Notes

Hydride-Carbyne to Carbene Transformation in a Cyclopentadienyl-Osmium Complex: An Alternative to the Single Hydride-C_α Migration

Miguel Baya and Miguel A. Esteruelas*

Departamento de Química Inorgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza, CSIC, 50009 Zaragoza, Spain

Received December 18, 2001

Summary: Complexes $OsH(\eta^5-C_5H_5)(C \equiv CPh)(EPh_3)$ - (P^iPr_3) [E = Si (1), Ge (2)] react with 2.0 equiv of HBF_4 OEt₂ to give $[OsH(\eta^5-C_5H_5)(\equiv C-CH_2Ph)(P^iPr_3)]$ - BF_4 (3). Treatment of 3 with KOH affords OsH- $(\eta^5-C_5H_5)(\equiv C = CHPh)(P^iPr_3)$ (5) in equilibrium with the

metalated species $OsH(\eta^5 - C_5H_5)(o-C_6H_4CH=CH)(P^iPr_3)$ (7) $(\Delta H^\circ = -3.6 \pm 0.2 \text{ kcal mol}^{-1} \text{ and } \Delta S^\circ = -10.8 \pm 1.9 \text{ cal } K^{-1} \text{ mol}^{-1}$ for the formation of 7). The addition of $P(OMe)_3$ to the solution of the isomeric mixture leads to $Os(\eta^5 - C_5H_5)$ {(E)-CH=CHPh}{ $P(OMe)_3$ }(PⁱPr_3) (**8**), which reacts with HBF_4 OEt_2 to give $[Os(\eta^5 - C_5H_5)-(=CHCH_2Ph){P(OMe)_3}(P^iPr_3)]BF_4$ (**4**).

Complexes $OsHCl_2(\equiv CCH_2R)(PR'_{3})_2$ $(PR'_{3} = P^iPr_{3}, ^1PCy_{3}^2)$, isomers of the osmium counterparts to the Grubbs-type carbene–ruthenium compounds $RuCl_2$ - $(\equiv CHCH_2R)(PR'_{3})_2$, are known and can be easily prepared by reaction of the corresponding dihydride–dichloro compounds $OsH_2Cl_2(PR'_{3})_2$ with terminal alkynes^{1,2} or alternatively with olefins.³ However, in the solid state and in solution they do not evolve into the carbene isomers, by migration of the hydride ligand to the C_{α} atom of the carbyne. DFT calculations indicate that, although the isomer energies are similar, the necessary energy for the hydride migration is too large (27.2 kcal mol⁻¹).³

Despite this high energy barrier and despite the saturated character of the carbyne compounds, complex $OsHCl_2(=CEt)(P^iPr_3)_2$ reacts with carbon monoxide to give the carbene derivative $OsCl_2(=CHEt)(CO)(P^iPr_3)_2$, at convenient rate.^{3,4} To rationalize this surprising finding, it has been proposed that the mechanism of the above-mentioned transformation must involve nucleophilic assistance of the hydride-to-carbyne-carbon migration; Os-L bond making will lower the activation energy from its unimolecular value.³

In the context of our investigations on the reactivity of the cyclopentadienyl–osmium complex $Os(\eta^5-C_5H_5)Cl-$ (PⁱPr₃)₂, we have recently reported the preparation of the hydride–alkynyl compounds $OsH(\eta^5-C_5H_5)(C\equiv CPh)-(EPh_3)(P^iPr_3)$ [E = Si (1), Ge (2)].⁵ Now we have observed that these complexes are the entry to obtain the hydride–carbyne derivative $[OsH(\eta^5-C_5H_5)(\equiv CCH_2Ph)-(P^iPr_3)]BF_4$ (3). The easy accessibility to **3** prompted us to investigate the hydride–carbyne to carbene transformation promoted by trimethyl phosphite, a π -acidic ligand as carbon monoxide.

Complex **3** was prepared, as a dark brown solid in nearly quantitative yield, by addition of 2.0 equiv of HBF₄·OEt₂ to diethyl ether solutions of **1** or **2** (eq 1). The formation of FEPh₃ (E = Si, Ge) was also detected.⁶ When the reactions were carried out using 1.0 equiv of HBF₄·OEt₂, complex **3** was obtained in about 50% yield.

The formation of a hydride–carbyne species according to eq 1 is strongly supported by the ¹H and ¹³C{¹H} NMR spectra of the obtained solid. The ¹H NMR spectrum in chloroform-*d* contains at -12.15 a doublet (²J_{HP} = 24 Hz), due to the hydride ligand, whereas in the ¹³C{¹H} NMR spectrum the C_{α} resonance of the carbyne is observed at 290.9 ppm.

Complex **3** is stable in chloroform-*d* under argon, and the migration of the hydride to the C_{α} atom of the carbyne is not observed. The addition of trimethyl phosphite to chloroform-*d* solutions of **3** gives a complex mixture of products, which does not contain the carbene derivative $[Os(\eta^5-C_5H_5)(=CHCH_2Ph)\{P(OMe)_3\}(P^iPr_3)]$ -BF₄ (**4**). This complex can be obtained according to Scheme 1.

The CH_2 group of the carbyne ligand of **3** is fairly acidic and can be easily deprotonated. Thus, the

 ⁽¹⁾ Espuelas, J.; Esteruelas, M. A.; Lahoz, F. J.; Oro, L. A.; Ruiz, N. J. Am. Chem. Soc. **1993**, *115*, 4683.
 (2) Werner, H.; Jung, S.; Weberndörfer, B.; Wolf, J. Eur. J. Inorg.

⁽²⁾ Werner, H.; Jung, S.; Weberndörfer, B.; Wolf, J. *Eur. J. Inorg. Chem.* **1999**, 951.

⁽³⁾ Spivak, G. J.; Coalter, J. N.; Oliván, M.; Eisenstein, O.; Caulton, K. G. Organometallics **1998**, *17*, 999.

⁽⁴⁾ Spivak, G. J.; Caulton, K. G. Organometallics 1998, 17, 5260.

⁽⁵⁾ Baya, M.; Esteruelas, M. A.; Oñate, E. *Organometallics* **2001**, *20*, 4875.

^{(6) (}a) MS (FAB⁺) of F–GePh₃: m/z 305 (Ge–Ph₃⁺), 247 (F–GePh₂⁺)]. (b) ${}^{13}C{}^{1H}$ NMR spectrum of FSiPh₃ (75.4 MHz, C₆D₆, plus APT): Δ 135.8 (+, d, C_{ortho} Ph, ${}^{3}J_{CF}$ = 1.9); 133.4 (-, d, C_{ipso} Ph, ${}^{2}J_{CF}$ = 17.1); 131.4 (+, s, C_{para} Ph); 128.8 (+, s, C_{meta} Ph)].

Scheme 1

treatment of methanol solutions of **3** with 5.5 equiv of KOH affords the hydride–vinylidene $OsH(\eta^5-C_5H_5)-(=C=CHPh)(P^iPr_3)$ (**5**) in equilibrium with its metalated

isomer $OsH(\eta^{5}-C_{5}H_{5})(o-C_{6}H_{4}CH=CH)(P^{i}Pr_{3})$ (7).

In the ¹H NMR spectrum of the isomeric mixture in benzene- d_6 , the =CH proton of the vinylidene of **5** displays at 2.80 ppm a double doublet by spin coupling with the hydride (2.1 Hz) and the phosphorus of the phosphine (2.1 Hz). The spin coupling with the hydride was confirmed by a ¹H COSY spectrum. The hydride ligand gives rise to a double doublet with a H–P coupling constant of 29.7 Hz at -14.27 ppm. In the ¹³C{¹H} NMR spectrum the C_{α} resonance of the vinylidene appears at 290.2.

In agreement with a hydride ligand disposed *cisoid* to the phosphine in **7**, the ¹H NMR spectrum of the isomeric mixture also contains at -13.65 ppm a doublet with a H–P coupling constant of 44.1 Hz. In the ¹³C{¹H} NMR spectrum, the orthometalated carbon atom displays at 162.0 ppm a doublet (${}^{2}J_{CP} = 2.7$ Hz). The C_{α} and C_{β} vinylic resonances of the metallacycle appear at 135.8 and 148.8 ppm, respectively, as doublets with C–P coupling constants of 19.4 and 3.7 Hz. These spectroscopic data agree well with those obtained

for the related complex OsH(η⁵-C₅H₄SiPh₃)(o-C₆H₄C-

 $(CH_3)=CH)(P^iPr_3)$, where the distribution of ligands around the osmium atom has been confirmed by X-ray diffraction analysis.⁵

The constants for the equilibrium between the hydride-vinylidene and metalated species were measured in the temperature range from 253 to 343 K. The temperature dependence of the equilibrium gives the values $\Delta H^{\circ} = -3.6 \pm 0.2$ kcal mol⁻¹ and $\Delta S^{\circ} = -10.8 \pm 1.9$ cal K⁻¹ mol⁻¹ for the formation of **7**. The negative entropy increment is consistent with the less ordered character of **5**. The value of ΔH° reveals a small stabilization of the system, probably as a consequence of the formation of the five-membered ring.

The isomerization of **5** to **7** occurs via the spectroscopically undetected *Z*-alkenyl intermediate **6b**, which evolves into **7** by C–H activation of the *ortho* C–H bond of the aryl group. Intermediate **6b** is in equilibrium with its *E*-isomer **6a**. The formation of **6a** and **6b** could be the result of the migration in **5** of the hydride to the C_{α} atom of the vinylidene, which should be rotating around the osmium–vinylidene axis. Alternatively, the equilibrium **6a–6b** could be a consequence of the isomerization of **6b** into **6a** via a zwitterionic carbene form.

The presence, in spectroscopically undetected amounts, of **6a** in the isomeric mixture is strongly supported by the reaction of the latter with trimethyl phosphite. The addition of 2.0 equiv of this ligand to the isomeric mixture in toluene affords the *E*-styryl derivative Os- $(\eta^{5}-C_{5}H_{5})\{(E)-CH=CHPh\}\{P(OMe)_{3}\}(P^{i}Pr_{3})$ (8), which was isolated as a brown oil in 75% yield. The Estereochemistry at the carbon-carbon double bond of the styryl group is supported by the resonances of the vinylic protons, in the ¹H NMR spectrum. The value of the coupling constant between them (17.4 Hz) is characteristic for this arrangement.⁷ The ${}^{13}C{}^{1}H{}$ and ³¹P{¹H} NMR spectra of the brown oil are also consistent with the formation of 8. The resonances corresponding to the C_{α} and C_{β} atoms of the alkenyl ligand appear in the ¹³C{¹H} NMR spectrum at 136.9 and 130.1 ppm, respectively. The ³¹P{¹H} NMR spectrum shows two doublets (${}^{2}J_{PP} = 32.8 \text{ Hz}$) at 107.2 (P(OMe)₃) and 17.7 (P^iPr_3) ppm.

As a result of a significant contribution of the zwitterionic carbene form to the structure of alkenyl complexes, the C_{β} atom of the alkenyl ligands has a marked nucleophilic character.⁸ In agreement with this, the addition of 1.0 equiv of HBF₄·OEt₂ to diethyl ether solutions of **8** affords the carbene derivative **4**, which was isolated as an orange solid in 71% yield. This is a rare example of a half-sandwich carbene–osmium complex.⁹ As far as we know, cyclopentadienyl–carbene– osmium compounds were unknown until now.

The presence of the carbene ligand in **4** is strongly supported by the ¹H and ${}^{13}C{}^{1}H$ NMR spectrum of this

⁽⁷⁾ Werner, H.; Esteruelas, M. A.; Otto, H. Organometallics **1986**, 5, 2295.

⁽⁸⁾ Esteruelas, M. A.; Oro, L. A. *Adv. Organomet. Chem.* **2001**, *47*, 1, and references therein.

⁽⁹⁾ Weberndörfer, B.; Henig, G.; Werner, H. Organometallics **2000**, *19*, 4687.

compound. In the ¹H NMR spectrum, the C_{α}H resonance of the carbene appears at 17.48 ppm, as a multiplet, whereas the C_{β}H₂ group gives rise to two double doublets at 3.91 and 3.30 ppm, with a ²J_{HH} coupling constant of 15.6 Hz and ³J_{HH} coupling constants of 9.6 and 6.3 Hz, respectively. In the ¹³C{¹H} NMR spectra, the C_{α} resonance of the carbene is observed at 285.7 ppm. The ³¹P{¹H} NMR spectrum contains two doublets (²J_{PP} = 33.6 Hz) at 89.0 (P(OMe)₃) and 25.9 (PⁱPr₃) ppm.

The sequence of reactions shown in Scheme 1 not only is an elegant manner of obtaining carbene compounds starting from hydride–carbyne complexes but also represents a mechanistic alternative to the single migration, when the barrier to the hydride migration is too high and the carbyne has a $C_{\beta}HR_2$ group.

An ionic mechanism of this type (dissociation-migration-addition) can explain the formation of $OsCl_2$ -(=CHEt)(CO)(PⁱPr₃)₂, by reaction of $OsHCl_2$ (=CEt)-(PⁱPr₃)₂ with carbon monoxide. It is well known that the CH₂ group of complexes $OsHCl_2$ (=CCH₂R)(PⁱPr₃)₂, similarly to **3**, is fairly acidic and can be easily deprotonated by treatment with Brönsted bases, to give OsHCl-(=C=CHR)(PⁱPr₃)₂.¹⁰ It is also well known that sixcoordinated hydride-vinylidene complexes of the type OsHCl(=C=CHR)(CO)(PⁱPr₃)₂ evolve into the corresponding alkenyl derivatives OsCl{(*E*)-CH=CHR}(CO)-(PⁱPr₃)₂,¹¹ which react with HCl to afford $OsCl_2$ -(=CCH₂R)(CO)(PⁱPr₃)₂.^{11,12}

The examination of these reactions and those shown in Scheme 1 clearly indicates that the function of the Lewis base is to stabilize the alkenyl intermediate with regard to the hydride–vinylidene. In this context, it should be mentioned that for the formation of OsHCl-(=C=CHR)(PⁱPr₃)₂ an alternative pathway to the previously mentioned deprotonation is the insertion of a terminal alkyne into the Os–H bond of a monohydride species, followed by α -elimination in the resulting alkenyl.¹³

In conclusion, in addition to the formation of novel cyclopentadienyl–osmium complexes, this paper shows that when a carbyne ligand has a CHR₂ group, the Lewis base-assisted hydride–carbyne to carbene transformation can take place via a ionic mechanism involving (i) dissociation of a proton from the CHR₂ group of the carbyne, (ii) hydride migration to the C_{α} atom of the resulting vinylidene, (iii) stabilization of the alkenyl intermediate by coordination of the alkenyl.

Experimental Section

All reactions were carried out with rigorous exclusion of air using Schlenk-tube techniques. Solvents were dried by the usual procedures and distilled under argon prior to use. The starting materials $OsH(\eta^5-C_5H_5)(C\equiv CPh)(GePh_3)(P^iPr_3)$ [E = Si (1), Ge (2)]⁵ were prepared by the published methods.

NMR spectra were recorded at 293 K and chemical shifts are expressed in ppm downfield from Me₄Si (¹H and ¹³C) and 85% H₃PO₄ (³¹P). Coupling constants, J, are given in hertz.

Preparation of $[OsH(\eta^5-C_5H_5)(\equiv CCH_2Ph)(P^iPr_3)]BF_4$ (3). Route a. HBF₄·OEt₂ (49 μ L, 0.36 mmol) was added to a solution of OsH(η^5 -C₅H₅)(C \equiv CPh)(GePh₃)(PⁱPr₃) (141 mg, 0.17 mmol) in 10 mL of diethyl ether. An oily precipitate was formed. The resulting solution was decanted, and the residue was washed twice with diethyl ether (2 × 4 mL). A dark brown solid was obtained. Yield: 95 mg (92%).

Route b. The reaction was made by the same method, but using $OsH(\eta^{5}-C_{5}H_{5})(C \equiv CPh)(SiPh_{3})(P^{i}Pr_{3})$ (164 mg, 0.21 mmol) as starting material. A brown solid was obtained. Yield: 115 mg (90%). Anal. Calcd for C₂₂H₃₄BF₄OsP: C, 43.57; H, 5.65. Found: C, 43.72; H, 5.80. IR (Nujol, cm⁻¹): v(Os-H) 2023; ν(BF₄) 1075. ¹H NMR (300 MHz, CDCl₃): δ 7.70-7.10 (5 H, -Ph); 5.75 (5 H, s, η^{5} -C₅H₅); 3.05 (AB system, 2 H, Os=CCH₂-, $\Delta \nu = 79.0, {}^{2}J_{\rm HH} = 19.2$; 2.04 (m, 3 H, PCH); 1.20 (dd, 9 H, PCHCH₃, ³J_{HP} = 11.7, ³J_{HH} = 7.2); 1.16 (dd, 9 H, PCHCH₃, ${}^{3}J_{\rm HP} = 11.7, \, {}^{3}J_{\rm HH} = 7.2); \, -12.15$ (d, 1 H, Os-H, ${}^{2}J_{\rm HP} = 24$). $^{13}\text{C}\{^1\text{H}\}$ NMR (75.4 MHz, CD₂Cl₂, plus APT): δ 290.9 (–, d, Os≡C, ${}^{2}J_{CP} = 13.2$); 134.3, 131.1, 129.7, 129.4, 129.0, 128.6 (all s, Ph); 88.6 (+, s, η^{5} -C₅H₅); 58.7 (-, s, CH₂); 30.2 (+, d, PCH, ${}^{1}J_{CP} = 31.8$); 19.9, 19.3 (+, s, PCH*C*H₃). ${}^{31}P{}^{1}H$ NMR (121.4 MHz, CDCl₃): δ 47.9 (s, d in off-resonance). MS (FAB⁺): m/z 521 (M⁺).

Obtention of the Equilibrium Mixture OsH(η^5 -C₅H₅)-

{=**C**=**C**(**H**)**Ph**}(**P**ⁱ**Pr**₃) (5)–**O**s**H**(η^{5} -**C**₅**H**₅)(*o*-**C**₆**H**₄**CH**=**CH**)-(**P**ⁱ**Pr**₃) (7). KOH in pellets (96 mg, 1.45 mmol) was added to a solution of [OsH(η^{5} -C₅H₅)(=CCH₂Ph)(PⁱPr₃)]BF₄ (156 mg, 0.26 mmol) in 10 mL of methanol, and the mixture was left to stir for 2 h. The resulting solution was vacuum-dried, and the residue was extracted with toluene (10 mL). The filtrate was vacuum-dried and washed with cold methanol (2 × 2 mL). A pale brown solid was obtained, which resulted to be a 1:2 mixture of the isomers OsH(η^{5} -C₅H₅){=C=C(H)Ph}(PⁱPr₃) (5)

and $OsH(\eta^{5}-C_{5}H_{5})(o-C_{6}H_{4}CH=CH)(P^{i}Pr_{3})$ (7). Yield: 81 mg (61%). Anal. Calcd for C₂₂H₃₃OsP: C, 50.94; H, 6.41. Found: C, 50.65; H, 6.01. IR (Nujol, cm⁻¹): ν (Os-H) 2139, 2110 (w); ν (Os=C=C) 1620 (m).

Spectroscopic Data for Isomer OsH($\eta^{5-}C_{5}H_{5}$){=C=C-(H)Ph}(PⁱPr₃) (5). ¹H NMR (300 MHz, C₆D₆): δ 7.52 (dd, 2 H, H_{ortho} in Ph, ³*J*_{HH} = 7.5, ⁴*J*_{HH} = 1.5); 7.26 (t, 2 H, H_{meta} in Ph, ³*J*_{HH} = 7.5, ³*J*_{HH} = 7.5); 6.87 (tt, 1 H, H_{para} in Ph, ³*J*_{HH} = 7.5, ⁴*J*_{HH} = 1.5); 5.07 (5 H, s, $\eta^{5-}C_{5}H_{5}$); 2.80 (dd, 1 H, Os=C= CH; ⁴*J*_{HH} = 2.1, ⁴*J*_{HP} = 2.1); 1.99 (m, 3 H, PCH); 0.98 (dd, 9 H, PCHC*H*₃, ³*J*_{HH} = 6.9); -14.27 (d, 1 H, Os-H, ²*J*_{HP} = 29.7, ⁴*J*_{HH} = 2.1). ¹³C{¹H} NMR (75.4 MHz, C₆D₆, plus HETCOR): δ 290.2 (d, Os=*C*=C, ²*J*_{CP} = 11.5); 151.0 (d, C_{ipso} in Ph, ⁴*J*_{CP} = 3.7); 128.6 (s, C_{meta} in Ph); 124.2 (s, C_{ortho} in Ph); 123.3 (s, C_{para} in Ph); 112.1 (s, Os=*C*=*C*(H)Ph); 83.4 (d, $\eta^{5-}C_{5}H_{5}$; ²*J*_{CP} = 7.5); 28.1 (d, PCH, ¹*J*_{CP} = 30.9); 20.5, 20.0 (s, PCH*CH*₃). ³¹P{¹H} NMR (121.4 MHz, C₆D₆): δ 43.6 (s, d in off-resonance). MS (FAB⁺): *m*/*z* 520 (M⁺).

Spectroscopic Data for Isomer OsH(η^5 -C₅H₅)(o-C₆H₄-

CH=CH)(**P**ⁱ**Pr**₃) (7). ¹H NMR (300 MHz, C₆D₆): δ 8.33 (dd, 1 H, OsC(*H*)=C, ³*J*_{HH} = 6.9, ³*J*_{HP} = 5.4); 8.21, 7.61 (both dd, 1 H each, CH in OsC₆H₄, ³*J*_{HH} = 7.5, ⁴*J*_{HH} = 1.2); 7.70–7.60 (1 H, OsC(H)=C(*H*)); 7.21, 6.94 (both td, 1 H each, CH in OsC₆H₄, ³*J*_{HH} = 7.5, ³*J*_{HH} = 7.5, ⁴*J*_{HH} = 1.2); 4.71 (5 H, s, η^{5} -C₅H₅); 2.09 (m, 3 H, PCH); 0.86 (dd, 9 H, PCHC*H*₃, ³*J*_{HP} = 14.1, ³*J*_{HH} = 6.9); 0.75 (dd, 9 H, PCHC*H*₃, ³*J*_{HP} = 14.1, ³*J*_{HH} = 6.9); -13.65 (d, 1 H, OsH, ²*J*_{HP} = 44.1). ¹³C{¹H} NMR (75.4 MHz, C₆D₆, plus HETCOR): δ 162.0 (d, *C*CH= of aryl group, ³*J*_{CP} = 2.7); 148.8 (d, OsC(H)=*C*(H), ³*J*_{CP} = 3.7); 146.5, 122.8 (both s, tertiary C in OsC₆H₄); 135.8 (d, Os*C*(H)=C, ²*J*_{CP} = 19.4); 129.1, 122.3 (both s, tertiary C in OsC₆H₄); 128.1 (OsC of aryl group);

⁽¹⁰⁾ Bourgault, M.; Castillo, A.; Esteruelas, M. A.; Oñate, E.; Ruiz, N. Organometallics **1997**, *16*, 6. 636.

^{(11) (}a) Esteruelas, M. A.; Oro, L. A.; Valero, C. *Organometallics* **1995**, *14*, 3596. (b) Buil, M. L.; Esteruelas, M. A. *Organometallics* **1999**, *18*, 1798.

⁽¹²⁾ Esteruelas, M. A.; Lahoz, F. J.; Oñate, E.; Oro, L. A.; Valero,
C.; Zeier, B. *J. Am. Chem. Soc.* **1995**, *117*, 7935.
(13) (a) Oliván, M.; Eisenstein, O.; Caulton, K. G. Organometallics

^{(13) (}a) Oliván, M.; Eisenstein, O.; Caulton, K. G. *Organometallics* **1997**, *16*, 2227. (b) Oliván, M.; Clot, E.; Eisenstein, O.; Caulton, K. G. *Organometallics* **1998**, *17*, 3091.

83.3 (d, η^{5} -C₅H₅, ${}^{3}J_{CP} = 7.5$); 28.7 (d, PCH, ${}^{1}J_{CP} = 30.9$); 20.9, 19.0 (s, PCH*C*H₃). ${}^{31}P{}^{1}H{}$ NMR (121.4 MHz, C₆D₆): δ 25.8 (s, d in off-resonance).

Preparation of Os $(\eta^{5}-C_{5}H_{5})$ {(*E*)-CH=CHPh}{P(OMe_{3})_{3}}-(PⁱPr₃) (8). P(OMe₃)₃ (100 µL, 0.84 mmol) was added to a solution of the equilibrium mixture of 5 and 7 (220 mg, 0.42 mmol) in 15 mL of toluene. The mixture was heated to reflux during 48 h, then filtered and vacuum-dried. The residue was chromatographed on an alumina column. Diethyl ether eluted a brown fraction. The resulting solution was vacuum-dried. A brown oil was obtained. Yield: 204 mg (75%). ¹H NMR (300 MHz, C₆D₆): δ 9.73 (ddd, 1 H, OsCH=, ${}^{3}J_{HH} = 17.4$, ${}^{3}J_{HP} =$ 8.7, ${}^{3}J_{\text{HP}} = 3.0$; 7.70–6.90 (6 H, signals of =CHPh); 4.82 (5 H, s, η^{5} -C₅H₅); 3.25 (d, 9 H, P(OCH₃)₃, ${}^{3}J_{\text{HP}} = 11.4$); 2.29 (m, 3 H, PCH); 1.06 (dd, 9 H, PCHC H_3 , ${}^{3}J_{HP} = 12.9$, ${}^{3}J_{HH} = 7.2$); 1.01 (dd, 9 H, PCHC H_{3} , ${}^{3}J_{HP} = 12.9$, ${}^{3}J_{HH} = 7.2$). ${}^{13}C{}^{1}H}$ NMR (75.4 MHz, C₆D₆, plus APT): δ 145.0 (-, s, C_{ipso} in Ph); 136.9 (+, s, OsC); 135.3, 129.0, 124.3, 123.2 (+, all s, tertiary C's in Ph); 130.1 (+, s, OsCH=CH); 79.7 (+, s, η^{5} -C₅H₅); 51.1 (+, d, OCH₃, ${}^{2}J_{CP} = 6.0$); 28.9 (+, d, PCH, ${}^{1}J_{CP} = 25.3$); 20.5, 20.4 $(+, s, PCHCH_3)$. ³¹P{¹H} NMR (121.4 MHz, C₆D₆): δ 107.2 (d, $P(OCH_3)_3$, ${}^2J_{PP} = 32.8$), 17.7 (d, P^iPr_3 , ${}^2J_{PP} = 32.8$). MS (FAB⁺): m/z 644 (M⁺), 541 (M⁺ – CH=CHPh).

Preparation of $[Os(\eta^5-C_5H_5)(=CHCH_2Ph){P(OMe_3)_3}-(P^iPr_3)]BF_4$ (4). HBF₄·OEt₂ (45 μ L, 0.33 mmol) was added to a solution of $Os(\eta^5-C_5H_5){(E)-CH=CHPh}{P(OCH_3)_3}(P^iPr_3)$

(204 mg, 0.32 mmol) in 12 mL of diethyl ether. The subsequent precipitate was decanted and washed with diethyl ether (3 imes6 mL). An orange solid was obtained. Yield: 164 mg (71%). Anal. Calcd for C₂₅H₄₃BF₄OsP₂: C, 41.10; H, 5.93. Found: C, 40.76; H, 5.69. ¹H NMR (300 MHz, CDCl₃): δ 17.48 (dddd, 1 H, Os=CH, ${}^{3}J_{HP} = 10.8$, ${}^{3}J_{HH} = 9.6$, ${}^{3}J_{HH} = 6.3$, ${}^{3}J_{HP} = 2.7$); 7.40–7.10 (5 H, –Ph); 5.82 (5 H, s, η^{5} -C₅H₅); 3.91 (dd, 1 H, one H of the CH₂ group, ²J_{HH} = 15.6, ³J_{HH} = 9.6); 3.36 (d, 9 H, $P(OCH_3)_3$, ${}^{3}J_{HP} = 11.7$); 3.30 (dd, 1 H, one H of the CH₂ group, ${}^{2}J_{\rm HH} = 15.6, {}^{3}J_{\rm HH} = 6.3$; 2.36 (m, 3 H, PCH); 1.15 (dd, 9 H, PCHC H_{3} , ${}^{3}J_{\text{HP}} = 14.7$, ${}^{3}J_{\text{HH}} = 7.2$); 0.97 (dd, 9 H, PCHC H_{3} , ${}^{3}J_{\rm HP} = 14.7, {}^{3}J_{\rm HH} = 7.2$). ${}^{13}C{}^{1}H$ NMR (75.4 MHz, CDCl₃, plus APT): δ 285.7 (+, br, Os=CH); 135.9 (-, s, C_{ipso} in Ph); 128.8, 128.2 (+, both s, C_{ortho} and C_{meta} in Ph); 126.7 (+, s, C_{para} in Ph); 88.9 (+, s, η⁵-C₅H₅); 73.3 (-, s, CH₂); 53.0 (+, d, OCH₃, ${}^{2}J_{CP} = 8.3$); 29.3 (+, d, PCH, ${}^{1}J_{CP} = 29.5$); 19.3, 19.1 (+, s, PCHCH₃). ³¹P{¹H} NMR (121.4 MHz, CDCl₃): δ 89.0 (d, $P(OCH_3)_3$, ${}^2J_{PP} = 33.6$), 25.9 (d, P^iPr_3 , ${}^2J_{PP} = 33.6$). MS (FAB⁺): *m*/*z* 645 (M⁺), 541 (M⁺ - CHCH₂Ph).

Acknowledgment. We thank the DGES (Project PB98-1591, Programa de Promoción General del Conocimiento), for financial support. M.B. thanks the DGA (Diputación General de Aragón) for a grant.

OM011077E