New Water-Soluble Alkyl-Carbonyl Iridium Complexes Containing Both Cp* (C5Me5 -**) and PAr3** $(P(m-C_6H_4SO_3Na_3))$: Cleavage of C=C and C=C Bonds **with Water**

Chong Shik Chin*, Daesung Chong, Beomjoo Maeng, Joonsung Ryu, Hyosung Kim, Mieock Kim, and Hyungeui Lee

Department of Chemistry, Sogang University, Seoul 121-742, Korea

Received November 5, 2001

Summary: Reactions of water-soluble $Cp*IrCl₂(PAr₃)$ *(1)* with alkynes $HC=CR$ in H_2O/C_6H_6 give new water*soluble alkyl-carbonyl complexes, [Cp*Ir(*-*CH2R)(CO)-* (PAr_3) ^{\dagger} (**2**, R = Ph (**a**), CH₂Ph (**b**), C(CH₃)₃ (**c**), $p\text{-}C_6H_4CH_3$ *(d))* by cleaving the C=C bond of the alkynes. The C=C bond of ethylene is also cleaved in the reaction *of complex 1 with ethylene in the presence of Ag*⁺ *in water to give [Cp*Ir(*-*CH3)(CO)(PAr3)]*⁺ *(3).*

Introduction

Water-soluble metal complexes have been of interest because of the well-known advantages over waterinsoluble metal complexes.¹ Among water-soluble ligands, PAr_3 ($PAr_3 = P(m-C_6H_4SO_3Na_3)$ is probably the most frequently employed as a ligand to prepare watersoluble metal complexes.^{1a-c,2} Iridium complexes of Cp^* $(Cp^* = C_5Me_5^-)$ have drawn much attention due to their diverse and interesting reactivity ³ while there have diverse and interesting reactivity,³ while there have been only a few water-soluble iridium complexes of Cp* that have been well-characterized and studied as a catalyst precursor for a variety of reactions in aqueous solutions.4

Water has been utilized to cleave the $C\equiv C$ bond in the presence of transition metal complexes.⁵ No report, however, has been made on $C=C$ bond cleavage with $H₂O$, while various oxidation systems⁶ have been proved effective to cleave $C=C$ bonds.

Here we wish to report a synthesis of new watersoluble iridium complexes of " $Cp*Ir(PAr₃)$ " and their reactions with alkynes and alkene in water to cause a cleavage of $C \equiv C$ and $C=C$ bonds to produce new watersoluble alkyl-carbonyl complexes, $[Cp*Ir(R)(CO)(PAr_3)]^+$, that are stable in aqueous solutions in air.

Results and Discussion

Water-soluble complex $Cp*IrCl₂(PAr₃)$ (1) has been prepared from the reaction of $[\mathsf{Cp^*IrCl_2}]_2{}^7$ with 2 equiv of PA r_3 in high yield. Detailed spectral $(^1H, ^{13}C, ^{31}P,$ ¹H,¹³C-2D HETCOR, ¹³C DEPT NMR, IR) data unambiguously characterized complex **1** (see Experimental Section). Complex **1** reacts with terminal alkynes in the presence of water to cleave the $C\equiv C$ bond of the alkynes (Scheme 1). Internal alkynes do not react with **1** at all. Reactions of terminal alkynes (HC \equiv CR) with **1** in H₂O, D₂O, and H₂¹⁸O produce alkyl-carbonyl complexes [Cp*Ir- $(-CH_2R)$ (CO)(PAr₃)]⁺ (**2**), [Cp^{*}Ir(-CD₂R)(CO)(PAr₃)]⁺ $(2-d_2)$, and $[Cp*Ir(-CH_2R)(C^{18}O)(PAr_3)]+ (2^{-18}O)$, which have been unambiguously characterized by detailed spectral data. The methylene moieties, $Ir-CH_2-R$, in **2** are clearly confirmed by 1H,13C-2D HETCOR, and 13C DEPT spectra (see Experimental Section). The waterinsoluble analogue alkyl-carbonyl complex $[ChIr(-CH₂-₄)]$ $CN(CO)(PPh_3]^+$ $(Cp = C_5H_5^-)$ was previously prepared
by the reaction of CpIr(CO)(PPh₀) with ClCH₂CN 8 by the reaction of $CpIr(CO)(PPh_3)$ with $ClCH_2CN$.⁸

The di-deutrated methylene groups $(Ir-CD_2-R)$ in **2-***d***²** are clearly identified by the disappearance of the signals due to Ir $-CH_2-R$ measured at δ 1.48-3.25 for

^{*} Corresponding author. E-mail: cschin@ccs.sogang.ac.kr.

^{(1) (}a) Cornils, B.; Herrmann, W. A. *Applied Homogeneous Catalysis with Organometallics Compounds*; VCH: Weinheim, Germany, 1996. (b) Chaudhari, R. V.; Bhanage, B. M.; Deshpande, R. M.; Delmas, H. *Nature* **1995**, *373*, 501. (c) Wan, K. T.; Davis, M. E. *Nature* **1994**, *370*, 449. (d) Le, T. X.; Merola, J. S. *Organometallics* **1993**, *12*, 3798.

^{(2) (}a) Cornils, B.; Herrmann, W. A. *Aqueous-Phase Organometallics Catalysis: Concepts and Applications*; VCH: Weinheim, Germany, 1998. (b) Paterniti, D. P.; Francisco, L. W.; Atwood, J. D. *Organometallics* **1999**, *18*, 123. (c) Cornils, B. *Angew. Chem., Int. Ed. Engl.* **1995**, *34*, 1575. (d) Roman, P. J., Jr.; Atwood, J. D. *Organometallics* **1997**, *16*, 5536.

^{(3) (}a) Arndtsen, B. A.; Bergman, R. G. *Science* **1995**, *270*, 1970, and references therein. (b) Bergman, R. G. *Science* **1984**, *223*, 902. (c) Chin, C. S.; Chong, D.; Lee, S.; Park, Y. J. *Organometallics* **2000**, 19, 4043. (d) Alaimo, P. J.; Arndtsen, B. A.; Bergman, R. G. *Organometallics* **2000**, 19, 2130. (e) Chin, C. S.; Maeng, W.; Chong, D.; Won, G.; Lee, B

Organometallics **2001**, *20*, 497. (c) Koelle, U. *Cood. Chem. Rev.* **1994**, *135/136*, 623.

^{(5) (}a) Sullivan, B. P.; Smythe, R. S.; Kober, E. M.; Meyer, T. J. *J. Am. Chem. Soc.* **1982**, *104*, 4701. (b) Bianchini, C.; Casares, J. A.; Peruzzini, M.; Romerosa, A.; Zanobini, F. *J. Am. Chem. Soc.* **1996**, *118,*
4585. (c) Jiménez, M. V.; Sola, E.; Martínez, A. P.; Lahoz, F. J.; Oro,
L. A. *Organometallics* **1999**, *18,* 1125. (d) Buil, M. L.; Esteruelas,

O'Connor, J. M.; Pu, L. *J. Am. Chem. Soc.* **1990**, *112*, 9013.
(6) (a) Yang, D.; Zhang, C. *J. Org. Chem.* **2001**, *66*, 4814. (b) Tsui,
H.-C. Paquette, L. A. *J. Org. Chem.* **1998**, 63, 8071. (c) Antonelli, E.;
D'Aloisi **1998**, *63*, 7190. (d) Baucherel, X.; Uziel, J.; Juge´, S. *J. Org. Chem.* **2001**, *66*, 4504. (e) Schröder, M. *Chem. Rev.* **1980**, *80*, 187.

2a-**^c** in the 1H NMR spectra and broadening of the signals due to Ir $-CD_2-R$ measured at δ 4.11-19.1 for **2a**-**^c** in the 13C NMR spectra (see Supporting Information). $\nu(C=0)$ shifts to lower wavenumbers from 2019 cm-¹ (for **2b**) and 2008 cm-¹ (for **2c**) to 1976 cm-¹ (for **2b-***18O*) and 1965 cm-¹ (**2c-***18O*), respectively, which clearly suggests that the oxygen atom of the carbonyl group (Ir-C*O*) is coming from water. Ruthenium alkylcarbonyl complexes, [L*n*Ru(CH2Ph)(CO)]+, [L*n*Ru(C*D*2- Ph)(CO)]⁺, and $[L_nRu(CH_2Ph)(C^{18}O)]$ ⁺ ($L_n = (bpy)_2$) have been isolated from the reactions of $[L_nRu(H_2O)_2]^2$ ⁺ with HC=CPh in H₂O, D₂O, and H₂¹⁸O.^{5a}

Bianchini et al. recently carried out a detailed mechanistic study for the cleavage of the C \equiv C bond of HC \equiv CPh with H_2O , D_2O , and $H_2^{18}O$ mediated by L_3RuCl_2 - (PPh_3) (L₃ = CH₃CH₂CH₂N(CH₂CH₂PPh₂)₂) and suggested an elaborate mechanism.^{5b} A similar reaction pathway seems applicable to the formation of **2** from the reactions of 1 with $HC=CR$ in $H₂O$ and plausible to explain the formation of isotopomers **2-***d***²** and **2-***18O*. It appears, therefore, reasonable to propose intermediates such as Ir-alkynyl ([Ir]-C=CR, **A**), Ir-β-deutero-vinylidene ([Ir]=C=CDR, **B**), Ir-deutroxycarbene ([Ir]= $C(OD)CD_2R$, **C**), and Ir-di-deutro-acyl ([Ir]- $COCD_2R$, **D**). Then, the final step ($\mathbf{D} \rightarrow 2 \cdot d_2$) would be simply the well-known CO deinsertion reaction of metal-acyls.⁹ These suggested complexes **^A**-**^D** are in fact very similar to those well-documented ruthenium analogues in the previous study.5b

The $C=C$ bond of ethylene is also cleaved by water in the presence of water-soluble complex **E** (Scheme 2). While no reaction occurs between 1 and $H_2C=CH_2$ in aqueous solution, the reaction (Scheme 2) readily occurs when Ag⁺ is added into the reaction mixture of **1** and $H_2C=CH_2$ in aqueous solution. It is apparent that the two Cl- ligands are removed quantitatively (2AgCl/Ir) from **1**, which most likely provides vacant sites at Ir in **E** (not characterized well yet) for the coordination of $H_2C=CH_2$. Detailed spectral data (see Experimental Section and Supporting Information) unequivocally characterize the methyl-carbonyl complexes **3**, **3-***d***1**, and **3-***18O*. The methyl moiety, Ir-*CH*3, in **3** is clearly confirmed by 1 H, 13 C-2D HETCOR, and 13 C DEPT spectra (see Experimental Section). The water-insoluble

 $[lr] = Cp*lr(PAr_3)$

analogue of **3**, $[Cp*Ir(-CH_3)(CO)(PMe_3)]^+$, was previously reported.3d

The monodeutrated methyl group $Ir - CH_2D$ in **3-***d* is unequivocally characterized by the decreased (by onethird) intensity of the signal due to Ir-CH₂D measured at δ 0.52 and broadening of the signal due to Ir- $CH₂D$ measured at δ -22.9 in ¹H and ¹³C NMR spectra. ν (C= O) shift to lower wavenumber from 2028 cm-¹ (for **3**) to 1989 cm-¹ (for **3-***18O*) also clearly indicates that the oxygen atom of the carbonyl group (Ir-C*O*) is coming from water.

It seems reasonable, although no related suggestion has been made thus far, to propose Scheme 3 for the formation of **3** in the reaction of **E** with $H_2C=CH_2$ and H2O by taking account of our data obtained from the isotope experiments. Scheme 3 is quite straightforward including the steps similar to those proposed for the oxidation of $H_2C=CH_2$ to produce CH₃CHO (the Wacker process).10 Once CH3CHO is formed, the *π*-aldehyde complex ($(CH_3CHO$)-Ir-H, **F**) may undergo the oxidative addition of aldehydic C-H to Ir, producing the acyl complex (Ir-COCH3, **^G**) that gives **³** through the CO deinsertion reaction. It is well-documented that aldehyde is oxidatively added to give a metal-acyl in the reaction of metal with aldehyde.^{3d,11} The later steps, $\mathbf{F} \rightarrow \mathbf{G} \rightarrow 3$, are also supported by the fact that the reaction of **E** and CH3CHO gives **3**.

⁽⁷⁾ White, C.; Yates, A.; Maitlis, P. M.; Heinekey, D. M. *Inorg. Synth.* **1992**, *29*, 228.

⁽⁸⁾ Faraone, F.; Cusmano, F.; Piraino, P.; Pietropaolo, R. *J. Organomet. Chem*. **1972**, *44*, 391.

^{(9) (}a) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. *Principles and Applications of Organotransition Metal Chemistry*; University Science Books: Mill Valley, CA, 1987; p 363. (b) Milstein, D. *Acc. Chem. Res.* **1984**, *17*, 221.

Experimental Section

General Information. The NMR spectra were recorded on a Varian 300 or 500 MHz spectrometer for 1H and 75.5 or 126 MHz for 13C, and 81 or 121.3 MHz for 31P. Infrared spectra were obtained on a Nicolet 205. Gas chromatography/mass spectra were measured by Hewlett-Packard HP 5890A and VG-trio 2000 instruments. Elemental analyses were carried out with a Carlo Erba EA1108 at the Organic Chemistry Research Center, Sogang University.

 D_2O (99.9%) and $H_2^{18}O$ (95%) were purchased from Aldrich. PAr_3 (>98%)¹² and $\text{[Cp*IrCl}_2]_2^7$ were prepared by the literature methods methods.

Synthesis of Cp*IrCl₂(PAr₃)[·]4H₂O (1). A 0.12 g (0.20 mmol) of PAr₃·3H₂O was slowly added into a MeOH (10 mL) solution of $[Cp*IrCl₂]$ ₂ (0.08 g, 0.10 mmol) under N₂ at -78 °C, and the reaction mixture was stirred for 5 min at $-78~^{\circ}\mathrm{C}$ and 24 h at 25 °C before the solvent was evaporated by bubbling N_2 to less than 5 mL. Addition of 50 mL of EtOH resulted in precipitation of yellow solid of **1**, which was recrystallized in MeOH/EtOH. The yield was 0.19 g and 91% based on Cp*IrCl₂(PAr₃)·4H₂O. Spectral (¹H, ¹³C, ³¹P NMR) measurements for 1 in D_2O were performed in the presence of excess Cl⁻ (NaCl). ¹H NMR (500 MHz, D₂O): *δ* 1.38 (d, 15H, $J = 2.0$ Hz, C₅(C*H*₃)₅), 7.61–8.17 (m, 12H, P(*m*-C₆*H*₄SO₃Na)₃). *J*³C NMR (126 MHz, D₂O): *δ* 8.16 (C₅(*C*H₃)₅), 94.9 (*C*₅(*CH*₃)₅), 128.5, 129.9 (d, $J = 8.1$ Hz), 131.8 (d, $J = 13.6$ Hz), 137.1 (d, $J = 7.5$ Hz), 143.1 (d, $J = 11.0$ Hz) (P(*m*-*C*₆H₄SO₃Na)₃). ³¹P NMR (81 MHz, D2O): *δ* 7.34 (*P*(*m*-C6H4SO3Na)3). Anal. Calcd for C28H27O9S3PCl2Na3Ir'4H2O: C, 32.37; H, 3.39; S, 9.26. Found: C, 32.39; H, 3.49; S, 9.25.

Synthesis of [Cp*Ir(-**CH2R)(CO)(PAr3)]Cl**'**3H2O (2, R**) **Ph (a), CH2Ph (b), C(CH3)3 (c),** *^p***-C6H4CH3 (d)), [Cp*Ir-** (-CD₂R)(CO)(PAr₃)]Cl¹3H₂O (2-*d*₂, R = Ph (a), CH₂Ph (b),
C(CH₃)₃ (c)), and [Cp^{*}Ir(-CH₂R)(C¹⁸O)(PAr₃)]Cl¹3H₂O (2-**C(CH3)3 (c)), and [Cp*Ir(**-**CH2R)(C18O)(PAr3)]Cl**'**3H2O (2-** *18O***, CH2Ph (b), C(CH3)3 (c)).** All complexes **2a**-**d**, **2a**,**b**,**c**-*d***2**, and **2b**,**c-***18O* have been prepared in a manner similar to that described below for **2a**.

[Cp***Ir(**-**CH2Ph)(CO)(PAr3)]Cl**'**3H2O (2a).** A 0.11 mL (1.0 mmol) sample of $HC = CPh$ was added into a solution of $Cp*IrCl₂(PAr₃)·4H₂O$ (1) (0.10 g, 0.10 mmol) in H₂O (0.5 mL) and C_6H_6 (10.0 mL) under N₂ at 25 °C, and the reaction mixture was stirred for 2 h before it was distilled under vacuum to dryness. The yellow solid was washed with cold EtOH (2×5 mL) to remove phosphine oxide (OP(m -C₆H₄SO₃- Na)₃) and recrystallized in MeOH/Et₂O. The yield was 0.09 g and 83% based on [Cp^{*}Ir(-CH₂Ph)(CO)(PAr₃)]Cl·3H₂O (**2a**). ¹H NMR (500 MHz, D₂O): *δ* 1.61 (d, 15H, $J = 2.0$ Hz, $C_5(CH_3)_{5}$, 2.81 (d, 1H, $J = 10.0$ Hz, CHH), 3.25 (dd, 1H, $J =$ 10.0 Hz, $J = 11.5$ Hz, CH*H*), 6.47-7.02 (m, 5H, C₆H₅), 7.44-8.01 (m, 12H, P(m -C₆H₄SO₃Na)₃). ¹³C NMR (126 MHz, D₂O): *δ* 5.77 (*C*H₂) 10.7 (C₅(*C*H₃)₅), 107.2 (*C*₅(*C*H₃)₅), 128.0, 129.9, 130.8, 132.0, 133.1 (d, $J = 10.1$ Hz), 138.4, 146.8 (d, $J = 11.7$ Hz), 150.4 (C_6H_5 and $P(m-C_6H_4SO_3Na)$ ₃), 170.1 (d, $J = 11.8$ Hz, Ir-*C*O). ¹H,¹³C-2D HETCOR (¹H (500 MHz) \rightarrow ¹³C (126 MHz), D₂O): δ 2.81 and 3.25 \rightarrow 5.77. ¹³C DEPT (126 MHz, D2O): *δ* 5.77 (*C*H2). 31P NMR (81 MHz, D2O): *δ* 5.60 (*P*(*m*-C6H4SO3Na)3). 35Cl NMR (19.6 MHz, D2O): *δ* 0.75 (uncoordinated Cl⁻). IR (KBr, cm⁻¹): 2021 (s, ν(C=O)). Anal. Calcd for C36H34O10S3PClNa3Ir'3H2O: C, 39.15; H, 3.65; S, 8.71. Found: C, 39.17; H, 3.64; S, 8.70.

[Cp***Ir(**-**CH2CH2Ph)(CO)(PAr3)]Cl**'**3H2O (2b).** The yield was 0.10 g and 91% based on $[Cp*Ir(-CH_2CH_2Ph)(CO)(PAr_3)]$ -Cl'3H2O (**2b**). 1H NMR (500 MHz, D2O): *^δ* 1.48 (br m, 1H, C*H*HCH₂Ph), 1.74 (d, 15H, $J = 2.4$ Hz, C₅(CH₃)₅), 2.00 (br m, 1H, CH*H*CH2Ph), 2.59 (br m, 2H, CH2C*H*2Ph), 6.48-7.23 (m, 5H, C₆H₅), 7.36-8.07 (m, 12H, P(m-C₆H₄SO₃Na)₃). ¹³C NMR (126 MHz, D2O): *δ* 4.11 (*C*H2CH2Ph), 8.12 (C5(*C*H3)5), 43.1 (CH_2CH_2Ph) , 104.4 (d, $J = 1.9$ Hz, $C_5(CH_3)_5$), 126.4, 127.9, 129.0, 129.6, 130.1, 130.6 (d, $J = 10$ Hz), 135.8, 144.3, 145.4 (C_6H_5 and $P(m-C_6H_4SO_3Na_3)$, 168.4 (d, $J = 12$ Hz, Ir-*C*O). 1 H,¹³C-2D HETCOR (¹H (500 MHz) → ¹³C (126 MHz), D₂O): *δ* 1.48 and $2.00 \rightarrow 4.11$, δ $2.59 \rightarrow 43.1$. ¹³C DEPT (126 MHz, D2O): *δ* 4.11 and 43.1 (*C*H2-*C*H2). 31P NMR (81 MHz, D2O): *δ* 7.19 (*P*(*m*-C₆H₄SO₃Na)₃). IR (KBr, cm⁻¹): 2019 (s, *ν*(C=O)). Anal. Calcd for C₃₇H₃₆O₁₀S₃PClNa₃Ir·3H₂O: C, 39.73; H, 3.78; S, 8.60. Found: C, 39.72; H, 3.77; S, 8.58.

[Cp***Ir(**-**CH2C(CH3)3)(CO)(PAr3)]Cl**'**3H2O (2c).** The yield was 0.09 g and 83% based on $[Cp*Ir (-CH_2C(CH_3)_3)(CO)$ -(PAr3)]Cl'3H2O (**2c**). 1H NMR (500 MHz, D2O): *^δ* 0.39 (9H, $C(C(H_3)_{3})$, 1.61 (d, 15H $J = 2.0$ Hz, $C_5(CH_3)_{5}$), 1.71 (d, 1H, $J = 10.5$ Hz, CHH), 2.20 (dd, 1H, $J = 10.5$ Hz, $J = 14.0$ Hz, CHH), 10.5 Hz, CHH), 2.20 (dd, 1H, J = 10.5 Hz, J = 14.0 Hz, CHH),
7.43–7.88 (m, 12H, P(m-C_eH, SO-Na), ¹³C, NMR (126 MHz 7.43–7.88 (m, 12H, P(*m*-C₆H₄SO₃Na)₃). ¹³C NMR (126 MHz,
D₂O): \land 8.53 (C₁(CH₀), 19.1 (CH₀), 31.7 (C(CH₀)₂), 35.2 D2O): *δ* 8.53 (C5(*C*H3)5), 19.1 (*C*H2), 31.7 (C(*C*H3)3), 35.2 $(C(CH_3)_3)$, 105.1 $(C_5(CH_3)_5)$, 129.5, 130.5 (d, $J = 9.1$ Hz), 136.3, 144.1 (P(*m*-C₆H₄SO₃Na)₃), 169.8 (d, $J = 11.8$ Hz, Ir-CO). ¹H,¹³C-2D HETCOR (¹H (500 MHz) → ¹³C (126 MHz), D₂O): *δ* $0.39 \rightarrow 31.7$, δ 1.61 \rightarrow 8.58, δ 1.71 and 2.20 \rightarrow 19.1. ¹³C DEPT (126 MHz, D2O): *δ* 19.1 (*C*H2). 31P NMR (81 MHz, D2O): *δ* 2.80 (*P*(*m*-C₆H₄SO₃Na)₃). IR (KBr, cm⁻¹): 2008 (s, *ν*(C≡O)). Anal. Calcd for C₃₄H₃₈O₁₀S₃PClNa₃Ir·3H₂O: C, 37.65; H, 4.09; S, 8.87. Found: C, 37.38; H, 4.14; S, 8.98.

[Cp***Ir(**-**CH2-***p***-C6H4CH3)(CO)(PAr3)]Cl**'**3H2O (2d).** The yield was 0.09 g and 80% based on $[Cp*Ir(-CH_2-p-C_6H_4CH_3)-]$ (CO)(PAr3)]Cl'3H2O (**2d**). 1H NMR (500 MHz, D2O): *^δ* 1.58 (d, 15H, $J = 2.0$ Hz, $C_5(CH_3)_5$), 2.04 (3H, $p-C_6H_4CH_3$)), 2.77 (d, 1H, $J = 10.0$ Hz, C*H*H), 3.22 (dd, 1H, $J = 10.0$ Hz, $J =$ 11.5 Hz, CH*H*), 6.35-6.78 (AB quartet with $\Delta v/J = 6.3$, 4H, $J_{AB} = 8.0$ Hz) (p -C₆H₄CH₃), 7.39–7.99 (m, 12H, P(m -C₆H₄SO₃-Na)₃). ¹³C NMR (126 MHz, D₂O): δ 5.70 (CH₂), 10.7 (C₅(CH₃)₅), 22.6 (*p-*C6H4*C*H3), 107.2 (*C*5(CH3)5), 129.9, 131.3, 132.0, 133.0, 133.1, 137.8, 138.3, 146.8 (d, $J = 11.8$ Hz), 147.0 ($p - C_6H_4CH_3$ and P(m -*C*₆H₄SO₃Na)₃), 170.2 (d, $J = 11.7$ Hz, Ir-*C*O). ¹H,¹³C-2D HETCOR (¹H (500 MHz) → ¹³C (126 MHz), D₂O): *δ* 2.04 \rightarrow 22.62, δ 2.77 and 3.22 \rightarrow 5.70. ¹³C DEPT (126 MHz, D₂O): *δ* 5.70 (*C*H2). 31P NMR (81 MHz, D2O): *δ* 5.62 (*P*(*m*-C6H4SO3- Na)₃). IR (KBr, cm⁻¹): 2024 (s, *ν*(C=O)). Anal. Calcd for C37H36O10S3PClNa3Ir'3H2O: C, 39.73; H, 3.78; S, 8.60. Found: C, 39.66; H, 3.49; S, 8.50.

Spectral Data for [Cp***Ir(**-**CD2Ph)(CO)(PAr3)]Cl**'**3H2O (2a-***d***2)**, **[Cp*****Ir(**-**CD2CH2Ph)(CO)(PAr3)]Cl**'**3H2O (2b-***d***2)**, **[Cp*****Ir(**-**CD2C(CH3)3)(CO)(PAr3)]Cl**'**3H2O (2c-***d***2)**, **[Cp*****Ir- (**-**CH2CH2Ph)(C18O)(PAr3)]Cl**'**3H2O (2b-***18O***), and [Cp*****Ir- (**-**CH2C(CH3)3)(C18O)(PAr3)]Cl**'**3H2O (2c-***18O***).** See Supporting Information.

Synthesis of [Cp***Ir(**-**CH3)(CO)(PAr3)]OTf**'**3H2O (3), [Cp*****Ir(**-**CH2D)(CO)(PAr3)]OTf**'**3H2O (3-***d***1), and [Cp*****Ir- (**-**CH3)(C18O)(PAr3)]OTf**'**3H2O (3-***18O***).** These complexes have been prepared in a manner similar to that described below for **3**.

[Cp***Ir(**-**CH3)(CO)(PAr3)]OTf**'**3H2O (3).** A reaction mixture of **1** (0.15 g, 0.15 mmol) and AgOTf (0.080 g, 0.31 mmol) in H₂O (10 mL) was stirred for 10 min under N₂ at 25 °C before the white solid (AgCl) was removed by filtration. The pale yellow filtrate solution of complex E was stirred under $H_2C =$ CH2 (1 atm) for 3 days at room temperature and distilled under vacuum to dryness. The white-beige solid was washed with cold EtOH (2 \times 10 mL) and recrystallized in MeOH/Et₂O to obtain white-beige microcrystals of **3**. The yield was 0.15 g and 89% based on [Cp*Ir(-CH3)(CO)(PAr3)]OTf'3H2O (**3**). 1H NMR (500 MHz, D₂O): δ 0.52 (d, 3H, $J = 5.5$ Hz C*H*₃), 1.65 (d, 15H $J = 2.5$ Hz, C₅(C*H*₃)₅), 7.35–7.91 (m, 12H, P(*m*-C₆*H*₄SO₃Na)₃). *J*³C NMR (126 MHz, D₂O): *δ* −22.9 (*C*H₃), 7.91 (C₅(*C*H₃)₅), 103.7 (C_5 (CH₃)₅), 128.5 (d, $J = 59$ Hz), 129.4, 130.5 (d, $J = 9.8$ Hz), 130.7 (d, $J = 15$ Hz), 135.8 (d, $J = 7.9$ Hz), and 144.0

⁽¹⁰⁾ Huheey, J. E.; Keiter, E. A.; Keiter, R. L. *Inorganic Chemistry: Principles of Structure and Reactivity*, 4th ed.; HaperCollins: New York, 1993; pp 714-715.

⁽¹¹⁾ Coalter, J. N., III; Huffman, J. C.; Caulton, K. G. *Organometallics* **2000**, *19*, 3569.

⁽¹²⁾ Chin, C. S.; Chang, W.-T.; Yang, S.; Joo, K.-S. *Bull. Korean Chem. Soc*. **1997**, *18*, 324.

(P(*m*-*C*6H4-SO3Na)3), 167.6 (d, *^J*) 12 Hz, Ir-*C*O). 1H,13C-2D HETCOR (¹H (500 MHz) → ¹³C (126 MHz), D₂O): δ 0.52 → -22.9. 13C DEPT (126 MHz, D2O): *^δ* -22.9 (*C*H3). 31P NMR (81 MHz, D2O): *δ* 5.13 (*P*(*m*-C6H4SO3Na)3). IR (KBr, cm-1): 2028 (s, *ν*(C≡O)). Anal. Calcd for C₃₁H₃₀O₁₃S₄PF₃Na₃Ir·3H₂O: C, 32.60; H, 3.18; S, 11.23. Found: C, 32.63; H, 3.40; S, 11.29.

[Cp***Ir(OH2)2(PAr3)]OTf**'**3H2O (E).** 1H NMR (300 MHz, D₂O): δ 1.44 (d, 15H, $J = 2.5$ Hz, C₅(CH₃)₅), 7.40-8.07 (m, 12H, P(m-C₆H₄SO₃Na)₃). ¹³C NMR (76 MHz, D₂O): δ 8.78 (C₅-(CH₃)₅), 94.5 (C₅(CH₃)₅), 127.7 (d, J = 54 Hz), 130.0, 130.6 (d, $J = 9.8$ Hz), 131.5 (d, $J = 16$ Hz), 136.9 (d, $J = 7.4$ Hz), and 143.9 (d, $J = 12$ Hz) (P($m - C_6H_4SO_3Na$)₃). ³¹P NMR (81 MHz, D2O): *δ* 20.4 (*P*(*m*-C6H4SO3Na)3). IR (KBr, cm-1): 1230, 1100, and 1039 (br s, OTf).

Spectral Data for [Cp***Ir(**-**CH2D)(CO)(PAr3)]OTf**'**3H2O (3-***d***1) and [Cp*****Ir(**-**CH3)(C18O)(PAr3)]OTf (3-***18O***).** See Supporting Information.

Reaction of E and CH3CHO. A reaction mixture of **1** (0.15 g, 0.15 mmol) and AgOTf (0.080 g, 0.31 mmol) in H₂O (10 mL) was stirred for 10 min under N_2 at 25 °C before the white solid (AgCl) was removed by filtration. CH₃CHO (0.08 mL, 1.5 mmol) was added into the pale yellow filtrate solution of complex **E**. The resulting solution was stirred for 1 h at room temperature and distilled under vacuum to obtain a whitebeige solid, which was washed with cold EtOH (2 \times 10 mL) and recrystallized in MeOH/Et₂O to obtain white-beige microcrystals of **3**. The yield was 0.152 g and 91% based on $[Cp*Ir(-CH₃)(CO)(PAr₃)]OTr³H₂O (3).$

Acknowledgment. Authors wish to thank the Korea Research Foundation in the program of 1998 for the financial support of this study.

Supporting Information Available: Spectroscopic and analytical data for complexes **¹**-**3**. 1H, 13C (**1**, **2a**-**d**, **2a**,**b**,**c***^d***2**, **³**, and **3-***d***1**) and 31P (**1**, **2a**-**d**, and **³**), 1H,13C-2D HETCOR (**1**, **2a**-**d**, and **³**), 13C DEPT (**1**, **2a**-**d**, and **³**) NMR, and IR (**2a**-**d**, **2b**,**c-***18O*, **³**, and **3-***18O*) spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

OM010953L