mixture was stirred for 2 h before it was distilled under vacuum to dryness. The yellow solid was washed with cold EtOH (2 \times 5 mL) to remove phosphine oxide (OP(*m*-C₆H₄SO₃-Na)₃) and recrystallized in MeOH/Et₂O. The yield was 0.09 g and 83% based on [Cp*Ir(-CH₂Ph)(CO)(PAr₃)]Cl·3H₂O (2a). ¹H NMR (500 MHz, D₂O): δ 1.61 (d, 15H, J = 2.0 Hz, $C_5(CH_3)_5$, 2.81 (d, 1H, J = 10.0 Hz, CHH), 3.25 (dd, 1H, J =10.0 Hz, J = 11.5 Hz, CHH), 6.47–7.02 (m, 5H, C₆H₅), 7.44– 8.01 (m, 12H, P(m-C₆H₄SO₃Na)₃). ¹³C NMR (126 MHz, D₂O): δ 5.77 (CH₂) 10.7 (C₅(CH₃)₅), 107.2 (C₅(CH₃)₅), 128.0, 129.9, 130.8, 132.0, 133.1 (d, J = 10.1 Hz), 138.4, 146.8 (d, J = 11.7Hz), 150.4 (C_6H_5 and P(m- $C_6H_4SO_3Na$)₃), 170.1 (d, J = 11.8Hz, Ir-CO). ¹H, ¹³C-2D HETCOR (¹H (500 MHz) \rightarrow ¹³C (126 MHz), D₂O): δ 2.81 and 3.25 \rightarrow 5.77. ¹³C DEPT (126 MHz, D₂O): δ 5.77 (CH₂). ³¹P NMR (81 MHz, D₂O): δ 5.60 (P(m-C₆H₄SO₃Na)₃). ³⁵Cl NMR (19.6 MHz, D₂O): δ 0.75 (uncoordinated Cl⁻). IR (KBr, cm⁻¹): 2021 (s, ν (C=O)). Anal. Calcd for C₃₆H₃₄O₁₀S₃PClNa₃Ir·3H₂O: C, 39.15; H, 3.65; S, 8.71. Found: C, 39.17; H, 3.64; S, 8.70.

[Cp*Ir(-CH₂CH₂Ph)(CO)(PAr₃)]Cl·3H₂O (2b). The yield was 0.10 g and 91% based on [Cp*Ir(-CH₂CH₂Ph)(CO)(PAr₃)]-Cl·3H₂O (**2b**). ¹H NMR (500 MHz, D₂O): δ 1.48 (br m, 1H, $CHHCH_2Ph$), 1.74 (d, 15H, J = 2.4 Hz, $C_5(CH_3)_5$), 2.00 (br m, 1H, CHHCH2Ph), 2.59 (br m, 2H, CH2CH2Ph), 6.48-7.23 (m, 5H, C₆H₅), 7.36-8.07 (m, 12H, P(m-C₆H₄SO₃Na)₃). ¹³C NMR (126 MHz, D₂O): δ 4.11 (CH₂CH₂Ph), 8.12 (C₅(CH₃)₅), 43.1 (CH_2CH_2Ph) , 104.4 (d, J = 1.9 Hz, $C_5(CH_3)_5$), 126.4, 127.9, 129.0, 129.6, 130.1, 130.6 (d, J = 10 Hz), 135.8, 144.3, 145.4 $(C_6H_5 \text{ and } P(m-C_6H_4SO_3Na)_3)$, 168.4 (d, J = 12 Hz, Ir-CO). ¹H,¹³C-2D HETCOR (¹H (500 MHz) \rightarrow ¹³C (126 MHz), D₂O): δ 1.48 and 2.00 \rightarrow 4.11, δ 2.59 \rightarrow 43.1. ¹³C DEPT (126 MHz, D₂O): δ 4.11 and 43.1 (CH₂-CH₂). ³¹P NMR (81 MHz, D₂O): δ 7.19 ($P(m-C_6H_4SO_3Na)_3$). IR (KBr, cm⁻¹): 2019 (s, $\nu(C=O)$). Anal. Calcd for C₃₇H₃₆O₁₀S₃PClNa₃Ir·3H₂O: C, 39.73; H, 3.78; S, 8.60. Found: C, 39.72; H, 3.77; S, 8.58.

[Cp*Ir(-CH₂C(CH₃)₃)(CO)(PAr₃)]Cl·3H₂O (2c). The yield was 0.09 g and 83% based on [Cp*Ir (-CH₂C(CH₃)₃)(CO)-(PAr₃)]Cl·3H₂O (2c). ¹H NMR (500 MHz, D₂O): δ 0.39 (9H, $C(CH_3)_3$, 1.61 (d, 15H J = 2.0 Hz, $C_5(CH_3)_5$), 1.71 (d, 1H, J =10.5 Hz, C*H*H), 2.20 (dd, 1H, *J* = 10.5 Hz, *J* = 14.0 Hz, CH*H*), 7.43–7.88 (m, 12H, P(m-C₆ H_4 SO₃Na)₃). ¹³C NMR (126 MHz, D₂O): δ 8.53 (C₅(CH₃)₅), 19.1 (CH₂), 31.7 (C(CH₃)₃), 35.2 $(C(CH_3)_3)$, 105.1 $(C_5(CH_3)_5)$, 129.5, 130.5 (d, J = 9.1 Hz), 136.3, 144.1 (P(m-C₆H₄SO₃Na)₃), 169.8 (d, J = 11.8 Hz, Ir-CO). ¹H,¹³C-2D HETCOR (¹H (500 MHz) \rightarrow ¹³C (126 MHz), D₂O): δ $0.39 \rightarrow 31.7, ~\delta~1.61 \rightarrow 8.58, ~\delta~1.71$ and $2.20 \rightarrow 19.1.$ ^{13}C DEPT (126 MHz, D₂O): δ 19.1 (*C*H₂). ³¹P NMR (81 MHz, D₂O): δ 2.80 ($P(m-C_6H_4SO_3Na)_3$). IR (KBr, cm⁻¹): 2008 (s, $\nu(C=O)$). Anal. Calcd for C₃₄H₃₈O₁₀S₃PClNa₃Ir·3H₂O: C, 37.65; H, 4.09; S, 8.87. Found: C, 37.38; H, 4.14; S, 8.98

[Cp*Ir(-CH₂-p-C₆H₄CH₃)(CO)(PAr₃)]Cl·3H₂O (2d). The yield was 0.09 g and 80% based on [Cp*Ir(-CH₂-p-C₆H₄CH₃)-(CO)(PAr₃)]Cl·3H₂O (2d). ¹H NMR (500 MHz, D₂O): δ 1.58 (d, 15H, J = 2.0 Hz, $C_5(CH_3)_5$), 2.04 (3H, $p-C_6H_4CH_3$)), 2.77 (d, 1H, J = 10.0 Hz, CHH), 3.22 (dd, 1H, J = 10.0 Hz, J =11.5 Hz, CH*H*), 6.35–6.78 (AB quartet with $\Delta \nu / J = 6.3$, 4H, $J_{AB} = 8.0 \text{ Hz}$ (p-C₆H₄CH₃), 7.39–7.99 (m, 12H, P(m-C₆H₄SO₃-Na)₃). ¹³C NMR (126 MHz, D₂O): δ 5.70 (*C*H₂), 10.7 (C₅(*C*H₃)₅), 22.6 (p-C₆H₄CH₃), 107.2 (C₅(CH₃)₅), 129.9, 131.3, 132.0, 133.0, 133.1, 137.8, 138.3, 146.8 (d, J = 11.8 Hz), 147.0 ($p - C_6H_4CH_3$ and P(m- C_6 H₄SO₃Na)₃), 170.2 (d, J = 11.7 Hz, Ir-CO). ¹H, ¹³C-2D HETCOR (¹H (500 MHz) \rightarrow ¹³C (126 MHz), D₂O): δ 2.04 \rightarrow 22.62, δ 2.77 and 3.22 \rightarrow 5.70. ¹³C DEPT (126 MHz, D₂O): δ 5.70 (*C*H₂). ³¹P NMR (81 MHz, D₂O): δ 5.62 (*P*(*m*-C₆H₄SO₃-Na)₃). IR (KBr, cm⁻¹): 2024 (s, ν (C=O)). Anal. Calcd for C₃₇H₃₆O₁₀S₃PClNa₃Ir·3H₂O: C, 39.73; H, 3.78; S, 8.60. Found: C, 39.66; H, 3.49; S, 8.50.

Spectral Data for [Cp*Ir(-CD₂Ph)(CO)(PAr₃)]Cl·3H₂O $(2a-d_2)$, $[Cp*Ir(-CD_2CH_2Ph)(CO)(PAr_3)]Cl·3H_2O$ $(2b-d_2)$, [Cp*Ir(-CD₂C(CH₃)₃)(CO)(PAr₃)]Cl·3H₂O (2c-d₂), [Cp*Ir-(-CH₂CH₂Ph)(C¹⁸O)(PAr₃)]Cl·3H₂O (2b-¹⁸O), and [Cp*Ir-(-CH₂C(CH₃)₃)(C¹⁸O)(PAr₃)]Cl·3H₂O (2c-¹⁸O). See Supporting Information.

Synthesis of [Cp*Ir(-CH₃)(CO)(PAr₃)]OTf·3H₂O (3), [Cp*Ir(-CH₂D)(CO)(PAr₃)]OTf·3H₂O (3-d₁), and [Cp*Ir-(-CH₃)(C¹⁸O)(PAr₃)]OTf·3H₂O (3-¹⁸O). These complexes have been prepared in a manner similar to that described below for 3.

[Cp*Ir(-CH₃)(CO)(PAr₃)]OTf·3H₂O (3). A reaction mixture of 1 (0.15 g, 0.15 mmol) and AgOTf (0.080 g, 0.31 mmol) in H₂O (10 mL) was stirred for 10 min under N₂ at 25 °C before the white solid (AgCl) was removed by filtration. The pale yellow filtrate solution of complex \mathbf{E} was stirred under $H_2C=$ CH₂ (1 atm) for 3 days at room temperature and distilled under vacuum to dryness. The white-beige solid was washed with cold EtOH (2 \times 10 mL) and recrystallized in MeOH/Et₂O to obtain white-beige microcrystals of 3. The yield was 0.15 g and 89% based on [Cp*Ir(-CH₃)(CO)(PAr₃)]OTf·3H₂O (3). ¹H NMR (500 MHz, D₂O): δ 0.52 (d, 3H, J = 5.5 Hz CH₃), 1.65 (d, 15H J = 2.5 Hz, $C_5(CH_3)_5$, 7.35–7.91 (m, 12H, $P(m-C_6H_4SO_3Na)_3$). ¹³C NMR (126 MHz, D₂O): δ -22.9 (CH₃), 7.91 (C₅(CH₃)₅), 103.7 (C_5 (CH₃)₅), 128.5 (d, J = 59 Hz), 129.4, 130.5 (d, J = 9.8Hz), 130.7 (d, J = 15 Hz), 135.8 (d, J = 7.9 Hz), and 144.0

⁽¹⁰⁾ Huheey, J. E.; Keiter, E. A.; Keiter, R. L. Inorganic Chemistry: Principles of Structure and Reactivity, 4th ed.; HaperCollins: New York, 1993; pp 714–715.

⁽¹¹⁾ Coalter, J. N., III; Huffman, J. C.; Caulton, K. G. Organome-

Chem. Soc. 1997, 18, 324.

(P(*m*-*C*₆H₄−SO₃Na)₃), 167.6 (d, J = 12 Hz, Ir-*C*O). ¹H, ¹³C-2D HETCOR (¹H (500 MHz) → ¹³C (126 MHz), D₂O): δ 0.52 → -22.9. ¹³C DEPT (126 MHz, D₂O): δ -22.9 (*C*H₃). ³¹P NMR (81 MHz, D₂O): δ 5.13 (*P*(*m*-C₆H₄SO₃Na)₃). IR (KBr, cm⁻¹): 2028 (s, ν (C=O)). Anal. Calcd for C₃₁H₃₀O₁₃S₄PF₃Na₃Ir·3H₂O: C, 32.60; H, 3.18; S, 11.23. Found: C, 32.63; H, 3.40; S, 11.29.

[**Cp*****Ir**(**OH**₂)₂(**PAr**₃)]**OTf**·**3H**₂**O** (E). ¹H NMR (300 MHz, D₂O): δ 1.44 (d, 15H, J = 2.5 Hz, C₅(CH₃)₅), 7.40–8.07 (m, 12H, P(m-C₆H₄SO₃Na)₃). ¹³C NMR (76 MHz, D₂O): δ 8.78 (C₅-(CH₃)₅), 94.5 (C₅(CH₃)₅), 127.7 (d, J = 54 Hz), 130.0, 130.6 (d, J = 9.8 Hz), 131.5 (d, J = 16 Hz), 136.9 (d, J = 7.4 Hz), and 143.9 (d, J = 12 Hz) (P(m-C₆H₄SO₃Na)₃). ³¹P NMR (81 MHz, D₂O): δ 20.4 (*P*(m-C₆H₄SO₃Na)₃). IR (KBr, cm⁻¹): 1230, 1100, and 1039 (br s, OTf).

Spectral Data for [Cp*Ir(-CH₂D)(CO)(PAr₃)]OTf·3H₂O (3-*d***₁) and [Cp*Ir(-CH₃)(C¹⁸O)(PAr₃)]OTf (3-¹⁸O). See Supporting Information.**

Reaction of E and CH₃CHO. A reaction mixture of **1** (0.15 g, 0.15 mmol) and AgOTf (0.080 g, 0.31 mmol) in H_2O (10 mL) was stirred for 10 min under N_2 at 25 °C before the white solid (AgCl) was removed by filtration. CH₃CHO (0.08 mL, 1.5

mmol) was added into the pale yellow filtrate solution of complex **E**. The resulting solution was stirred for 1 h at room temperature and distilled under vacuum to obtain a white-beige solid, which was washed with cold EtOH (2×10 mL) and recrystallized in MeOH/Et₂O to obtain white-beige microcrystals of **3**. The yield was 0.152 g and 91% based on [Cp*Ir(-CH₃)(CO)(PAr₃)]OTf·3H₂O (**3**).

Acknowledgment. Authors wish to thank the Korea Research Foundation in the program of 1998 for the financial support of this study.

Supporting Information Available: Spectroscopic and analytical data for complexes 1–3. ¹H, ¹³C (1, 2a–d, 2a,b,c-*d*₂, 3, and 3-*d*₁) and ³¹P (1, 2a–d, and 3), ¹H, ¹³C-2D HETCOR (1, 2a–d, and 3), ¹³C DEPT (1, 2a–d, and 3) NMR, and IR (2a–d, 2b,c-¹⁸O, 3, and 3-¹⁸O) spectra. This material is available free of charge via the Internet at http://pubs.acs.org. OM010953L